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Abstract: In this paper, we explore the existence of fixed points, local dynamics at fixed points,
bifurcations and chaos of a discrete prey-predator fishery model with harvesting. More specifically, it
is proved that, for all involved parameters, the model has trivial fixed point, but it has semitrivial and
interior fixed points under definite parametric condition(s). We study the local behavior at fixed points
by applying the theory of linear stability. Furthermore, it is shown that flip bifurcation does not occur at
semitrivial and trivial fixed points, but that the model undergoes Neimark-Sacker bifurcation at interior
fixed point. It is also proved that, at interior fixed point, the model undergoes the flip bifurcation.
By using a feedback control strategy, the chaos control is also examined. Finally, to illustrate the
theoretical findings, detailed numerical simulations are provided.
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1. Introduction

1.1. Motivation and literature review

The aquaculture or fish forming in seas, oceans, rivers and streams hold massive potential as a tool
to provide us healthy and nutritious food. It also presents a good contribution to development in areas
of employment like fish farming, rearing, fish culture, handling and fish processing, etc. Due to
population growth, it is a great challenge around the globe to find the sources of food for those
people. Fish provide a healthy source of protein. It is highly nutritious and provides a cheap and
healthy source of protein. Fish is not only a source of food for humans, it also serves as a source of
prey for most of the sea life. Thus, naturally, fish plays an important role in aquatic ecosystems. As
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the demand for fish increases, the harvesting of fish leads to overfishing, which results in the
extinction of some species entirely. Overfishing is the act of catching too many fish before they can
reproduce, which depletes fish populations over time. Increased demand for seafood, technologies
which make fishing easier and a lack of appropriate fishing laws and enforcement cause overfishing.
Overfishing reduces biodiversity and may lead to the extinction of some groups of fish or entire fish
species. Those animals that rely on fish for food may struggle to find enough sustenance and also
become endangered. Increased investment in fishery management and research is needed to
understand the fish populations and ecosystems better. If an all-out extinction is to be prevented,
meaningful measures must soon be taken. Scientists and researchers believe that this can be achieved
by only harvesting the optimum yield. Scientists and researchers develops several numerical models
to estimate the innovative trends in population. Within an environment, the population dynamics can
be modeled by a system of autonomous differential equations. However, there is no analytical
solution for certain differential equations, such as the nonlinear ones. In these situations, the
qualitative approach is applied in addition to the numerical strategy.

A generalized numerical method is added for biological growth; it incorporates the acknowledged
capabilities encompassed in generalized logistic, Brody, von Bertalanfty, Gompertz, Richards logistic
and other models. In addition, a few theoretical mathematical features of interaction between prey and
predator have been provided on the presumption that predation has little or no impact on the prey’s
growth population. Predator population factors have been integrated into development models to take
into account the fact that prey populations grow according to logistic and von Bertalanffy theory. It
is difficult to accurately predict the prey-predator interaction. Hence, different results might obviously
be produced. Studying various angles of these prey-predator interactions by exploring the dynamical
characteristics generates a fascinating and significant biological phenomenon. By examining the effects
of toxic substances on aquatic ecosystems, Huda et al. [1] have explored the behavior of the following
prey-predator fishery model:

2
— —axy, = — Bxy° — d+ gk s 1.1
It =nx y It A y ( q )y ( )

dx (1 B 1) YiXxy o dy _ cyaxy

where K and r; respectively represent the carrying capacity and logistic growth rate of the prey
population; y; and 7y, are the rates of interaction between the prey and predator fish populations;
and S respectively denote the prey populations and toxicity coefficients for predatory; A denotes the
environmental protection level for prey; c is predator growth rate; d and g respectively denote the
natural mortality rate of predatory fish populations and coefficient for predatory population capture
activity and the finally; E denotes the harvesting rate of the predator population. Pujaru and Kar [2]
have investigated the dynamics of the following predator-prey system:

dx X dy y
@ 1——)— —qEx, 2= (1——)+ — 2Ey, 1.2
7 FX( x) ey T akx, o=y 7))ty - aky (1.2)
where r and s denote the growth rates of the predator and prey populations, and L and K respectively
denote the carrying capacities of the predator and prey populations. Kar [3] has examined the behavior
of the following fishery model with time delay:

d d
2w -y, 2

dt = =y (-d + axp(x)) = qEy(t = 1), (1.3)
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where x(7) and y(7) respectively denote the densities of prey and predator populations; g(x) and xp(x)
respectively denote the growth rate of the prey and response function; @ and d respectively denote the
conversion factor and predator’s death rate; g is the predator’s catchability coefficient; gEYy is the catch
rate function and 7 denotes the time delay. Liu et al. [4] have studied the dynamical behaviors of the
following continuous model:

dx

cx
— = x(a1 —bix -

d + y?

dr

d
p ) — qimEx, 2o y(az = byy) 2 gomEYy, (1.4)
t u+y

where a;, b; (i = 1,2), ¢, d and u are positive constants, # denotes the Allee effect and the algicidal
bacteria and harvesting functions for algae are respectively denoted by g,mEy and g;mEx. Moreover

E,dand dcfyyz respectively denote the combined capture effort, half-saturation constant and algal growth.

Keong et al. [5] have examined the behavior of the following fishery model:

dx = x(1 —ax) — xy — Bx — ox’y, & =~y + xy — €y — pxy’, (1.5)
dt dt
where a denotes the ratio of the prey’s growth rate; S is the ratio of the product of catchability
coeflicient of prey and harvesting effort to the growth rate of prey; g is the ratio of the product of
coeflicient of toxicity and growth rate of prey to the square of growth rate of predator by prey and
predator’s growth rate is 6. Chen et al. [6] have explored Hopf bifurcation of a species interaction
model. Chen and Wu [7] have examined the dynamical behavior of a predator-prey system with a
harvesting policy and network connection. For more interesting results in this field, we refer the
reader to the work of the most eminent mathematicians [8—10] and the references cited therein. On
the other hand, many investigators have explored the dynamics of discrete models designated by maps
or difference equations rather than continuous models described by differential equations because
discrete-time models are more reasonable in the case of non-overlapping generations; additionally,
such models give more efficient computational results for numerical simulations [11, 12]. For
instance, Elettreby et al. [13] have investigated the complex dynamical behavior of the predator-prey
model described below:
dxtzy,
X1 = ax, (1 —x,) - i Jm T (1 +bAx) y: — cyr, (1.6)

t

where all parameters are positive. Santra et al. [14] have examined the behavior of the following
predator-prey system:

c(l=b)xy, _ d(1-1Db)xy,
A+ax(-b)A+8y) 7 U+ax(-b)1+py)

Xep1 = ax; (1 —x;) — (1.7)

with all involved parameters being positive. Zhang et al. [15] have explored the Hopf bifurcation of a
delayed biological economic model. Zhang and Zou [16] have explored the dynamics of the following
model:

ro
Xyl = X + Exz (K = x)(x; —¢) —axy;, Y1 = yr + bx;y, — dyy, (1.8)
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where x and y respectively denote the prey and predator densities. Moreover, =2 (K — x;) (x; — ¢)
denotes the per capita growth rate of the prey in the absence of a predator. Chakraborty et al. [17]
have investigated the dynamical behaviors of the following prey-predator model:

x’(l _xtz) Vi
2 20 +ax,)

(1.9)

CX,
X1 =X+ h AL )’

), Y+l = Yt +h(—s)’t + m
where & and g respectively denote step size and catchability coeflicient for the predator population, a,
¢, e and s are positive constants and E denotes the harvesting effort. On the other hand, in recent years,
many authors have investigated the bifurcation behavior of fractional-order systems. For instance,
Mua et al. [18] have investigated the bifurcation and hybrid control tactics of a chemical reaction
model with delays. Xu et al. [19] have explored the dynamics in a discrete predator-prey competitive
model with feedback controls. Xu et al. [20] have explored the bifurcation mechanism for fractional-
order three-triangle multi-delayed neural networks. Xu et al. [21] have explored the bifurcation in a
fractional-order predator-prey system with mixed delays. For more interesting results in this regard,
we refer the reader to [22-25].

1.2. Mathematical modeling of a discrete prey-predator fishery model with harvesting

This section presents the mathematical model of a discrete predator-prey fishery model with
harvesting. In order to formulate the continuous-time fishery model with harvesting, our investigation
has been divided into the following three essential parts [26]:

e Consider the following model equation in which fish harvesting occurs without a predator:

dx

- rx(l - %) _Ex, (1.10)

where Ex denotes harvesting per unit time and E denotes a positive constant that increased the
measure of the effort. Additionally, K denotes the natural carrying capacity and r is the linear
per capita growth rate. It is important to denote that, if £ = 0, then model (1.10) reduces to the
non-harvesting fish model.

e Now, consider the following model equation in which fish harvesting occurs in the presence of a

predator:

d
== oyt s, (1.11)
where s and v respectively denote the positive parameters for the birth rate and death rate of the
predator population.

e Finally, if one takes into account that competition within the predator population increases the
death rate of the species, the desired fish harvesting model takes the following form:

— =7X 1—%)—Ex—ﬁxy, o = —vy + sxy — @y’ (1.12)

where £ is the measure of the predator’s rate of prey consumption and « is the measure of the
predator’s rate of intra-specific competition. On the other hand, the discrete version of the
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continuous model (1.12), according to the Euler forward formula takes the following form:

X, - X X —
t+1h T _ rx, (1 — }t) — Ex; — Bx,y,, Yt+1h Yt = —Vy, + SX Y — aytz, (1.13)
which further becomes
hr
X+l = (1 —Eh+ I’h)Xz - Extz —,th,y,, Vir1 = (1 — hy)yt + thtyt _ a/hy?, (1.14)

where the integral step size is h.

1.3. Main contributions

The purpose of the present study is to explore the dynamical characteristics of a discrete prey-
predator fishery model with harvesting, i.e., model (1.14). More precisely, our key contributions in this
paper are as follows:

e Demonstration of the local dynamics at equilibria based on the linear stability theory of the
discrete fishery model (1.14).

Examination of the positive invariance of the discrete fishery model (1.14).

Identification of bifurcation sets and detailed bifurcation analysis at equilibria of the discrete
fishery model (1.14).

Study of chaos via the state feedback control method.

Validation of theoretical results numerically through the use of Matlab and Mathematica.

1.4. Structure of the paper

The rest of the paper is organized as follows: In Section 2, a brief local dynamical analysis at
fixed points and under the condition of positive invariance are studied, whereas bifurcations and chaos
control in the discrete fishery model are examined in Section 3. In Section 4, our main findings are
verified numerically. The paper’s conclusion, along with future work, is given in Section 5.

2. Local dynamics

The local dynamics of the discrete fishery model (1.14) is examined in this section. To do this, we
first determine the equilibria and the linearized form of fishery model (1.14) as follows:

Theorem 2.1. In R? = {(x,y) : x, y > 0}, fishery model (1.14) has three fixed points. More precisely
the following is true:

i) VK, r, E, s, a, B, v, & =(0,0) is a trivial fixed point of the fishery model (1.14).

(i) If r > E, then &, = (M 0) is a semitrivial fixed point of fishery model (1.14).

(iii) If £ < min { @, rK,i—:W} then ¥; = (K(V,f;; — b, ’Kj(‘sgfa'fSE) is an interior fixed point of fishery
model (1.14).

Proof. See in Appendix A. |
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Now, at £, the linearized form of (1.14) under the map

(f1> f2) = (Xet15 Yie1) (2.1
is
Qz+1 = VlBQt, (2~2)
where
Vg := > (2.3)
shy, (1 — hv) + shx, — 2ahy,
and ,
fi=(0—-Eh+rh)x— ?rx2 — Bhxy, f» = (1 — hv)y + shxy — ahy*. 2.4)
Now, it should be noted that, at £, (2.3) becomes
1—Eh+rh 0
Vlﬁl S ( 0 1= hy ) (25)
with
AM=1—FEh+rh, A,=1-hv (2.6)
Theorem 2.2. For £, the following characteristics hold:
1) If
O<h<min{ 2 ,%} 2.7)
E-rv
and
E>r, (2.8)
then &, of fishery model (1.14) is a sink.
(i1) If (2.8) holds and
2 2
h ,— 0, 2.9
> max {E — v} (2.9)
then &, of fishery model (1.14) is a source.
(iii) If (2.8) holds and
2 2
- <h< (2.10)
v E—-r
or 5 5
<h<-—, 2.11)
E-r %
then &, of fishery model (1.14) is a saddle.
@v) If
h= 2 (2.12)
CE-r '
or 5
h=7=, (2.13)
v

then &, of fishery model (1.14) is non-hyperbolic.
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Proof. See in Appendix B.

Now, at €5, (2.3) gives

l+Eh—rh  -BHCD
Vlg, = "shK(r—E)
0 1 — hV + -
with

M =1+Eh—-rh, LL=1-hv+
r

Theorem 2.3. For &,, the following characteristics hold:

1) If
2 2
0 < h < min , d
r—E rv—sK(r—E)
and
$<E<n
s

then &, of fishery model (1.14) is a sink.
(i1) If (2.17) holds and

2 2r
h > max , )
r—E rv—sK(r—E)

then ¥, of fishery model (1.14) is a source.

(iii) If (2.17) holds and
2r

— < h<
rv—sK(r—E) r—E

or

2r
<h< ———,
r—FE rv—sK(r—E)

then &, of fishery model (1.14) is a saddle.
(iv) If (2.17) holds and

2
h=
r—E
or
B 2r
 rv—sK(r—E)’

then &, of fishery model (1.14) is non-hyperbolic.

Proof. See in Appendix C.

Finally, at €5, (2.3) gives

1 - rh(vB+ar—akE) __BhK(vB+ar—ak)
Ksp+ar KsB+ar

Vlg, =

shK(rKs—rv—KsE) 1 - ah(rKs—rv—KsE)
KsB+ar Ksp+ar

AIMS Mathematics

shK(r — E)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
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with
2 (K(V,B +ar — a/E)’ rKs—rv— KSE) (K(V,B +ar— ozE), rKs—rv— KsE) _ 0. 2.24)
KsB+ ar KsB+ ar Ksp+ ar KsB+ ar
where
2(KsB + ar) — rh(vf + ar — aE)—
(K(vﬁ+ozr—aE) rKs—rv—KsE)_ {ah(rKs—rv—KsE) }
KsB+ar °~  KsB+ar KsB + ar ’
(KsB + ar) — rh(vB + ar — aE) — ahXx (2.25)
(rKs —rv—KsE) + hz(vﬁ + ar — aE)X
(K(vﬁ +ar—aE) rKs—rv— KsE) _ \Ks—rv—KsE)
KsB+ar °~ KsB+ar KsB+ ar
Additionally, the roots of (2.24) are
Ny = o ’<<V,’§;;’:;;'E%'2K;;:zﬂi-*f)m ’ (2.26)
where
Ao (K(V,B +ar—aE) rKs—rv - KSE)2
KsB+ar °~  Ksp+ar
_4 (K(V,B +ar—aE) rKs—rv - KSE)
KsB+ar °  KsB+ar
~ (Z(KS,B +ar) — rh(vB + ar — «E) — ah(rKs — rv — KsE) )2 (2.27)
KsB+ ar
(KsB + ar) —rh(vB + ar — aE) — ah(rKs — rv — KsE)
{ + h2(vﬁ +ar— aE)rKs —rv— KsE) }
- KsB+ ar
Theorem 2.4. Let A < 0; then, for €3, the following holds:
(1) If
0<h< r(vﬁ+a/r—a/E)+a/(rKs—rv—KsE), (2.28)
(vB+ ar—aE)rKs —rv— KsE)
then ¢5 of fishery model (1.14) is a stable focus.
(i) If
hs r(vﬁ+ar—aE)+a(rKs—rv—KsE)’ (2.29)
(vB+ar—aE)rKs —rv— KsE)
then &3 of fishery model (1.14) is an unstable focus.
(i) If
_ r(vﬂ+a/r—a/E)+a/(rKs—rv—KSE)’ (2.30)

(vB+ar —aE)rKs —rv— KsE)
then ¢5 of fishery model (1.14) is non-hyperbolic.
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Proof. See in Appendix D.

Theorem 2.5. Let A > 0; then, for €3, the following holds:

() If

0 < h <min

r(vB + ar — akE)
+a(rKs —rv— KsE)+

(r(vB + ar — aFE)
—a(rKs — rv — KsE))?
—4Ksp(vB + ar — aE)x
(rKs —rv— KsE)

r(vB + ar — akE)
+a(rKs —rv— KsE)—

(r(vB + ar — aE)
—a(rKs — rv — KsE))?
—4Ksp(vB + ar — aE)X
(rKs —rv—KsE)

(vB+ar— aE)rKs—rv—KsE) (vB+ ar — aE)rKs —rv — KsE)

then &5 of fishery model (1.14) is a stable node.

(i) I

h > max

then ¢5 of fishery model (1.14) is an unstable node.

AIMS Mathematics

r(vB + ar — akE)
+a(rKs —rv— KsE)+

(r(vB + ar — aFE)
—a(rKs — rv — KsE))?
— 4K sp(vB + ar — aE)X

(rKs —rv— KsE)

r(vB + ar — akE)
+a(rKs —rv— KsE)—

(r(vB + ar — aE)
—a(rKs — rv — KsE))?
—4KsB(vB + ar — aE)x
(rKs —rv — KsE)

(vB+ ar — aE)rKs —rv—KsE)" (B + ar — aE)rKs — rv — KsE)

2

b

(2.31)

(2.32)
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(i) If
r(vB + ar — aE)
(r(vB + ar — aE)
+a(rKs—rv—KsE)+ | a(rKs = rv = KsE))’ (2.33)
—4Ksp(vp + ar — aE)X
_ (rKs —rv— KsE)
h= (vB+ar —aE)rKs —rv— KsE)
or
r(vB + ar — akE)
(r(vB + ar — aE)
+a(rKs —rv— KsE) — — (ks = rv = KsE)’ (2.34)
—4Ksp(vp + ar — aE)X
L= (rKs —rv— KsE)

(vB + ar — aE)(rKs — rv — KsE) ’
then ¢5 of fishery model (1.14) is non-hyperbolic.

Proof. See in Appendix E. |

2.1. Invariant set

In order to examine the positively invariant set, it is noted that the model (1.14) can also be
expressed as

_ hr
O {x— x(l—Eh+rh—Ex—,8hy), (235

y= y({ —hv+ shx — ahy).

Definition 2.6. The set S is called invariant with respect to the operator Q if Q(§) C S.

Regarding the positively invariant set of the discrete model (1.14), one has the following
proposition.

Proposition 2.7. The set

K (1 —Eh+rh
Slz{(x,y)eRi:0<x<( h”),y:o}

hr
is positively invariant with respect to Q.

In the next section, we will analyze bifurcations at £, , 3 according to the bifurcation theory [27,28].
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3. Bifurcations and controlling chaos

It is noted that, if (2.12) holds, then from (2.6), one gets

/11|(2.12) =-1;

but,

2y
Aoy =1~ s +—-1or 1,

which suggests that fishery model (1.14) may undergo flip bifurcation if (o, 8, v,r, K, E, s) belongs to
the following set:

FBle, = {(a/,ﬂ, v, ,K,E,s), h = E2 } (3.1

-r

But, by calculation, flip bifurcation cannot exist; so, ¥ is degenerate for higher codimensions. Further,
if (2.21) holds, then it is also easy to verify from (2.15) that

r(r—E)—=2vr+2sK(r— E)

pi = 1 -1;
2l@2.21) E_7 #1 or
but, Ail221y = -1, which implies that fishery model (1.14) may undergo flip bifurcation if
(a,B,v,1, K, E, s) belongs to the following set:
2
F Ble, := {(a,ﬁ, v,,K,E,s), h= E} (3.2)
r —

The following theorem gives the proof of the fact that, if (a,f8,v,1, K, E, s) € F Blg,, then fishery
model (1.14) do not undergo flip bifurcation.

Theorem 3.1. At &, if (o,5,v,1, K, E, 5) € ¥ Blg,, then no flip bifurcation occurs.

Proof. Since model (1.14) is invariant with respect to y = 0, one can restrict it on y = 0 in order to
study flip bifurcation, where (1.14) takes the following form

h
Xy = (1 — Eh + rh) x, — ?rxf. (3.3)
From (3.3), one can write
h
fii=(1—Eh+rh)x— Erxz_ (3.4)
Finally, if
2
h=h"=
r—E
and
. K@r—-EFE)
X = = s
,
then, from (3.4), we get
dfi _
I o ot = -1, 3.5)

AIMS Mathematics Volume 9, Issue 1, 1783-1818.
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0’ 4
_fl = _*r (3.6)
Ox? |p=2, pokenr  K(E-7)
and o
1 [y—
h 2 ot = 0. (3.7
From (3.7), it should be noted that no flip bifurcation at £, occurs if (a,5,v,1, K, E, 5) € ¥ Blq,. O

Further, if (2.30) holds, then V|g, at €3 has complex eigenvalues where |/11,2| = 1, which implies

(2.30)
that fishery model (1.14) may undergo Neimark-Sacker bifurcation if (a, 8, v, r, K, E, s) belongs in the

following set:

(3.8)

— ok Ks—rv—KsE
NBlg, = {(a’,ﬁ,v,K,s,r,E), h:r(vﬁ+a/r aE)+a(rKs —rv s )}

(vB+ ar —aE)(rKs —rv— KsE)
Theorem 3.2. At €3, Neimark-Sacker bifurcation exists if (o, 8, v, 7, K, E, s) € NB|g,.

Proof. If (a,B,v,1, K, E, 5s) € NB|g, with h as the bifurcation parameter, then model (1.14) takes the
following form:
(h* + e)r

X1 = (1= E(h" + €) + r(h" + €)x, — Tx? — Bh* + €)x,y1,

Vi1 = (1 = (0" + €v)y, + s(h* + €)x,y, — a(h* + €)y?.

(3.9)

Moreover, the roots of V|, at £5 for the e-involving model (3.9) is

p(€) £ t+/4q(€) — p*(e) (3.10)

A1p = > ,
where
2(KsB+ar)—(h"+¢€)(a(rKs —rv— KsE) + r(vB + ar — aF))
ple) = e ;
sp + ar
(KsB+ ar)—r(h* + e)(vB + ar — aE) — a(h” + €)X
(rKs — rv— KsE) + (h* + €)*(vB + ar — aE)X (3.11)
(rKs —rv— KsE)
q(e) = z
sp+ ar
From (3.10) and (3.11), we have
(KsB + ar) —r(h" + €)(vB + ar — aE) — a(h” + €)X
(rKs — rv — KsE) + (h* + €)*(vB + ar — aE)x (3.12)
(rKs —rv— KsE)
[1] =
KsB +ar
and din, o) E) + a(rK KsE
12 r(vB+ar —aE)+a(rKs—rv—Ks );ﬁO. (3.13)

de le=0 = KsB + ar
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Now, occurrence of Neimark-Sacker bifurcation for fishery model (3.9) at £ requires that /112 #1, 7=
1,---,41if € = 0, which is equivalent to p(0) # -2,0, 1, 2. However, if (2.30) holds, then from (3.11),
we get that g(0) = 1. So, p(0) # -2, 2, and, hence, one only requires that p(0) # 0, 1, which gives

{a2r3 + ?K%rs? - 2aBK*rs” \/ —a*r? = 20°BK P sv* }

+
+aBr’v — &’ Krsv + aBKrsv — B2 K*s*v + 2o K3 rs*v? + B K st
a@?rr + a2K?s? — 2a8K2s? ’

20°F + 207K rs + 22K rs? \/

E #

(3.14)
- 3a*r? - 8a’BK sV

—20BK’rs* — &*r*v + 2081y
_ 6a2ﬂ2K2r2s2V2 + ﬁ4K4S4V2

—20°Krsv + 2aKrsv — P K> sy
2(a?r? + a?Krs + a*K?s? — aBK?s?)

Now, ¥; of the discrete fishery model (3.9) is transformed to the origin by using the following
transformations:

w=x-x, v=y -y, (3.15)
where
. _ KOB+ar-akE)
B Ksp+ ar
and
. TKs—rv—KsE
Y= KsB+ar

From (3.15) and (3.9), we get

*

h'r
i (X0 =B+ ) (v +5) = (3.16)

Vet = (1= VA (v + ") + sh* (u, + x°) (v, + y*) — ah* (v, + y*)? =y

e = (1 —ER" +rh™) (u, + x*) —

Next, if € = 0, then we study the normal form of (3.16). For this, system (3.16) becomes

_ 2 2
U1 = Vru + Wiove + Wisu, + Wiauv, + 50y,

' ' (3.17)
Vier = Poru + @oovy + Wosuy + Wosuv, + Wasvy,
with

2rh*

W, = 1— ER* + k" — 22— gy,
K
Yy =-ph'x’, ¥;3= —
(3.18)

Y= —ﬁh*’ Yi5=0, ¥y = Sh*y*,
Yy =1 —vh" + sh*x" = 2ah™y",
\Pzg = O, \P24 = Sh*, \P25 = —ah*.

Now, we can transform the linear part of (3.17) into canonical form by applying the following

transformation:
Uy Y, 0 Xy
= , 3.19
(Vt) (U_lPll _g)()’t) ( )
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with

. _2AKsB+ar) —rh(v + ar — aE) — ah(rKs — rv — KsE)

2(KsB + ar) ’

{ J4h2(vﬁ +ar—aE)rKs—rv—- KsE)KsB + ar) — (

rh(vB + ar — aF)
+ ah(rKs —rv— KsE)

év:

From (3.19) and (3.17), we get

2(KsB + ar)

Xer1 = 0X = Ly + Bi(x Y1), Vw1 = (X + 1y + Bolxy, i),

where

_ P 2 _ P 2
By = sux; + S10xy + 513y;,  Bo = $21X; + $0X Y + 5237,

and

si =YY+ @ -V +

k4P
¥is ,is
LW =2 -V ) sy = 2
512 Wi —24(n 11)\1,12 513 v,
-y ¥ 1 n-Y¥ )2
521 =1 Ly, W5 - 1 Ly, W, — —¥3¥i, 7 &
4 ¢ ¢
-¥,)? —¥,,)?
_(n 1) ¥, (n ) ¥,
4 4
2 —¥Y11)Y
s22 W12 Ws = (7 = W1 = S 20— W) s,
12
- W)W
sy 22 Pis g
¥,
From (3.22), we get
Biow| =281, Biwy| = S12, Biyy| = 2813,
0 0 0
%1xrxrxt = %lxtxt% = %lxr}’r)’t = %I,VrYtyt = 0’
0 0 )
%u,x, = 251, §Bz;c,y, = 8522,
) )
232%)% = SBzxtxtxt = %ZXrXth = %ZXryty: = %2%%}% = 0
) )

(n—¥11)*Wis

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

Finally, regarding the occurrence of Neimark-Sacker bifurcation, it is required that the following
quantity be non-zero [29-31]:

r:—%(

AIMS Mathematics

1-24

(1 - 222

1 -
lmwg—immﬁ—mmﬁ+%@m0,

(3.25)
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where
Voo :% (B, = By, + 281y, + £ (Bas, — By, + 2814y, ) R
v :}1 (Bra, + By, + 1 (Bau + %ZW,))'O,
o :% (Bia, = Biyy, + 2Basy, +L(Bass, — Bayy, = 2814, R (3.26)
o :% (B1ss, + By + B, + Bayy,

+L (%zxtxtxf + %thyt}’r - Sle,x,y, - EBl)’rYt)’z))
o

So, the computation yields

1

Vo = Z (sll — S13+ S» + L(S21 — 853 + SIZ)) )
1

U = 5 (s11 + 513 + t(521 + 523)) (3.27)
1

Uyg = Z (S]] — S13+ S» + L(SZI — 823 — S12)) , Uy =0.

Finally, from (3.25) and (3.27), if we get that I' # O as («,8,v,1, K, E,s) € NB|g,, then, at 3,
the discrete fishery model (1.14) undergo Neimark-Sacker bifurcation. In addition, supercritical (resp.
subcritical) Neimark-Sacker bifurcation occurs if I' < 0 (resp. I' > 0). O

Remark 1. The Neimark-Sacker bifurcation has important biological implications in prey-predator
models. In these models, the Neimark-Sacker bifurcation indicates the beginning of periodic decreases
and increases in the populations of the predator and prey species. It has similar cycles: as the prey
population grows, more predators become available, which, in turn, leads to a decline in the prey
population, and so on. Because of the complex and reciprocal links that exist between various species,
this pattern emerges.

Finally, if (2.33) holds, then the eigenvalues of V|g, at €5 satisfy that 4|33y = —1, but

(BKsB + ar)(vB+ ar — aE)(rKs — rv — KsE)
- (r(vB+ar—aE) —a(rKs —rv — KsE))2
—(r(vB+ar—aE)+ a(rKs —rv— KsE)) X

4K sB
(rB+ar—aE)— a(rKs —rv — KsE))2 - (vB + ar — aE)
(rKs —rv — KsE)

A = 1 -1 2
2les (KsB + ar)(vB+ ar — aE)(rKs — rv — KsE) zor ’ (3.28)

which confirms that the discrete fishery model (1.14) may undergo flip bifurcation if (r, s, K, E, @, 3, v)
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belongs in the following set:

r(vB + ar — akE)
+a(rKs —rv — KsE)X

(r(vB+ ar — aFE)
—a(rKs—rv— KsE))2
—4Ksp(vB + ar — aE)x
(rKs —rv— KsE)

_ K E _ , 3.29
FBle, = (1,5, K, E, . B,v), I (B + ar — aE)(rKs — rv — KsE) 5:29)

But, the following theorem shows that flip bifurcation must exist if (r, s, K, E, @, 8, v) € ¥ Blg,.
Theorem 3.3. At £, flip bifurcation exists if (r, s, K, E, @, 3, v) € F Blq,.

Proof. Since (r, s, K, E,a,f,v) € ¥ Blg,, the discrete fishery model (1.14) takes the form of (3.9) if
is in a neighborhood of #*. Additionally, fishery model (1.14) becomes

U1 :‘I’“ut + \Plzvt + lI"13blt2 + ‘I’l4u,v, + l1115\/? + To1U€ + T Vi€ + T03Mt2€

+ ToqUs Vi€ + T()5Vt2€,

_ _ _ _ — (3.30)
Vi :\Ijzll/lt + \P22Vt + lPBM? + ‘I’24utvt + \I"zsvtz + ToelU:€ + To7V€ + Togutzf
+ ToolUs Vi€ + Tlovtzé,
where
— 2hr | . = o
\Pll =1-FEh+rh- 7)(3 —ﬁhy , lPlz = —ﬁhx', \P13 = —,Bl’l,
— hr — 2rx* . .
\PMZ_E’ Yi5=0, o =r—E- X =By, T =X,
hr - - . . (3.31)
T03 =~ T4 = —B, 105 =0, Yo = shy’, Yo =1—-vh+ shx" - 2ahy”,

O ar O * * 3k
Yy =0, Wy =sh, Yo5 = —ah, 196 =5y, To7 = sx —v—2ay,

T8 =0, Te9 =5, Tio=—-a

by (3.15). Moreover, system (3.30) becomes

Xer1 ) -1 0 Xt %\1(6)
(ym)_( 0 ﬁz)(yz)+(53§(e)]’ 532
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where
 W(n-F)-FaFn (- T - Tty
Bi(e) = — u; + — UV,
Wi (1 +42) Wi (1 +42)
¥is (/12 - ‘Pu) - ¥ W5 , 7ol (/12 - ‘I’u) - W¥i2706
+ — v, + — ue
Wi (1+4,) Vi (1+2)
To2 (/12 - ‘Pn) - Y107 To3 (/12 - \Pll) = WirTes 5
+ — V€ + —— U€e
Wi (1+4y) Yo (1+ 4,)
To4 (/12 - lI111) —Wiato9 Tos (/12 - ‘Pll) - Wt )
+ — U v,€ + —— V/E,
Y (1+42) Wi (1 +22)
_ Y3 (1 +‘P11) + W3 ) ¥y (1 +‘P11) + WP
B,(€) = — u;, + — U vy
Vi (1+2) Y (1+4,)
¥is (1 +‘P11)+‘P12‘P25 , Tol (1 +T]l)+\P127—06
+ —— V; + —— ue
Wi (1+ ) i (1+ 4)
Toz(l +‘1’11) +W¥ites To3 (1 +‘P11) + Wiat0s 5
+ —— V€ + —— u e
Wi (1+ 42) Wi (1 +22)
7'04(1 +‘P11)+‘P12T09 Tos (1 +‘P11)+‘P12T10 )
+ — U V€ + —— V/ €,
Y (1+ 1) Wi (1+4,)
u, =¥iox: + Wiy,
vi=—(1L+ Py + (4 - Py,
—
ufz =¥, (th + 22Xy + yzz) ,
— ——\2 — —
Vt2 :(1 + ‘Pll)zxtz + (/12 — \1’111) yt2 — 2(1 + \1’111) (/12 — "P]])x,y,,
v =~ T (14 F0) 2+ (T3 (s~ Frr) = T (14 1))
+ ¥ (- ¥ 7
ue :Exte + @;y,e,
vie=—(1+ ‘T’:)xte + (/12 - ‘T’:) V€,
—
utze =e¥, (xt2 + 2x,y; + y,z),
— —\2 —— —
Vt2€ :(1 + lPu)thzG + (/12 - \Pll) ytZE -2 (1 + \PU) (/12 — ‘Pll)x,y,e,
UV, € = — @E(l + ﬂ) xtze + (E (/12 — ﬁ) - E(l + ‘T’I)) X V€
T (1 - )l
by

=00 )0
v )’ -1-¥, 4,-¥, i)

(3.33)

(3.34)
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Now, in a small neighborhood of €, the center manifold MO at O for the map (3.32) is studied.
Precisely, M“O at O can be expressed as

MO = {(x, 1) ¢ 31 = Roe + Rix? + Roxge + Rs€ + O (] + e’} (3.35)

where, by computation, one gets

Ry =0,
1+¥,),_ o (1+Y)P—
R, = %(‘Pu‘ym - (1 + ‘Pu)‘l’m - \PIZ\PZAL) + 1—/1121 25,
) )
e — 0 2 (3.36)
(Tor —To7)(1 + ‘1’11)‘1’12 +7106¥12 — T2 (1 + ‘1’11)
2 = —_— b
Vi (1- 1)
R3 =0.
So, the map (3.32), restricted to M“O, can be expressed as
filx) = —x, + llxt2 + Lxe + l3x,26 + Lxe + lsx,3 + 0((|xt| + |6|)4) , (3.37)

where

b= [T (L = B) = (14 F00) (P (A = By — T P0) — Fs(1 + 2],

1+,
1 . 0+ F) (tee =¥ — Pty
b :m (T01 (/12—‘1’11)—7'06‘1’12)— ( T ) ,
1 — S —
= 2R (P - 1) - Pia¥s)
Wi (1+ 1)
+R W12 (A = Wir) — (1 + 1) (Pra(ha = ¥11) - ¥12P20))
+ (Tm(/lz ~¥) - ET%)RIE"' Ri(1, - ¥1)) (Toz(/lz ~¥)) - @Tm)
 —  —0 _ 2
+ (T03(/12 -¥) - ‘PlzTog) Y, -Y¥n (1 + ‘1’11) (704(/12 -V -¥Yn T09) (3.38)
= 2Ry (1 + Wia)(Ay = W) (Pis(l — P11 — P12'P2s))
1+ T (st = T - T |
R, _ _ _ -
Iy =—— [(‘1’12(7'01(/12 -¥) - ‘P127'06)) + (A = ¥i1) (Toz(ﬂz -V - lI'127'07)] ,
(1+2)%¥12
R _ _ _ .
Is —— [P, - 2% - D@l - F1) - P12¥a0)

¥l +2,)
=2(1 +¥11)(, — Y1) (‘Pls(/b -¥) - le‘st)] .

Finally, the following non-zero discriminatory quantities imply that map (3.37) undergoes flip
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bifurcation [32-34]:

1
€ = (flx,e + Efleflx,xt)

0,0) ,

| . ) (3.39)
& = (gflx,x,x, + (Eflx,x,) )(0’0)‘
After extensive manipulation, one gets
{a(rKs —rv—KsE)KsB+ ar)(1 — )+ } {rh(vﬁ +ar — aE)—}
1 |WKsB+ar)(rKs—rv—KsE)vB + ar —akE) 1 |2(KsB+ ar)
“ % (KsB + ary " % (KBhOB + ar —aE)) (.40,

KB(KsB + ar)(vB + ar — aE)(1 — ) — Krh(vB + ar — aE)*—
KhaB(vB + ar — aE)(rKs — rv — KsE)
X

(KsB + ar)? #0
and
(A, — l)hzrﬁ(Ks,B + ar)(vB + ar — aE)+
Pr*BOvB + ar — aE)*(2BW(K sB + ar)
- hzrﬂ(vﬁ + ar — aE))(KsB + ar)(A, — 1) + rh(vB + ar — aF))
- 2Ksﬁh2(Ks,B +ar)(vf+ar —ak) + Ksﬁh3r(vﬁ +ar — aE)?
1 + ah[2(KsB + ar) — rh(vB + ar — ozE)]2
R + A (KsB + ar)? (3.41)
{(Ay = 3)(KsB + ar) + 2rh(vB + ar — aE)} X
[BR(K sB + ar)(1 = Ay) + BR*(vB + ar — aE)(Ks + 1)}
+ {3(KsB + ar) — 2rh(vB + ar — aE)} X
R, {ah(Ks,B +ar)(1 -4+ ahzr(vﬁ +ar— aE)}
- 1+, (KsB + ar)?
where
(Bh(vB + ar — aE))(2(KsB + ar) — rh(vB + ar — aE))(rh + shK)
1 + 2(KsB + ar) — rh(vB + ar — aE))*(Bh — ah)
k=12 22 (KB + ary?
BKsB+ ar)(vp + ar —aE)rKs —rv— KsE) — (r(vf + ar — aE) 340
—a(rKs — rv — KsE))* — (r(vB+ ar —aE) + a(rKs —rv — KsE)) X (342)
r(vB + ar — aE) — a(rKs — rv — KsE)*
1 —4Ksp(vp + ar — aE)(rKs —rv — KsE)
2 =

(KsB+ ar)(vB+ ar — aE)(rKs — rv — KsE)
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Therefore, from (3.41), along with (3.42), if & # 0 as («,B,v,1,5,K,E) € ¥ Blg,, then, at €5,
fishery model (1.14) undergoes flip bifurcation. Additionally, by the bifurcation theory [35-37], if
6 > 0 (resp. & < 0), then period-2 points bifurcated from {3 are stable (resp. unstable). O

Remark 2. We are choosing the step size, represented by the symbol 4, as the bifurcation parameter,
and it is significant. This is because % represents the time interval between successive iterations in a
discrete-time model. By changing the value of 4, we can simulate different rates at which populations
of prey and predators change over time. Biologically, 4 reflects the reproductive and growth rates of
these populations. A smaller value of & means that we have a finer time resolution, allowing for more
frequent population size updates. This can help to capture rapid population changes, such as fast
reproduction or predation events, and to provide a more detailed representation of the dynamics. A
larger value of & means that we have a coarser time resolution, with fewer updates of the population
sizes. This can be useful in scenarios in which the population changes occur over longer time scales,
such as seasonal variations or slower ecological processes. A larger value of /4 can help to capture the
overall trends and dynamics of the populations. By varying the step size as the bifurcation parameter,
we can explore how different rates of population change affect the stability and bifurcation behavior
of the system. This can provide insights into the resilience of the ecological system and its response to
changes in reproductive rates, predation rates or other important ecological processes. In summary,
choosing the step size h as the bifurcation parameter in a discretized prey-predator system with
harvesting allows us to analyze how different rates of population change influence the system’s
dynamics. This can have biological significance as a result of capturing the effects of reproductive and
growth rates on the stability and behavior of the ecological system.

Hereafter, chaos control is studied by adding u, as the control force to fishery model (1.14), as
motivated by the existing literature [38, 39]:

hr
X1 =0 —=Eh+rh)x, — ?xzz = Bhxy, + u;, Y1 = (1 = hv)y, + shxy, — ahytz, (3.43)
where

uz:_kl(xt_x)_kz()’t_y),

ki, k, denotes feedback gains and

_ K(OB+ar—akE) rKs —rv— KsE

KsB+ar ° Y= KsB + ar

Moreover, V| ¢, at &5 for control system (3.43) becomes

Vg, = ( th—k -k )’ (3.44)
’ o txn

where

KsB+ ar —rh(vB + ar — aF) o = BhK(vB + ar — aFE)
KsB +ar S KsB +ar
sh(rKs —rv — KsE) O = KsB + ar — ah(rKs — rv — KsE)

b = )
2 KsB + ar 2 KsB+ ar

=
(3.45)
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Next, if 4, are roots of VC|Q3 at £3, then

/11 + /12 = 511 + 522 - kl, (346)

Ay = (1) — ky) — €1 (€12 — k2). (3.47)

Theorem 3.4. Controlled system (3.43) is asymptotically stable if both eigenvalues of V¢, at €3
satisfy that |4, | < 1 where k; and k, denote the feedback gains.

Proof. See in Appendix F. O
4. Numerical simulations

To validate the theoretical findings, the following simulations are presented.

Case A: Let
a=142, =230, v=1.017, r=3.82, s=2.1, K=3.07 and E = 0.75,

then, from (2.30), we obtain that

h =1.5509052171807427,

which implies that, if

0 < h < 1.5509052171807427,

then &3 of fishery model (1.14) is a stable focus. Further, if
h =1.446 < 1.5509052171807427,
then Figure 1a shows that
L3 = (0.59172285875895,0.15888591788295456)
of the discrete fishery model (1.14) is a stable focus. Also, if
h =1.447,1.4476,1.44775,1.447753, 1.44775345 < 1.5509052171807427,

then Figure 1b—1f shows that the corresponding equilibrium £; of fishery model (1.14) is a stable focus.
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(e) h = 1.447753 with (0.5, 0.03)

[ R . O T
5 2 2.

0.5 1 1 5 3

o

(d) i = 1.44775 with (0.000054, 0.000092)

(f) h = 1.44775345 with (0.05,0.1)

Figure 1. Stable focuses of the discrete fishery model (1.14).

On the other hand, if

h =1.56 > 1.5509052171807427,

then Figure 2a shows that the interior fixed point

L3 =(0.59172285875895,0.15888591788295456)

AIMS Mathematics
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changes the dynamics and, as a result, stable curves appear. Now, we further numerically prove that, if
h =1.56 > 1.5509052171807427,
then the discrete fishery model (1.14) undergoes supercritical Neimark-Sacker bifurcation, that is, I' <
0. So, if h = 1.56, then, from (3.13), we obtain
d| 2, o
de

le=o = 0.9618985638039548 > 0.

=
1
N 09 .
> 08 ]
-
. s} 4
06 ‘ " -‘ '1\
05 » X LT
04 WI.I.n L ] I
. , . : . Xr ; .
(¢) h = 1.565 with (0.54,0.92) (d) 7 = 1.59 with (0.54,0.92)
[ 7\ / B
1 L} 1 ' 5 \
08 bt L "
O . s | .
06 \ L L]
05 at
0.4 » = . - ‘ N L "
Lod - - - "
TV e~ VST
XI XI
(e) h = 1.6 with (0.54,0.92) () h = 1.62 with (0.54,0.92)

Figure 2. Phase portraits of the discrete fishery model (1.14).
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Additionally, from (3.10) and (3.27), one has

A2 =0.24971912023291512 + 0.9728514382264002, 4.1)

and

vy = —2.1078848913821764 + 1.4116762802263008.,
vy = —0.5703582999144139 + 3.2331175862335613,
Uy = —2.1078848913821764 — 0.33361919995186096¢,

Uy = 0.

(4.2)

Applying (4.1) and (4.2) in (3.25), one gets
I' = -10.963304854495894 < 0,

which confirms that our findings are numerically true; so fishery model (1.14) undergoes supercritical
Neimark-Sacker bifurcation. Similarly, if

1.564,1.565,1.59,1.6,1.62 > 1.5509052171807427,

Figure 2b—2f implies that stable curves also appear, and therefore, the discrete fishery model (1.14)
undergoes supercritical Neimark-Sacker bifurcation. If

1.564,1.565,1.59,1.6,1.62 > 1.5509052171807427,

then I" < O (see Table 1).

Table 1. Numerical values of I" for 2 > 1.5509052171807427.

Certain values of A if h > 1.5509052171807427 Respective values of I"

1.56 —10.963304854495894 < 0
1.564 —10.986742612429822 < 0
1.565 —10.992429264118307 < 0
1.59 —11.111070997936235 < 0
1.6 —11.145158489428379 < 0
1.62 —11.188517048312367 < 0

Finally, the maximum Lyapunov exponent and bifurcation diagrams are plotted in Figure 3.

AIMS Mathematics Volume 9, Issue 1, 1783-1818.



1807

0.5

1} 0
01 015 02 025 03 035 04 045 05 055 01 0.15 0.2 025 03 0.35 04 045 05 055

h h

(a) (b)

M.LE

-

(© (d)

Figure 3. 3a-3c: Neimark-Sacker bifurcation diagrams of the fishery model (1.14) with
h € [0.1, 1.8]; 3d: Maximum Lyapunov exponents corresponding to 3a—3c with (0.54,0.92).

Case B: Leta =58, =30, v=0.09 r = 1552, s = 4501, K = 0.52 and E = 0.001; then,
from (2.33), we obtain

r(vB+ar —aE)+ a(rKs —rv— KsE)+

(r(vB + ar — aE)
—a(rKs — rv — KsE))?
— 4K sp(vB + ar — aE)X
(rKs —rv — KsE)
h= = 0.8768402339312452.
(vB+ar —aE)(rKs —rv— KsE)
Moreover, fora = 5.8, 8 =3.0, v=0.09, r = 15.52, s =4.501, K = 0.52 and E = 0.001, we also get

r(vB+ar —aE)+ a(rKs —rv — KsE)—

(r(vB + ar — aFE)
—a(rKs — rv — KsE))?
—4KsB(vB + ar — aE)Xx
(rKs —rv— KsE)

h = = 0.14039168498087434.
(vB+ ar — aE)rKs —rv — KsE)
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From a theoretical point of view, the interior fixed point 3 of the discrete two-dimensional fishery
model (1.10) is a stable node if

So, if

then Figure 4a implies that the interior fixed point

of fishery model (1.14) is a stable node. Also, if

0 < h < min{0.8768402339312452,0.14039168498087434} .

0 <h =0.1 <min{0.8768402339312452,0.14039168498087434},

3 = (0.48378899881654075, 0.3599197040815949)

h =0.127,0.13,0.135 < min {0.8768402339312452,0.14039168498087434} ,

then Figure 4b—4d also implies that

of fishery model (1.14) is also a stable node.

3 = (0.48378899881654075, 0.3599197040815949)

. .
M
-
» .
[ ]
", " . e
" s
. "a ou
.t
S .
. ®
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Figure 4. Stable nodes of the discrete fishery model (1.14).
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Further, if

h > 0.8768402339312452,

then 3 becomes an unstable node and, meanwhile, flip bifurcation occurs, that is, if

then, from (3.40), one gets

h=0.9 > 0.8768402339312452,

€ = —3.979605153624144 + 0.

Moreover, in view of (3.41) and (3.42), one gets

€ = 1.359449192759867 > 0,

which shows that stable period-2 points bifurcate from

3 = (0.48378899881654075,0.3599197040815949) .

Finally, the maximum Lyapunov exponent and bifurcation diagrams are plotted in Figure 5.
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Figure 5. 5a—5c: Flip bifurcation diagrams of the fishery model (1.14) with & € [0.002, 1.0];
5d: Maximum Lyapunov exponents corresponding to 5a—5c with (0.45, 0.45).

AIMS Mathematics

Volume 9, Issue 1, 1783-1818.



1810

Case C: The results of Section 3 will be verified in this case. For this, if @ = 5.8, 8 = 3.0, v =
0.09, r =15.52, s =4.501, K =0.52, E =0.001 and & = 0.95, then, from (F.1)-(E.3), one gets

Ly : 1591.5334625453052k; + 6986.8991691679485k, + 8804.286159826777 = 0, 4.3)
L, : 11007.821513298903k; + 8542.449074372133k, + 95951.97647578613 = 0, 4.4)
Ly : 7824.754588208292k, — 8542.449074372133k, + 40678.25195311818 = 0. 4.5)

Therefore, lines (4.3)—-(4.5) give the triangular region for (3.43) that satisfies that |[1;,] < 1 (see
Figure 6).

15[

—10F

-15 [ I I I I I
-15 -10 -5 0 5 10 15

Figure 6. Region of stability where [4; ;| < 1.

5. Conclusions

In this work, we have examined the local behavior at fixed points, chaos control via the state
feedback control method and bifurcations of the fishery model (1.14). Moreover, it is shown that, for
all of the model’s parameters, the discrete fishery model (1.14) has trivial fixed point; however, it has
semitrivial and interior fixed points under certain parametric condition(s). By using linear stability
theory, we have examined the local stability at equilibria of the discrete fishery model (1.14). Further,
we have also examined the existence of bifurcations at fixed points and proved that, at trivial and
semitrivial fixed points, the discrete fishery model (1.14) does not undergo flip bifurcation, whereas,
at interior fixed point, model (1.14) undergoes both Neimark-Sacker and flip bifurcations, and we
have studied these bifurcations by applying bifurcation theory accordingly. Further, chaos control has
been studied by using the state feedback control method. Finally, the main results have been
confirmed numerically. Our numerical simulations shows that, at interior fixed point, the discrete
fishery model (1.14) undergoes supercritical Neimark-Sacker bifurcation and biologically, the
occurrence of supercritical Neimark-Sacker bifurcation means that there exists a periodic or
quasiperiodic oscillations between prey and predator populations.

Future work: Bifurcation analysis of the (i) fractional-order discrete-time prey-predator
model (1.14) and (ii) discrete-time prey-predator model (1.14) with time delay, are our next goals of
study.

AIMS Mathematics Volume 9, Issue 1, 1783-1818.
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Appendix
A. Existence of equilibria
If £ = (x,y) is a fixed point of fishery model (1.14), then
x=((0-Eh+rh)x- %xz — Bhxy, y = (1 —hv)y + shxy — ahy’. (A.1)
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After straightforward calculation, from (A.1), one gets

KB + ar — aFE) rKs—rv— KsE
X = =
Ksp+ ar KsB+ ar

b

which implies that, if

+ Ks —
E<min{v'8 ar’r s rv},
a Ks
then

@ = K(vB+ar—aFE) rKs—rv— KsE
3 KsB+ar °  KsB+ar
is an interior fixed point of fishery model (1.14). On the other hand, for

(x.y) = (0, 0),(M,o).

Equation (A.1) is satisfied in an identical manner; so, £, respectively denote trivial and semitrivial
fixed points of fishery model (1.14).

B. Local dynamics at £

Recall from (2.6) that, at £, the characteristic roots of V|g, are
Ai=1—Eh+rh and A, =1 - hv.
Therefore, by the stability theory ¥, of the fishery model (1.14) is a sink if
4| =1—-Eh+rhl <1,

and
|| =1 —hv| <1,
which imply that if
O<h< min{%,i},
v E—-r

and E > r then ¥, is a sink. In similar way, one can obtain that £, is a source if

=
h>max{—,—,
v E-r

a saddle if
2 2
-<h<
v E—-r
or 5 5
<h<-—,
E-r %
and non-hyperbolic if
2 2
h= or h=-—
—-r
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C. Local dynamics at ¢,

From (2.15), if
[l =1+Eh—-rhl <1

and BK £
=1y EKC=D)
r
1.e.,
2 2
0 < h < min , il
r—E rv—sK(ir—-E)
and
rKs —ry
— < E<r,
Ks

then £, of fishery model (1.14) is a sink. Similarly, it is also easy to prove that &, of fishery

model (1.14) is a source if (2.17) holds and

2 2r
h > max , )
r—E rv—sK(r—E)

a saddle if (2.17) holds and
2r

—————<h<
rv—sK(r—FE) r—E
or
2r
<h< ———,
r—E rv—sK(r—E)
and, finally, non-hyperbolic if (2.17) holds and
2
h = or h= — =
r—E rv—sK(r—E)

D. Local dynamics at £; if A <0

If A <0, then the characteristic roots of Vg, at £3 are
{2(KsB + ar) — rh(vB + ar — aE) — ah(rKs — rv — KsE)}
2(KsB + ar)
(KsB + ar)—
rh(vB + ar — aE)—
ah(rKs —rv — KsE)+

Adip =

i'% A hz(v,B+a/r—aE)(rKs—rv—KsE) ~ )
KsB + ar
2(KsB + ar) — rh(vB + ar — aE) — ah(rKs — rv — KsE) z
\ ( Ksp + ar
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which yield that, if

Tl = {(KsB + ar) — rh(vB + ar — aE) — ah(rKs — rv — KsE) + h>(vB + ar — aE)(rKs — rv — KsE)}
Mol = Ksp+ ar

<1,

i.e.,

r(vB + ar —aE) + a(rKs —rv — KsE)

0<h<
(vB+ar —aE)(rKs—rv— KsE)

then £; of fishery model (1.14) is a stable focus. In a similar way, one can obtain that £; of fishery
model (1.14) is an unstable focus if

r(vB + ar — aE) + a(rKs —rv — KsE)

h >
(vB+ar —aE)(rKs—rv— KsE)

and non-hyperbolic if

r(vB + ar — aE) + a(rKs —rv — KsE)

h =
(vB+ar—aE)rKs —rv— KsE)

E. Local dynamics at £5 if A > 0

If A > 0, then the roots are

{2(KsB + ar) — rh(vB + ar — aE) — ah(rKs — rv — KsE)}

A2 = 2(KsB + ar)
2(KsB + ar) — rh(vB + ar — aE) — ah(rKs — rv — KsE) : B
KsB+ ar
1 (KsB + ar)—
+ 3 rh(vB + ar — aE)—

ah(rKs —rv— KsE)+
A hz(v,B +ar—aE)rKs—rv— KsE)
\ KsB + ar
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By the linear stability theory, £ of the discrete of fishery model (1.14) is a stable node if |1, 2| < 1, 1.e.,

0 < h <min

r(vB + ar — aE)
+a(rKs —rv— KsE)+

(r(vB + ar — ak)

— a(rKs — rv — KsE))?
— 4K sp(vB + ar — aE)X
(rKs —rv— KsE)

r(vB + ar — aF)
+a(rKs —rv— KsE)—

(r(vB + ar —akE)

(rKs —rv— KsE)

—a(rKs — rv — KsE))?
—4KsB(vp + ar — aE)X

In a similar way, one can also establish that £5 of fishery model (1.14) is an unstable node if

r(vB + ar — akE)
+a(rKs —rv— KsE)+

(r(vB + ar — aFE)

— a(rKs — rv — KsE))?
—4Ksp(vp + ar — aE)x
(rKs —rv— KsE)

(VB + ar — aE)rKs —rv—KsE)" (vB+ ar — aE)rKs — rv — KsE)

r(vB + ar — akE)
+a(rKs —rv— KsE)—

(r(vB + ar — aFE)
—a(rKs — rv — KsE))?

(rKs —rv— KsE)

— 4K sp(vB + ar — aE)X

h > max

and non-hyperbolic if

AIMS Mathematics

r(vB + ar — akE)

+a(rKs —rv— KsE) +

(vB+ ar — aE)rKs —rv— KsE)" (vB + ar — aE)rKs — rv — KsE)

(r(vB + ar — aFE)
—a(rKs — rv — KsE))?
—4KsB(vB + ar — aE)Xx
(rKs —rv— KsE)

(vB+ar —aE)(rKs —rv— KsE)
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or

r(vB + ar — aE)

(r(vB + ar — aE)
—a(rKs — rv — KsE))?
—4Ksp(vp + ar — aE)x
(rKs —rv— KsE)
(vB+ar—aE)rKs —rv— KsE)

+a(rKs —rv— KsE) —

F. Existence of triangular region for controlled system (3.43)

It is noted that marginal stability can arise from the restrictions 4; = =1 and 4,4, = 1, which imply
that |4, | < 1. If 414, = 1, then, from (3.47), we get

Ly :k (a/h(rKs —rv—KsE)KsB +ar)— (KsB + ozr)Z)
+ ky (sh(rKs —rv — KsE)(KsB + ar))

+h*(rKs—rv— KsE)(vB + ar — aE)(KsB + ar) (F.1)
- [rh(vﬁ +ar—aE)+ ah(rKs —rv — KsE)](Ks,B + ar)
=0.

If A, = 1, then, from (3.46) and (3.47), we get

L, :ky (ah(rKs —rv — KsE)(KsB + ar)) + k, (sh(rKs — rv — KsE)(K s + ar))
+ hz(vﬁ +ar—aE)(rKs —rv— KsE)(KsB + ar) (E.2)
=0.

Finally, if 4; = —1 then from (3.46) and (3.47) we get

Ls :ky (Z(Ksﬁ +ar)’ —ah(rKs — rv — KsE)(KsB + a/r))
— ky (sh(rKs — rv — KsE)(KsB + ar))

— I*(rKs —rv — KsE)(vB + ar — aE)(KsB + ar) (F.3)
+ 2h(KsB + ar) (r(vB + ar —aE) + a(rKs — rv — KsE)) — 4(KsB + ar)?
=0.

Therefore, from (F.1)—(F.3), lines L;—L; in the (kj, k;)-plane from the triangular region, which
implies that the characteristic roots of controlled system (3.43) satisfy that |1, ;| < 1.
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