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1. Introduction

In the last century, difference equations have been applied to solve many problems in statistics,
science and engineering. Difference equations are used to approximate ordinary and partial
differential equations due to the development of computing machinery. In addition to approximating
these equations, they provide a powerful method for analyzing mechanical, electrical, and other
systems with repeated identical sections. Using difference equations greatly facilitates the study of
insulator strings, electric-wave filters, magnetic amplifiers, multistage amplifiers, continuous beams
of equal span, and acoustical filters (see [2, 7, 14, 15]). Among the important equations that the
researchers highlighted and which we will also study in our paper is the Levin-Nohel equation
(see [1, 4–6, 8, 11, 13, 16]).

Many researchers resort to using the fixed point theorems and the Lyapunov function to study the
qualitative properties of difference systems with and without delays because these methods give
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impressive results and support the conformity of the conditions of the studied phenomenon with the
reality (see [3–6, 8–12]).

Let Z the set of integers. In this paper we denote Za = {a, a + 1, ...} and Zb
a = {a, a + 1, ..., b − 1, b}

for a, b ∈ Z.
Khelil in [1] obtained results for asymptotic stability of the following difference equation

∆u (m) +
m−1∑

s=m−q(m)

a (m, s) u (s) ds + b (m) u (m − p (m)) = 0, m ∈ Zm0 , (1.1)

with initial condition given by
u (m) = ϕ (m) , m ∈ Zm0

θ(m0),

such that
θ (m0) = min

(
inf
s≥m0
{s − p (s)} , inf

s≥m0
{s − q (s)}

)
.

In [11], we considered the linear Levin-Nohel integro-differential system

u′ (ζ) +
∫ ζ

ζ−q(ζ)
C (ζ, s) u (s) ds + B (ζ) u (ζ − p (ζ)) = 0, ζ ≥ ζ0, (1.2)

with initial condition given by

u (ζ) = ψ (ζ) for ζ ∈
[
θ (ζ0) , ζ0

]
,

and we studied the asymptotic stability.
Using the above works as motivation, we present in this paper the nonlinear Levin-Nohel difference

system

∆u (m) + A (m) u (m − p (m)) +
m−1∑

s=m−q(m)

C (m, s) g (u (s)) = 0, m ≥ m0, (1.3)

with initial condition given by
u (m) = ω (m) for m ∈ Zm0

θ(m0),

where ∆u (m) = u (m + 1) − u (m) is the forward difference operator for any sequence
{u (m) , u (m0) = u0, m ∈ N} and p (m) , q (m) : Zm0 → N, such that m − p (m) ,m − q (m) → ∞ when
the m → ∞, g : RN → RN real sequence satisfies g (0) = 0. The N × N matrices
C : Zm0 × Zθ(m0) → R

N2
and A : Zm0 → R

N2
are bounded with real sequences as its elements.

The asymptotic behavior of the above system has never been investigated by applying Banach’s
fixed point theorem. There is known literature on the Levin-Nohel integro-differential systems, but the
specific system (1.3) may not be examined yet, So we use the fixed point theorem of Banach to show
stability, asymptotic stability and the exponential stability of solutions for the system (1.3).

2. Preliminaries

Let A be an N × N matrix valued sequence and consider the homogeneous linear system

∆u (m) = A (m) u (m) . (2.1)
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Definition 1. The state transition matrix t → Q (t, q) for the homogeneous linear system (2.1) on
the open interval J is the family of fundamental matrix solutions parameterized by q ∈ J satisfying
Q (q, q) = I, where I is the N × N identity matrix.

Throughout this manuscript, we assume that the matrix I + A (m) is nonsingular and we define the
forward operator E by Eu (m) = u (m + 1). Furthermore, the fundamental matrix solution Q (m) of the
unperturbed linear system (2.1) satisfies:

(a) detQ (m) , 0.
(b) Q (m + 1) = (I + A (m))Q (m) and Q−1 (m + 1) = Q−1 (m) (I + A (m))−1.

In Lemma 1, we convert system (1.3) to a new convenient system to facilitate the application of the
fixed point techniques.

Lemma 1. If u (m) : Zm0 → R
m is the solution of (1.3), then system (1.3) is equivalent to

u (m) = Q (m,m0)ω (m0)

+

m−1∑
s=m0

Q (m, s) B (s)

A (s) ((u (s) + u (s − p (s)))) +
s−1∑

z=s−q(s)

C (s, z) g (u (z))

 , (2.2)

where
B (m) := A (m) (I + A (m))−1

− I,∀m ∈ Zθ(m0).

Proof. First, we can write system (1.3) as the form

∆u (m) = A (m) u (m) − A (m) (u (m) + u (m − p (m)))

−

m−1∑
s=m−q(m)

C (m, s) g (u (s)) .

Let u be a solution of (1.3) and Q (m,m0) be a fundamental matrix of (2.1). Since

Q (m,m0)Q−1 (m,m0) = I,

it follows that

0 = ∆
[
Q (m,m0)Q−1 (m,m0)

]
= A (m)Q (m,m0) EQ−1 (m,m0) + Q (m,m0)∆Q−1 (m,m0)

= A (m)Q (m,m0)Q−1 (m,m0) (I + A (m))−1 + Q (m,m0)∆Q−1 (m,m0) .

This implies
∆Q−1 (m,m0) = −Q−1 (m,m0) A (m) (I + A (m))−1 .

On the other hand,

∆
[
Q−1 (m,m0) u (m)

]
= ∆Q−1 (m,m0) Eu (m) + Q−1 (m,m0)∆u (m)
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= −Q−1 (m,m0) A (m) (I + A (m))−1

×

(I + A (m)) u (m) − A (m) (u (m) + u (m − p (m))) −
m−1∑

s=m−q(m)

C (m, s) g (u (s)) ds


+ Q−1 (m,m0)

A (m) u (m) − A (m) (u (m) + u (m − p (m))) −
m−1∑

s=m−q(m)

C (m, s) g (u (s)) ds

 ,
then

∆
[
Q−1 (m,m0) u (m)

]
= Q−1 (m,m0)

(
A (m) (I + A (m))−1

− I
)

×

A (m) (u (m) + u (m − p (m))) +
m−1∑

s=m−q(m)

C (m, s) g (u (s)) ds

 .
A summation of the above equation from m0 to m − 1 gives (2.2 ). It is easy to obtain the converse
implication, and the proof is complete. □

3. Main results

Let (S, ∥·∥) be the Banach space of bounded sequences u : m ∈ Zm0 → R
N with the maximum norm.

∥u (·) ∥ = sup
m∈Zm0

|u (m) |,

where |·| is the infinity norm for u ∈ RN . We define the norm of A (m) :=
[
ai j (m)

]
by

∥A∥ := sup
m∈Zm0

|A (m)| ,

where

|A (m)| = max
1≤i≤N

N∑
j=1

∣∣∣ai j (m)
∣∣∣ .

In this paper, we assume that there exists a constant Lg > 0 such that for u, v ∈ RN

∥g (u) − g (v)∥ ≤ Lg ∥u − v∥ . (3.1)

Definition 2. We say that the zero solution of (1.3) is Lyapunov stable if for any ϵ > 0 and m0 ∈ Z

there exists δ > 0 such that |ω (m)| ≤ δ for m ∈ Zm0
θ(m0), which implies |u (m,m0, u0)| ≤ ϵ for m ∈ Zm0 .

Theorem 1. Assume there exists M > 0 and γ ∈ (0, 1) such that for m ∈ Zm0 ,

|Q (m,m0)| ≤ M (3.2)

m−1∑
s=m0

|Q (m, s)| |B (s)|

2 |A (s)| + Lg

s−1∑
z=s−q(s)

|C (s, z)|

 ≤ γ, (3.3)

then the zero solution of (1.3) is stable.
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Proof. Let ϵ > 0 and choose δ > 0 such that for |u (m)| ≤ δ,∀m ∈ Zm0
θ(m0), we have

δM + γϵ ≤ ϵ.

Define
Γϵ =

{
u ∈ S : |u (m)| ≤ δ,∀m ∈ Zm0

θ(m0) and |u (m)| ≤ ϵ,∀m ∈ Zm0

}
,

then (Γϵ , ∥·∥) is a complete metric space with the maximum norm.
We define the operator 𭟋 : Γϵ → S due to Lemma 1 by

(𭟋u) (m) = Q (m,m0)ω (m0) +
m−1∑
s=m0

Q (m, s) B (s)

×

A (s) (u (s) + u (s − p (s))) +
s−1∑

z=s−q(s)

C (s, z) g (u (z))

 , (3.4)

for m ∈ Zm0 .
We first prove that 𭟋 maps Γϵ into Γϵ . So, by (3.1)–(3.3)

|(𭟋u) (m)| ≤ |Q (m,m0)| |ω (m0)| +
m−1∑
s=m0

|Q (m, s)| |B (s)|

×

|A (s)| (|u (s)| + |u (s − p (s))|) +
s−1∑

z=s−q(s)

|C (s, z)| |g (u (z))|


≤ Mδ +

m−1∑
s=m0

|Q (m, s)| |B (s)|

2 |A (s)| + Lg

s−1∑
z=s−q(s)

|C (s, z)|

 ∥u∥
≤ Mδ + γϵ ≤ ϵ.

We next prove that 𭟋 is a contraction.
Let u, v ∈ Γϵ , then

|(𭟋u) (m) − (𭟋v) (m)| ≤
m−1∑
s=m0

|Q (m, s)| |B (s)|

×

2 |A (s)| ∥u − v∥ + Lg

s−1∑
z=s−q(s)

|C (s, z)| ∥u − v∥


≤ γ ∥u − v∥ .

Hence,
∥𭟋u − 𭟋v∥ ≤ γ ∥u − v∥ ,

since γ ∈ (0, 1), then 𭟋 is a contraction.
Thus, by the fixed point of Banach, 𭟋 has a unique fixed point u in Γϵ , which is a solution of (1.3)

with u (m0) = u0 and |u (m)| = |u (m,m0, u0)| ≤ ϵ for m ∈ Zm0 . This proves that the zero solution of (1.3)
is stable. □
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Definition 3. We say that the zero solution of (1.3) is asymptotically stable if it is stable and if for
any integer m0 ≥ 0 there exists δ > 0, such that |ω (m)| ≤ δ for m ∈ [θ (m0) ,m0], which implies
|u (m,m0, u0)| → 0 as m→ ∞.

Theorem 2. If (3.1)–(3.3) and
Q (m,m0)→ 0, as m→ ∞, (3.5)

hold, then the zero solution of (1.3) is asymptotically stable.

Proof. We have shown by our last theorem that the zero solution of (1.3) is stable. For a given ϵ > 0
define

Γ0 = {u ∈ Γϵ such that u (m)→ 0, as m→ ∞} .

Define 𭟋 : Γ0 → Γϵ by (3.4). We must prove that for u ∈ Γ0, (𭟋u) (m)→ 0 when m→ ∞. By definition
of Γ0, u (m)→ 0, as m→ ∞ . Thus, we get

|(𭟋u) (m)| ≤ |Q (m,m0)| |ω (m0)| +
m−1∑
s=m0

|Q (m, s)| |B (s)|

×

|A (s)| (|u (s)| + |u (s − p (s))|) +
s−1∑

z=s−q(s)

|C (s, z)| |g (u (z))|

 .
By (3.5),

|Q (m,m0)| |ω (m0)| → 0 when m→ ∞.

Moreover, let u ∈ Γ0 so that for any ϵ1 ∈ (0, ϵ) , there exists T ≥ m0 large enough such that s ≥ T
implies |u (s − p (s))| , |u (s − q (s))| < ϵ1. Hence, we get

Λ =

m−1∑
s=m0

|Q (m, s)| |B (s)|

×

|A (s)| (|u (s)| + |u (s − p (s))|) +
s−1∑

z=s−q(s)

|C (s, z)| |g (u (z))|


≤ ϵ1

m−1∑
s=m0

|Q (m, s)| |B (s)|

2 |A (s)| + Lg

s−1∑
z=s−q(s)

|C (s, z)|


≤ γϵ1 < ϵ1.

Thus, Λ→ 0 as m→ ∞.
Hence, 𭟋 maps Γ0 into itself. By the fixed point of Banach, 𭟋 has a unique fixed point u ∈ Γ0, which

solves (1.3). □

Definition 4. We say that the zero solution of (1.3) is exponentially stable if there exist δ, σ > 0 and
λ ∈ (0, 1) such that

|u (m,m0, u0)| < σ |u0| λ
m−m0 , m ≥ m0, (3.6)

whenever |u0| < δ.
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Theorem 3. The zero solution of (1.3) is exponentially stable if
1) The conditions (3.1) and (3.3) hold;
2) There exists λ ∈ (0, 1) such that

|Q (m,m0)| ≤
1
2
λm−m0 , ∀m ≥ m0, (3.7)

and
m−1∑
s=m0

|B (s)|

λp(s) + 1
λp(s) |A (s)| + Lg

s−1∑
z=s−q(s)

|C (s, z)| λz

 ≤ 1. (3.8)

Proof. Since the condition (3.7) holds, we define Γe as the closed subspace of S as

Γe =
{
u ∈ S : such that |u (m)| ≤ |u0|σλ

m−m0 , ∀m ≥ m0
}
.

We will show that 𭟋 (Γe) ⊂ Γe, then by (3.7), we have

|(𭟋u) (m)| = |Q (m,m0)| |ω (m0)| +
m−1∑
s=m0

|Q (m, s)| |B (s)|

×

|A (s)| (|u (s)| + |u (s − p (s))|) +
s−1∑

z=s−q(s)

|C (s, z)| |g (u (z))|


≤

1
2
|ω (m0)|σλm−m0 +

m−1∑
s=m0

1
2
λm−s |B (s)|

×

|A (s)|
(
|u0|σλ

s−m0 + |u0|σλ
s−p(s)−m0

)
+ Lg

s−1∑
z=s−q(s)

|C (s, z)| |u0|σλ
z−m0


=

1
2
|ω (m0)|σλm−m0 +

1
2
|ω (m0)|σλm−m0

×

m−1∑
s=m0

|B (s)|

λp(s) + 1
λp(s) |A (s)| + Lg

s−1∑
z=s−q(s)

|C (s, z)| λz

 ,
since (3.8) holds. Thus, we have

|(𭟋u) (t)| ≤
1
2
σ |u0| λ

m−m0 +
1
2
σ |u0| λ

m−m0 = σ |u0| λ
m−m0 ,

then 𭟋 (Γe) ⊂ Γe.
Hence, there exists a unique fixed point u ∈ Γe that solves (1.3), then the zero solution of (1.3) is

stable exponentially. □

4. Conclusions

In this research paper, the theoretical study of stability, asymptotic stability and exponential stability
was addressed by using the fixed point theorem of Banach. Some new criteria was imposed on the
fundamental matrix solution and system components to obtain the stability, asymptotic stability and
exponential stability. The considered system contained two functional delays. However, the obtained
results for Equation (1.3) can be extended to more than two delays.
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