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1. Introduction

1.1. The pointwise convergence of Schrodinger operator

We first introduce the free Schrodinger equation

idu+Au=0, (x,ty) e R" X R; (L.D)
u(x,0) = f(x), x € R™. '
The formal solution of (1.1) is defined by
eWm=1f”MWma
2y Jgn
where f(&) = fRn e ™ f(x) dx.
Carleson [6] first posed the problem: Determine the optimal s such that
lin(} e f(x) = f(x), a.e. xeR" (1.2)
t—

holds whenever f € H*(R"), where H*(R") is the L? Sobolev space, which is defined by
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We call the above problem as Carleson’s problem.

Carleson [6] first showed that the almost everywhere convergence (1.2) holds for all s > i in R.
Dahlberg-Kenig [9] proved (1.2) fails for s < i when n > 1. Thus, the Carleson problem was solved in
one dimension. For the situation in higher dimensions, many researchers are interested in Carleson’s
problem. The sufficient condition of Carleson’s problem has been obtained by many references [1, 2,
5,7,8,10,11,13,15,16,18,20-23,27,28] and references therein. Bourgain [3] gave counterexamples
demonstrating that (1.2) fails when s < 5-%5. The best sufficient condition was improved by Du-Guth-
Li [12] when n = 2 and Du-Zhang [14] when n > 3. Hence, the Carleson problem was essentially

solved, except for the endpoint.

1.2. The Boussinesq maximal estimate

As a nonlinear variant of (1.2), the Boussinesq operator acting on f € S(R") is given by
B0 = @n” [ eV figag,
RH

which occurs in many physical situations. The name of this operator comes from the Boussinesq
equation

Uy = Uy & Uy = () ¥ (%, 1) € R X [0, +00);
see [4] for more details.

We are motivated by subsection 1.1 to study the pointwise convergence of Bf(x,t): Evaluate the
optimal s so that

imBf(xn) = f(), ae xeR' (1.3)

holds for any f € H*(R").

Cho-Ko [7] improved the convergence on the Schrodinger operator to generalized dispersive
operators excluding the Boussinesq operator. Li-Li [17] obtained the optimal s = ;ll in one dimension
including the endpoint. Li-Wang [19] obtained the almost everywhere convergence (1.3) that holds for
the optimal s = % when n = 2, except for the endpoint.

In this paper, we are interested in a more general problem. Let E be a bounded set in R™"!. For
f € S(R"), we introduce the maximal function

Brf(x):= sup [Bf(x+y,0)], xeR".

,HEE

Let’s review the fractional Schrodinger operator, which is defined by

Sfx, 0 =Q@2n)™" f D f&)dg,  a> 0,
R)l
and its maximal function, which is given by

Spf(x) = sup [Sf(x+y, 0|, xeR".
,HeE
Sjolin-Stromberg [24] obtained maximal function S f is bounded from L*(R") to L*(R") when
n > 1; see [25] for more studies. The Boussinesq maximal function is different from the fractional
Schrédinger maximal function and they have different properties. Thus, we consider the Boussinesq
maximal function in this paper. Our main result is as follows.
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Theorem 1.1. Assumen > 1, A > 1. Let the interval J C [0, 1]. Suppose B is a ball in R" with radius r
and set E = BX J ={(y,1) : y € B,t € J}. Let f € LA(R") with supp f c B(0, 1), then one has

1Bi A2y < (MEAZ + 7225 + 1) 1l 2y whenn = 1

and
185 2gany S (24 + 72+ 1) A+ DT N fll o, whenn > 2.

In section two we give the proof of Theorem 1.1. We use the methods of frequency decomposition,
linearization of the maximal operator, 77" and so on. In fact, in subsection 2.1 we first introduce our
main lemma. In order to prove our main lemma, we shall introduce two lemmas, which are proved in
section three, then we give the proof of our main lemma. In subsection 2.2 we prove Theorem 1.1.

Throughout this paper, we always use C to denote a positive constant independent of the main
parameters involved, but whose value may change at each occurrence. The positive constants with
subscripts, such as C; and C,, do not change in different occurrences. For two real functions f and g,
we always use f < g or g > f to denote that f is smaller than a positive constant C times g, and we
always use f ~ g as shorthand for f < g < f. If the function f has compact support, we use suppf to
denote the support of f. We write |A| for the Lebesgue measure of A € R. We use S(R") to denote the
Schwartz function on R". We use B(c, r) to represent the ball centered at ¢ with radius r in R”".

2. The Boussinesq maximal estimate

2.1. The main lemma
In order to prove Theorem 1.1, we give our main lemma as follows.
Lemma 2.1. Assume n > 1, 1 > 1. Let the interval J C [0, 1]. Suppose B is a ball in R" with radius r
and E = Bx J ={(y,t): y € B,t € J}. If f € L*(R") with supp f C B(0, A), then
185 oy < (1525 + 7225 + 1)1l 2 -

Remark 2.1. In fact, Lemma 2.1 contains the Theorem 1.1 when n = 1 and n = 2, so it suffices to
prove Theorem 1.1 when n > 3.

Lemma 2.1 plays a key role in the proof of Theorem 1.1. In order to prove Lemma 2.1, we shall
use the following Lemmas 2.2 and 2.3. We postpone the proofs of Lemmas 2.2 and 2.3 here and the
details will be shown in section three.

Lemma 2.2. Assume n > 1, A > 1. Let the interval J C [0, 1]. Suppose B is a ball in R" with radius r
and E=BxJ={(y,t):yeB,teJ}.Iff € LZ(R”)withsuppfc {EeR": % < |&| < A}, then
185 oy < (122 + 7225 + 1)1l 2y -
The only difference between Lemma 2.1 and Lemma 2.2 is the support of f and that the condition
of Lemma 2.1 is weaker than that of Lemma 2.2.

Remark 2.2. If we take B = B(0, €) with € > 0 small enough in Lemma 2.2, then we have

S (|_]|Z/l§ + 1) ”f”LZ(Rn) .
L>(R")

sup |Bf (-, 1)l

teJ
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Lemma 2.3. Letyo € R, tp €R, 0 < r < 1, f € L*(R") with supp fC B, ) and A > 1. Set
E:{(y,t)ERn'Fl :yyo,ijJ-Syyo,j+r forl SjgnandtostSt0+r2},

then

N
Proof of Lemma 2.1. Let N be the smallest integer so that [J[272VA% + 127N < 2. We write f = Y f;
=0

By iz, S A+ P2+ 7" 1 fll 2y -

where supp E C{EeR: 27771 < ¢ <27A) forO < j < N — 1 and supp fy C B(0,27V1). We make
the following two-fold analysis:

On the one hand, we take E = B X J = {(y,t) : y € B,t € J} in Lemma 2.3, where B is the same as
in Lemma 2.1, which implies that

g S L+ 272X )L+ 27N 0" M fwll oy S N2y - (2.1)

On the other hand, according to Lemma 2.2 we have

for 0 < j < N — 1, which implies that

J=0

* _n n _n no.n___jn
BEE||L2(Rn) < (2 Z|J|#A2 + r212272 ) ”f”Lz(]R")

By

< (1522 + 7228 1 fll 2y - (2.2)
L2(R")

(2.1) and (2.2) yield that

N
B*Ef“LZ(R" < Z B*Efj”LZ(Rn) S (|J|%/l% + }"%/l% + 1) ”f”LZ(Rn) .
Jj=0

This completes the proof of Lemma 2.1.

2.2. The proof of Theorem 1.1

We now are ready to combine our main Lemma 2.1 and finish our proof.
Proof of Theorem 1.1. By Remark 2.1, it suffices to consider the case n > 3. By Lemma 2.1 we have

< (B2 + 70"+ 1)1z g, -

L2(R™)

Cover J with intervals J;, i = 1,2, ---, N, of intervals of equal length |J;| such that |J;|1> = r?A> + 1 with

N < Iljll + 1. Set E; := B X J;, then we have

By s ((IJ,MZ); + (P2 + 1)%) L.
:

=2(P2 + 1) 111250 -
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which implies that

N
Bz“f”iz(Rn) = Z | B*Eif”;(nan)
i=1

S N(rz/lz + 1)E ”f”%;(R")
o+ 1) (P2 + 1) 112

-1 n
= (W12 (P24 1) 1) (P 1) e
n-2
= (11122 + P2 + 1) (P2 + 1) 7 |1l
L 2 n-2 2
< (WEPA+r A+ 1) A+ D" 1 f I g,

which gives the desired estimate.
3. The proofs of Lemmas 2.2 and 2.3

3.1. The proof of Lemma 2.2

In order to finish the proof of Lemma 2.2, we will need the following lemma, known as Van der
Corput’s lemma.

Lemma 3.1. (Van der Corput’s lemma [26]) For a < b, let F € C*([a, b)) be real valued and €
C*([a, b]).

1) IfIF'(x)l 2 A>0, VY x € [a,b] and F'(x) is monotonic on |a, b], then

b ' C b
f Ty (x) dx| < z(|¢(b)|+ f ' (x)] dx),

where C does not depend on F,  or [a, b].

(i) If|F"(x)|>A2>0, VY x € [a,b], then
b ' C b
f "y (x) dx| < " (|w<b>| + f ' (x)| dx),

where C does not depend on F, ¥ or [a, b].

Proof of Lemma 2.2. Assume that y is a smooth nonnegative function on R, supp y C [%, ‘3—‘] and y =1

on [%, 1]. We also use the same notation for the radial function on R” with (&) = x(|¢]), then we get
the following truncated Boussinesq operator:

Bif(x,1) := 2r)™ f oI EHIE N THER) f(f))((g ) o

Rn

Lets:R" — Jand b : R" — B be measurable functions. By linearizing the maximal operator, we have

Buf (x4 b0, 1) = @) [ e VI feyy (£) ae

n
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= Q2n)™"A" f £ A+ 1+ 1)l An] ‘V1+|/1n|2)f(/ln)/\/(n) dn
Rn
= A'Ta(f)),

where

Tg(x) = f o b)) E+(IAE] Y 1+|/1§|2)g(§)/\/(§) dé.
Rn

We use the method of 77~ to finish the proof of Lemma 2.2. After some computation, we get that the

kernel of T,T7 is

Ki(x,y) = f HACYHI=DOYEXCO-TODAE VAP 2 () G

We need to control K,(x,y). However, it is difficult to estimate K,(x, y), which leads us to majorize the
kernel K, by a convolution kernel G; that is |K,(x, y)| < G(x — y). Next, we divide the proof into two

parts in order to obtain the expression of function G,.
On the one hand, we have that the trivial estimate

IKa(x, )l < 1

holds for any x and y. We shall use this estimate when A|x — y| < Cy + 24d, where d = 2r.

On the other hand, we discuss the case A|x — y| > Cy + 24d. Let o be the surface measure on the

unit sphere in R”. Clearly, polar coordinates yield that

K/l(x,y) :f ei/lr(’(x)_f(}’)) WXZ(F) (f ei/lr(x—y+b(x)—b(y)).§' dO'(f/) rn—l dr
0 s

n—1

= f OOV 2 (1 5-(A(x — y + b(x) — b)) dr.
0

Stein [26] implies that
o) = QoI w2 (D),

where J 12 (|€)) is a Bessel function, which is defined by

_ : its(1 _ o2\V ds
Jv(’)‘r(w%)r(;)[f ==

We take C large enough such that

ir —ir —ir

e’ e e e e e
J@(r):a07+a17+~-~+aN 1-l-b() : + b, 3 +-- -+ by 1+R(I’),
: rz r2 rVtz rz r2 rVta
for r > Cy, where |R(r)| N1+ = (see [26]). This yields that
r'2
00 ~ ~ ei/llx—y+b(x)—b(y)|r
Ky(x, y) — f el/lr(t(x) t(y))V1+AZr2X2( r) 1 1 a —
0 (Ax =y +b(x) — b(y)lr)2~2

e—ixllx—y+b(x)—b(y)|r
+---4+b

R{(Ax — b -b d,
Q=+ b bt AT <y>|r>) r

(3.1)
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where R, (r) = r'2R(r).
We first consider the remainder term. Since |R(r)| < g , we obtain

1
(Alx = y + b(x) — b(PV+5+3
Observing that b(x), b(y) € B, we have |b(x) — b(y)| < d, which yields

Ri(Alx =y + b(x) = b(y)lr) <

d d
Ix—yl(l——)=Ix—yl—d<Ix—y+b(x)—b(y)|<|x—yl+d=|x—yl(1 + )
lx =yl lx =yl

Note that A|x — y| > Cy + 2Ad. It follows that
1 3
Eu—ﬂ<u—y+mm—b@»<§u—w

Furthermore, we conclude

Ri(Alx - y + b(x) - bO)Ir) § ———————
1 (Alx — y)NV+i+E

Henceforth, we establish the estimate of the remainder term
_N-n_1
|K/l,rem(xa y)| S (/llx - yl) 22,

In order to obtain the upbound of |K,(x, y)|, it suffices to estimate the main term, which is defined
by

K/l,main(x’y) = D n lf lq)i(”) 2(1’)}"2 zdr
(Ax =y + b(x) — b(y))22

where

D (r) = Ar(t(x) = t(y)) V1 + 22r2 + Alx — y + b(x) — b(y)|r.

Next, we make the following two-fold analysis:
Case 1. |x — y| > Al#(x) — #(y)|. The definition of ®,(r) implies that @’,(r) = A(#(x) — 1(y))L2LL

. . \/1 /12
Alx =y + b(x) — b(y)|, which yields
|| = Alx = y + b(x) = bX)] - At(x) — mﬂ > Ax =yl
o Vit e '

Using integration by parts, we obtain

1
(Alx =y + b(x) = b3~

Case 2. [x—y| < A|t(x) —t(y)|. Since t(x), 1(y) € J, we get |[x—y| < A|J|. It follows from the definition

of @,(r) that ®/(r) = A(t(x) — t(y))““+2”” which implies
(1+A°r

( Ix =y < (Ax—y)™ for V N.

|K/l,main(xa )’)|

|7 ()| 2 Plt(x) — 1),
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Using Lemma 3.1, we have

1 -1 n
|K tmain(3%, )| § —————— (%1x) = 1)) * < (Alx = )72,
(Alx = y)3-

We have established the upbound of |K;(x, y)|. In summary, by |K;(x, y)| < G.(x — y), we may take

GA(X) = Y qnecon+2a0/ () + AV xusay O™ + A Ly gucan (Ol 2,

which yields

1G iy € (A +d)" + 47 + f A5t dx

ld<CalJ|
e
<A+ +A1"+ 22 f r2tdr
0
S@ )+ A"+ )2
sA"+d + ),
where in the second inequality we used polar coordinates. This implies that

|77

LZ(R”)HLZ(R”) S ||G/1”L1(R") S /l_n + dn + |J|i

It follows that
||T/1||L2(R”)—>L2(R") s /l_i + dz + |J|Z.

We combine the above estimates and get
I1Bf (6 + b, N2y < A |TaCF @Dz

< ATl 2gey— 12y

f(/l')”LZ(Rn)
< A (/l‘% +d> + |J|%)/1_% 112 ey
= (1+ 222+ B o -

This completes the proof of Lemma 2.2.

3.2. The proof of Lemma 2.3

Proof of Lemma 2.3. We write y = (y1,- - -, y,) and yo = (Yo.1,* * -, Yon). For 1 < j < n, we write
A = e — €M and A,y = eMEIVIHER _ ool VI+EP Tt follows that

Bf(-x + s t) = (271')_” eif'xeiflyl . eifnyneiﬂﬂ mf(é‘:) dé‘:
R”?

e ( A+ eiflyo,l) . ( A, + ez’fnyo,n) ( Aot + €K \/1+|§|2) A& de.

Rn

Henceforth, Bf(x + y, 1) is the sum of integrals of the form

n A; n 0.

JEQ JEQ

A1 f(E) dE =2 By f(x,y,1) (3.2)

Qo™ | e
Rl‘l
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or

Qn)™ f e
Rn

Here, Q, and €, are disjoint subsets of {1,2,3,---,n} and Q; UQ, ={1,2,3,---,n}.
First, we give the discussion of B, f(x, y, t). For j € Q;, we have

Yi o
Aj = i&; f e dsj,

Yo,j

[ [,

JEQ1

n ez‘ijo,j] o10lé1 \/1+\§|2f(§) dé =: Bof(x,y,0). 3.3)

JEQ

and we also get
t
At = VT + P f MNP g,
fo

Assuming Q = {ky, k>, - - -, k,,}, we conclude

"V Vky Vkm ! ) ) .
By f(x,y,1) = f f f f f | [ Tigse || [ T e
R* Iyok Yok, Yokm Y10

jEQ] jEQz
x 1€ V1 + RPN s {2y sy, dsy, - - - disy,, dsayy dE.

By changing the order of integration we get
Vi Vikm !
1B, f(x,y,0)| < f o f f |Fa, (s st5 -+ o0 Skpo Swen)| dsi - -+ disg, dspans
Y0.ky Y0,k 10

where

Fo, (X5 Skys =+ *s Skys Sntl)

=2m)" e [1_[ ifjei‘ffs-’) [n eié“_/yo,j] l|§| A /1 + |§|2eilé—‘| V1+I§|2sn+1f(€;) d.f
R e Jje
It follows that
Y0,k 1 Y0,k TT

to+r2
Sup |B1f(x’ y’ t)l S Tt f |Fﬂl (-x, Skla Y Skm7 Sn+1)| dsk| e dSkm ds}’l+1' (3'4)
4]

(HEE Y0y Y0k

Taking L? norms of both sides of (3.4) and from Minkowski’s inequality and Plancherel’s theorem, we
deduce

sup |B1f(’ Y, t)|

(V.DEE L2(R™)
Y0k TF Y0,k +T 1‘0+r2
Sf o 'f f ||FQI('; skla ) Skm’ Sn+1)||L2(Rn) dskl e dSkm dsn+1
Y0,k Y0,km To
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Y0.ky +T Y0,k tT

2yt f ( (11T ( & ](|f|\/1+|§|2) ol dg] sy, -+ s, dsyer
JEQ

Y0,k Y0.km

<P A2 || fll 2

where the last inequality follows by applying the fact that f € L*(R") and supp f c B(0, A).
Next, we study B, f(x v,t) in (3.3). The estimate of B, f(x,y,t) is similar to that of B, f(x,y,1).
Since Q; = {ky, ko, - - -, k,,}, 1t follows that

Brf(x,y,1) = f f f ( l.fjei‘fjsf) [l—[ eiijo,j] i1kl \/1+I§\2]?(§) dsg, - - - dsg dE.
Yoy Yon jen,

JEQ

Changing the order of integration again, one then obtains

ClSkl dsk ,

|Bzf(-x Y, t)l < f |H91(x Skys Skm)
Yok, Y0,k

where
HQl(x Skis " s Sk, )= Q2n)™" f léx[ lgjeicfjfj] (l—[ eiijo,j] eito|§|V1+I§I2f(§) de.
JEQ JEQ

Furthermore, we get

Y0,k +r Y0,k T
sup 1B, f(x,y,1)| < f f |Ho, (63 51+ -+ s6,)| dise, -+ sy, -

(NEE Y0.ky Y0.km

Using Minkowski’s inequality and Plancherel’s theorem, we then obtain

0,y 7 0,km +
f f ||HQ1(’ Skl’ T Skm)”LZ(Rn) dSk] e dSkm
L2(R") Y0.ky Y0k

1

0k1+r Y0,k T
= 2} f f [ f [ | T1e ]If(§)| df] dsy, - - - dsy,
Y0.ky jeQ

S rm/lm ”f”LZ(]R”) .

sup |82f(’ Y, t)l

(v.t)eE

By summation of the above integrals, we conclude that
B2/ || 2y S A+ P2A + 2D 1l 2y -
Thus, Lemma 2.3 is established.
4. Conclusions
In this paper, we studied the boundedness of the Boussinesq maximal operator when n > 1. We
obtained the Boussinesq maximal operator is bounded from L*(R") to L*(R") when f € L?*(R") and
supp f € B(0,1) by using the methods of frequency decomposition, linearization of the maximal

operator, TT* and so on.
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