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1. Introduction

This work focuses on the investigation of the equation

vt − vtxx + mvvx = 3αvxvxx + αvvxxx, (1.1)

where constants α > 0 and m > 0. Equation (1.1) describes the motion of shallow water waves in
certain sense [8]. In fact, the dydrodynamical equations derived in [8] includes Eq (1.1) as a special
model.

If m = 4 and α = 1, Eq (1.1) is turned into the Degasperis-Procesi (DP) model [12].

vt − vtxx + 4vvx = 3vxvxx + vvxxx. (1.2)

Degasperis et al. [13] construct a Lax pair to prove the integrability of DP model and obtain
two infinite sequences of conserved quantities. The global weak solutions, global strong solutions
and wave breaking conditions for (1.2) are studied within certain functional classes in [14, 22, 31].
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The well-posedness and large time asymptotic features of the periodic entropy (discontinuous)
solutions for Eq (1.2) is considered in [3]. Coclite and Karlsen [4] investigate entropy solutions
to the DP model in the spaces L1(R) ∩ BV and L2(R) ∩ L4(R), respectively. The bounded
solutions in L1(R) ∩ L∞(R) and discontinuous solutions are discussed in [5]. As the DP and Camassa-
Holm (CH [2]) equations possess similar dynamical properties, here we mention several works about
the CH model. The wave breaking for nonlinear equations including the CH model is discovered
in Constantin [7, 9]. Many dynamical results about the Camassa-Holm type models are derived and
summarized in [1, 10, 11, 15, 16, 23–25, 28, 33]. Guo et al. [17] consider the dynamical properties of
the CH type models with high order nonlinear terms (also see [18, 19, 30, 32]). Lai and Wu [21] study
the existence of local solutions for a nonlinear model including the CH and DP model if initial data
satisfy certain assumptions.

For model (1.1) endowed with initial value v(0, x) = v0(x) ∈ L2(R), we derive that

c1 ‖ v0 ‖L2(R)≤‖ v(t, ·) ‖L2(R)≤ c2 ‖ v0 ‖L2(R), (1.3)

in which c1 > 0 and c2 > 0 are constants.
The motivation of this work comes from the job in Coclite and Karlsen [5], in which the existence,

uniqueness, stability of entropy solutions of DP equation are proved in L1(R) ∩ L∞(R). Under the
condition v0(x) belonging to L1(R)∩L∞(R), we investigate the shallow water wave (or generalized DP)
equation (1.1) and prove its well-posedness of entropy (discontinuous) solutions. The novelty element
in our job is that we establish inequality (1.3), namely, the L2(R) uniform bound of solution v(t, x). The
methods and ideas utilized in this work come from those presented in Coclite and Karlsen [4, 5].

The organization of our work is that section two provides several lemmas about the viscous
approximations of Eq (1.1) and section three gives our main result and its proof.

2. Viscous approximations

We define the smooth function λ(x) such that λ(x) ≥ 0 for any x ∈ R, λ(x) = 0 if |x| ≥ 1 and∫ ∞
−∞
λ(x)dx = 1. For 0 < ε < 1

4 , let λε(x) = 1

ε
1
4
λ( x

ε
1
4
) and v0,ε = λε ? v0 =

∫
R
λε(x− z, z)v0(z)dz. Provided

that v0 ∈ H s(R) (s ≥ 0), we conclude that v0,ε ∈ C∞.
For conciseness, we employ c to represent arbitrary positive constants, which do not depend on ε

and t. Let Lp = Lp(R), 1 ≤ p ≤ ∞.
Several properties of function v0,ε are summarized in the following conclusion.

Lemma 2.1. [21] Assume 1 ≤ p < ∞. Then
v0,ε → v0 in Lp (ε→ 0), ‖ v0,ε ‖L∞≤‖ v0 ‖L∞ ,

‖ v0,ε ‖L1≤‖ v0 ‖L1 , ‖ v0,ε ‖Lp≤ c ‖ v0 ‖Lp .

Provided that (t, x) ∈ R+ × R, the initial value problem for Eq (1.1) is written in the form{
∂tv − ∂3

txxv + mv∂xv = 3α∂xv∂2
xxv + αv∂3

xxxv,
v(0, x) = v0(x).

(2.1)

Consider the viscous approximations of system (2.1)
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∂tvε − ∂3

txxvε + mvε∂xvε
= 3α∂xvε∂2

xxvε + αvε∂3
xxxvε + ε∂2

xxvε − ε∂
4
xxxxvε,

vε(0, x) = v0,ε(x).
(2.2)

Using the operator Λ−2 = (1 − ∂2

∂x2 )−1, we obtain that problem (2.2) becomes
∂tvε + α

2∂x(v2
ε) + ∂xHε = ε∂2

xxvε,
Hε(t, x) = m−α

2 Λ−2v2
ε,

vε(0, x) = v0,ε(x),
(2.3)

in which

Hε(t, x) =
m − α

4

∫
R

e−|x−ζ |v2
ε(t, ζ)dζ. (2.4)

Lemma 2.2. Let v0 ∈ H s(R), s ≥ 0 and 0 < ε < 1
4 . Then problem (2.3) has a unique global smooth

solution vε(t, x) belonging to C([0,∞); H s(R)).

Proof. Utilizing the Theorem 2.3 in [6] completes the proof directly. �
The following lemma, which illustrates the L2(R) uniform bound of solutions for problem (2.3),

takes a key role to discuss the dynamical features of entropy solutions in L1(R) ∩ L∞(R) for Eq (1.1).

Lemma 2.3. Provided that v0 ∈ L2(R) and vε satisfies (2.3), α > 0 and m > 0, then

c1 ‖ v0 ‖L2(R)≤‖ vε(t, ·) ‖L2(R)≤ c2 ‖ v0 ‖L2(R), (2.5)

ε

∫ t

0
‖ ∂xvε(τ, ·) ‖2L2(R) dτ ≤ c3 ‖ v0 ‖

2
L2(R), (2.6)

in which constants c1 > 0, c2 > 0 and c3 > 0 does not depend on ε and t.

Proof. Set hε = (m
α
− ∂2

xx)
−1vε. We have

m
α

hε − ∂2
xxhε = vε. (2.7)

Utilizing (hε − ∂2
xxhε) to multiply the first equation in (2.3) arises∫

R

∂tvε(hε − ∂2
xxhε)dx − ε

∫
R

∂2
xxvε(hε − ∂

2
xxhε)dx

= −α

∫
R

vε∂xvε(hε − ∂2
xxhε)dx −

∫
R

∂xHε(t, x)(hε − ∂2
xxhε)dx. (2.8)

From (2.8), we have ∫
R

∂tvε(hε − ∂2
xxhε)dx − ε

∫
R

∂2
xxvε(hε − ∂

2
xxhε)dx
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=

∫
R

(
m
α
∂thε − ∂3

txxhε)(hε − ∂
2
xxhε)dx

−ε

∫
R

(
m
α
∂2

xxhε − ∂
4
xxxxhε)(hε − ∂

2
xxhε)dx

=

∫
R

(
m
α

hε∂thε − hε∂3
txxhε −

m
α
∂thε∂2

xxhε + ∂2
xxhε∂

3
txxhε)dx

−ε

∫
R

(
m
α

hε∂2
xxhε −

m
α

(∂2
xxhε)

2 − hε∂4
xxxxhε + ∂2

xxhε∂
4
xxxxhε)dx

=

∫
R

(
m
α

hε∂thε − (
m
α

+ 1)hε∂3
txxhε + ∂2

xxhε∂
3
txxhε)dx

−ε

∫
R

(
m
α

hε∂2
xxhε − (

m
α

+ 1)hε∂4
xxxxhε + ∂2

xxhε∂
4
xxxxhε)dx

=

∫
R

(
m
α

hε∂thε + (
m
α

+ 1)∂xhε∂2
txhε + ∂2

xxhε∂
3
txxhε)dx

−ε

∫
R

(−
m
α
∂xhε∂xhε − (

m
α

+ 1)∂2
xxhε∂

2
xxhε − ∂

3
xxxhε∂

3
xxxhε)dx

=
1
2

d
dt

∫
R

(m
α

h2
ε + (

m
α

+ 1)(∂xhε)2 + (∂2
xxhε)

2
)
dx

+ε

∫
R

(m
α

(∂xhε)2 + (
m
α

+ 1)(∂2
xxhε)

2 + (∂3
xxxhε)

2
)
dx, (2.9)

in which we have utilized integration by parts.
For the right side in (2.8), making use of (2.7) and integration by parts gives rise to

−α

∫
R

vε∂xvε(hε − ∂2
xxhε)dx −

∫
R

∂xHε(t, x)(hε − ∂2
xxhε)dx

= −α

∫
R

vε∂xvε(hε − ∂2
xxhε)dx +

∫
R

(Hε − ∂
2
xxHε)(t, x)∂xhεdx

= −α

∫
R

vε∂xvε(hε − ∂2
xxhε)dx +

m − α
2

∫
R

v2
ε∂xhεdx

=
α

2

∫
R

∂x(v2
ε)∂

2
xxhεdx +

m
2

∫
R

v2
ε∂xhεdx

=
α

2

∫
R

∂x(v2
ε)
[m
α

hε − vε
]
dx +

m
2

∫
R

v2
ε∂xhεdx

=
α

2

∫
R

v2
ε∂xvεdx

= 0. (2.10)

From (2.8)–(2.10), we derive that

m
α
‖ hε ‖2L2 +(

m
α

+ 1) ‖ ∂xhε ‖2L2 + ‖ ∂2
xxhε ‖

2
L2

+2ε
∫ t

0

(m
α
‖ ∂xhε ‖2L2 +(

m
α

+ 1) ‖ ∂2
xxhε ‖

2
L2 + ‖ ∂3

xxxhε ‖
2
L2

)
dτ
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=
m
α
‖ hε(0, ·) ‖2L2 +(

m
α

+ 1) ‖ ∂xhε(0, ·) ‖2L2 + ‖ ∂2
xxhε(0, ·) ‖

2
L2 .

(2.11)

Utilizing (2.7) yields

‖ vε(t, ·) ‖2L2(R)=

∫
R

(
− ∂2

xxhε +
m
α

hε
)2dx

=

∫
R

(∂2
xxhε)

2dx −
2m
α

∫
R

hε∂2
xxhεdx +

m2

α2

∫
R

h2
εdx

=

∫
R

(∂2
xxhε)

2dx +
2m
α

∫
R

(∂xhε)2dx +
m2

α2

∫
R

h2
εdx

=
m2

α2 ‖ hε ‖2 +
2m
α
‖ ∂xhε ‖2 + ‖ ∂2

xxhε ‖
2 . (2.12)

We utilize the definition of the norm L2(R), the right side of (2.11) and the left side of (2.12).
From (2.11), (2.12) and Lemma 2.1, we derive that there exist constants c1 > 0 and c2 > 0 to guarantee
that

c1 ‖ v0 ‖L2(R)≤‖ vε ‖L2(R)≤ c2 ‖ v0 ‖L2(R) . (2.13)

From (2.11), we have

ε

∫ t

0
‖ ∂xvε ‖2L2 dτ ≤ εc

∫ t

0

(m
α
‖ ∂xhε ‖2L2 +(

m
α

+ 1) ‖ ∂2
xxhε ‖

2
L2 + ‖ ∂3

xxxhε ‖
2
L2

)
dτ

≤ εc
(
‖ hε(0, ·) ‖2L2 + ‖ ∂xhε(0, ·) ‖2L2 + ‖ ∂2

xxhε(0, ·) ‖
2
L2

)
≤ c ‖ v0,ε ‖

2
L2

≤ c ‖ v0 ‖
2
L2 . (2.14)

Applying (2.13) and (2.14) directly derives (2.5) and (2.6). �
We give several estimates about the nonlocal term Hε(t, x) by applying Lemma 2.3.

Lemma 2.4. If v0 ∈ L2(R), then

‖ Hε ‖L∞ , ‖ ∂xHε ‖L∞≤ c ‖ v0 ‖
2
L2 , (2.15)

‖ Hε(t, ·) ‖L1 , ‖ ∂xHε(t, ·) ‖L1 , ‖ ∂2
xxHε(t, ·) ‖L1≤ c ‖ v0 ‖

2
L2 . (2.16)

Proof. Utilizing the expressions

Hε(t, x) =
m − α

4

∫
R

e−|x−ζ |v2
ε(t, ζ)dζ,

∂xHε(t, x) =
m − α

4

∫
R

e−|x−ζ |sign(ζ − x)v2
ε(t, ζ)dζ

and Lemma 2.3, we complete the proof of (2.15). Noting that∫
R

|Hε(t, x)|dx,
∫
R

|∂xHε(t, x)|dx ≤ c
∫
R

( ∫
R

e−|x−ζ |dx
)
v2
εdζ ≤ c ‖ v ‖2L2≤ c ‖ v0 ‖

2
L2

and ∂2
xxHε = Hε −

m−α
2 v2

ε, we finish the proof of (2.16). �
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Lemma 2.5. Provided that v0 ∈ Ł1(R) ∩ L∞(R) and vε satisfies (2.3), Then the inequality

‖ vε(t, ·) ‖L∞≤‖ v0 ‖L∞ +ct ‖ v0 ‖
2
L2 (2.17)

holds for any t ≥ 0.

Proof. From problem (2.3), we have

∂tvε + αvε∂xvε − ε∂2
xxvε = −∂xHε. (2.18)

Using Lemma 2.4 yields

‖ ∂xHε ‖L∞(R)≤ c ‖ v0 ‖
2
L2 .

Considering the function A(t) =‖ v0 ‖L∞(R) +ct ‖ v0 ‖
2
L2 arises

dA
dt

= c ‖ v0 ‖
2
L2 .

From Lemma 2.1, we acquire ‖ v0,ε ‖L∞(R)≤ A(0). Utilizing the comparison principle for parabolic
equation (2.18) deduces that (2.17) holds. �

Employing Lemmas 2.3, 2.4 and the approaches utilized in [4, 5], we have the conclusion.

Lemma 2.6. Suppose t ∈ [0,T ] and v0 ∈ Ł1(R) ∩ L∞(R). Then

‖ vε ‖L1(R)≤‖ v0 ‖L1(R) +ct ‖ v ‖2L2(R), (2.19)

∂xvε(t, x) ≤
1
t

+ MT , (2.20)

in which the constant MT depends on T .

Since the proofs to inequalities (2.19) and (2.20) are very analogous to those of Lemma 2.5 in
Coclite [4] and Lemma 6 in [5], respectively, we omit their proofs.

Let ΩT = [0,T ] × R and Ω∞ = [0,∞) × R. According to the definitions of weak solutions in [4, 5],
we state the following concepts.

Definition 2.1. Provided that the following two assumptions hold,
(a) v ∈ L∞(R+; L2(R)),
(b) ∂tv + α

2∂x(v2) + ∂xH(t, x) = 0 in D′(Ω∞), namely, ∀g(t, x) ∈ C∞c (Ω∞),"
Ω∞

(
v∂tg +

αv2

2
∂xg − ∂xH(t, x)g

)
dxdt +

∫
R

v0(x)g(0, x)dx = 0, (2.21)

then function v is called a weak solution of system (2.1).
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Definition 2.2. Assume that the following three assumptions hold.
(a) v satisfies Definition 2.1,
(b) v belongs to L∞(ΩT ),
(c) Entropy θ(v) ∈ C2(R) is a convex function with entropy flux q satisfying q′(v) = αθ′(v)v and

∂tθ(v) + ∂xq(v) + θ′(v)∂xH ≤ 0 in D′(Ω∞),

namely, ∀g(t, x) ∈ C∞c (Ω∞), g(t, x) ≥ 0"
Ω∞

(
θ(v)∂tg + q(v)∂xg − θ′(v)∂xHg

)
dxdt +

∫
R

θ(v0(x))g(0, x)dx ≥ 0, (2.22)

Then v is called an entropy weak solution of system (2.1).

Remark 1. Utilizing the arguments in [4, 5], for any constant k ∈ R, we choose θ(v) = |v − k|
and q(v) := α

2 sign(v − k)(v2 − k2), which are the Kruzkov entropies/entrop fluxes to satisfy (2.22).
The assumptions (a) and (b) in Definition 2.2 guarantee that (2.22) makes sense (see Kružkov [20]).
Based on the statement in [4, 20], we state that the entropy formulation (2.22) contains the weak
formulation (2.21).

3. Main results

The entropy weak solutions for Eq (2.1) are usually discontinuous. However, it possesses the
following L1(R) property, illustrating that the entropy solution for Eq (1.1) is unique.

Theorem 3.1. (L1-stability) For any T > 0, suppose that v1(t, x) and v2(t, x) are two entropy weak
solutions of problem (2.5) with initial data v01, v02 ∈ L1(R) ∩ L∞(R), respectively. Then

‖ v1(t, ·) − v2(t, ·) ‖L1(R)≤ eCT t
∫ ∞

−∞

|v01(x) − v02(x)|dx, (3.1)

in which CT depends on v01, v02 and T .

Utilizing the device of doubling the space variable in Kružkov [20] or some statements in [4,5], we
can prove inequality (3.1). Here, we omit its proof.

We let vεn denote any subsequence of vε (ε → 0). The existence of vε is ensured by Lemma 2.2.
The compensated compactness methods in [27, 29] shall be employed to handle with the problem of
strong convergence for vεn .

Lemma 3.1. [27] Suppose that a family of functions {vε}ε>0 satisfy

‖ vε ‖L∞≤ CT .

For an arbitrary convex function θ ∈ C2(R) and for q(v) = βvθ′(v) (constant β > 0), let the sequence

{∂tθ(vε) + ∂xq(vε)}ε>0

be compact in H−1
loc((0,∞) × R). Then there exists v ∈ L∞((0,T ) × R) to ensure that

vεn → v in Lp
loc((0,∞) × R),

where 1 ≤ p < ∞.
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1779

Lemma 3.2. [26] Suppose a bounded open subset Ω ∈ Rn, n ≥ 2. Let distribution sequence {Kn}
∞
n=1

be bounded in W−1,∞(Ω) and satisfy

Kn = K(1)
n + K(2)

n ,

in which {K(1)
n }
∞
n=1 belongs to a compact subset of H−1

loc(Ω) and {K(2)
n }
∞
n=1 belongs to a bounded subset of

L1
loc(Ω). Then {Kn}

∞
n=1 belongs to a compact subset of H−1

loc(Ω).

Lemma 3.3. Suppose v0 ∈ L1(R) ∩ L∞(R) and vε satisfies system (2.3). For a subsequence {vεn}
∞
n=1 of

{vε}ε>0, an arbitrary T > 0 and 1 ≤ p < ∞, then there has a limit function

v ∈ L∞(R+; L2(R)) ∩ L∞((0,T ); L∞ ∩ L1(R)) (3.2)

to ensure that

vεn → v in Lp((0,T ] × R). (3.3)

Proof. Assume that θ : R→ R and q′(v) = αθ′(v)v are defined in Definition 2.2. We set

∂tθ(vε) + ∂xq(vε) = K(1)
ε + K(2)

ε ,

where {
K(1)
ε = ε∂2

xxθ(vε),
K(2)
ε = −εθ′′(vε)(∂xvε)2 + θ′(vε)∂xHε(t, x).

We require that {
K(1)
ε → 0 in H−1(ΩT ),

K(2)
ε is uniformly bounded in L1(ΩT ).

(3.4)

Utilizing Lemmas 2.3, 2.4 and 2.6 yields
‖ ε∂2

xxθ(vε) ‖H−1(R+×R)≤
√
εc ‖ θ′ ‖L∞‖ v0 ‖L2(R)→ 0,

‖ εθ′′(vε)(∂xvε)2 ‖≤ c ‖ θ′′ ‖L∞(R)‖ v0 ‖L2(R),

‖ θ′(vε) ‖L1((0,T )×R)≤ c ‖ θ′ ‖L∞(R)‖ v0 ‖L2(R),

which leads to (3.4). Employing Remark 1, Lemmas 3.1 and 3.2, for 1 ≤ p < ∞, we deduce that there
must have a subsequence vεn , n = 1, 2, 3, · · · and v satisfying (3.2) to guarantee that

vεn → v a.e in Ω∞, vεn → v in Lp
loc(Ω∞). (3.5)

From Lemmas 2.5 and 2.6, combining (3.5), we obtain (3.3). �

Lemma 3.4. Assume v0 ∈ L1(R) ∩ L∞(R) and vε solves system (2.3). Let {εn}
∞
n=1 and v be stated in

Lemma 3.3. For an arbitrary T > 0 and 1 ≤ p < ∞, then there has a function H satisfying

Hεn → H in Lp([0,T ); W1,p(R)).
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The procedures to prove Lemma 3.4 are analogous to that of Lemma 9 in [5]. Its proof is omitted
here.

Theorem 3.2. Suppose that v0 ∈ L1(R)∩L∞(R). Then system (2.1) has only one entropy weak solution.

Proof. Provided that g(t, x) ∈ C∞c (R+ × R), we deduce from (2.21) that∫
R+

∫
R

(
vε∂tg +

α

2
v2
ε∂xg − ∂xHεg + εvε∂2

xxg
)
dxdt +

∫
R

v0,εg(0, x)dx = 0.

We conclude that in the sense of Definition 2.1, v in Lemma 3.3 is a weak solution to system (2.1). It
needs to confirm that the weak function v obeys the entropy inequalities in the sense of Definition 2.2.
Let q′(v) = αvθ′(v). Provided that θ ∈ C2(R) is a convex function, we utilize the convexity of θ and
system (2.3) to obtain

∂tθ(vε) + ∂xq(vε) + θ′(vε)∂xHε = ε∂2
xxθ(vε) − εθ

′′

(vε)(∂xvε)2 ≤ ε∂2
xxθ(vε).

Therefore, from Lemmas 3.3 and 3.4 and the above the entropy inequality, we establish the existence
of entropy solutions. Utilizing Theorem 3.1, we have the uniqueness. The proof is finished. �

4. Conclusions

In this work, we investigate a nonlinear shallow water wave equation, which includes the famous
Degasperis-Procesi equation. Firstly, we derive that the viscous solutions are uniformly bounded in
L2(R) space. Secondly, several estimates about the viscous solutions are established under the condition
that the initial value belongs to space L2(R)∩Ł∞(R). Finally, we prove that the existence and uniqueness
of entropy weak solutions the nonlinear equation in the space L2(R) ∩ Ł∞(R).
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