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1. Introduction

Consider H a Hilbert space and Q a nonempty, closed and convex subsetof H. Let F : X Q — R
be a bifunction, g : Q — H a nonlinear mapping and ¢ : Q — R a function. Then, the generalized
mixed equilibrium problem (GMEP) identifies &£ € Q such that

F(&£,2) +(8&,2— &) +Y(z) —y(é) 2 Oforallz € Q. (1.1)

If g = 0, Problem (1.1) becomes a mixed equilibrium problem to identify £ € Q such that

F(,2)+y(z) — (&) >0forall z € Q. (1.2)
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If = 0, Problem (1.2) becomes a mixed equilibrium problem (MEP), which is to identify ¢ € Q such
that
F(&,7) > 0forall z € Q. (1.3)

If F(t,z) = Oforallt,z € Q, Problem (1.1) becomes a generalized vector variational inequality problem
which identifying & € Q such that

(86,2 &) +(2) — (&) = Oforall z € Q. (1.4)

Censor et al. [1] proposed the split feasibility problem (SFP) for modeling inverse problems for the
first time in 1994. SFPs are used in various applications, including signal processing, image restoration,
computer tomography, intensity-modulated radiation therapy (IMRT) and so on; see [2]. SFP involves
the use of a bounded linear operator for identifying a point in a nonempty closed and convex set in the
space whose image corresponds to another nonempty closed and convex set in the image space.

Suppose that H,; and H, are Hilbert spaces and Q; and Q, are nonempty, closed and convex subsets
of H, and H,, respectively. Suppose that D : H; — H, is a bounded linear operator. Let F; :
01 X0 =R, F,: 0, x 0, — Rbe bifunctions, g, : Q; — Hy, g, : Q> — H, be nonlinear mappings
and ¥ : O — R, ¥, : O — R be functions. Then, the split generalized mixed equilibrium problem
(SGMEP), which involves finding &€ € Q; such that

Fi(&,2)+(g1&, 2= & + () —y(§) 2 Oforall z € Oy, (1.5)

and w* = D¢ € Q, solve
Fro(w™,w) + (gaw",w —w") + (W) —(w*) > O for all w € Q,. (1.6)

Let the solution set of (1.5), (1.6) and SGMEP be denoted by GMEP(F, g, ¥1, Q1),
GMEP(F,, g,¥7, Q>) and O, respectively.

Fan [3] was the first to introduce the equilibrium problem in 1972, but Blum and Oettli [4]
made the most significant contributions to the issue in 1994. They studied variational principles
and existence theorems for equilibrium problems, which have a significant role on the establishment
of numerous domains in both pure and applied sciences; see [5, 6]. These equilibrium problems
serve as generalizations of various mathematical problems, including Nash equilibrium, optimization,
variational inequality, minimization, saddle point problems and so on. Equilibrium problems have
several applications in image reconstruction, networks, engineering, physics, game theory, economics,
transportation and elasticity. As a result, the equilibrium problem has been expanded to broader issues
in various ways.

GMEP was introduced by Peng and Yao [7] in 2008 and it includes the variational inequality
problem (VIP), minimization problem (MP), fixed point problem (FPP) and many more as its special
cases, see [8,9]. SGMEP includes split monotone variational inclusion problem (SMVIP), generalized
mixed equilibrium problem (GMEP), mixed equilibrium problem (MEP), equilibrium problem
(EP), variational inequality (VI), minimization problem, mixed variational inequality (MVI), split
mixed equilibrium problem (SMEP), split generalized equilibrium problem (SGEP), split variational
inequality (SVI), split minimization problem, split feasibility problem (SFP), split equilibrium problem
(SEP) and many more as its special cases, see [10, 11].
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Moudafi and Mainge [12] initiated the hierarchical fixed point problem (HFPP) for a nonexpansive
mapping S related to another nonexpansive mapping U on Q;, which can be defined as finding & €
Fix(U), such that

(=8¢, E—w)y<Oforallwe Fix(U). (1.7)

Let Q represent the solution set of HFPP. Using the normal cone’s definition

Novs, = {t € H, : (F—p,1), forall 7 € Fix(S)if p € Fix(S), 08

otherwise,

one can easily see that & € Fix(U) satisfies a VIP by using a criterion S, namely: Identify & € Fix(U)
and

0€ (I —=S)&+ Nrixs)é. (1.9)

The HFPP (1.7) is clearly identical to the problem of identifying the fixed point of a map
G = Priyu) © S, see [12], which includes monotone problems over equilibrium constraints, monotone
variational inequality problems, and many more; see [13] and references therein.

The following mapping was described by Kangtunyakarn and Suantai [14] in 2009 as

Tn,O = I
Thy =0u1S1Tho+ (1 —n,0)1
Tho =1n282Tny + (1 = 1,2)Th)

(1.10)
Toy-1 = Mam—1S -1 To—2 + (1 = Dup-1) T pi—2
Ky, =Toy = oS uTpm—1 + (1 = ) Topi-1s (L.11)
where S : Q1 — Q; represents a finite collection of nonexpansive mappings, {1,, j}ﬁ , € (0, 1] with
Mnj — njand Y% 9, — a1l < +oo for 1 < j < M. The mapping K,, is the K-mapping generated by
S 1s S2a cees SM and MnsMn2s coos MnM-

Recently, various common problems, namely the common solution of fixed point [15, 16],
variational inequality [17], variational inclusion [18], equilibrium [19,20], hierarchical fixed point [14]
and split feasibility [21,22] problems with fixed point problems have been investigated by numerous
authors. In 2009, Kangtunyakarn and Suantai [14] introduced an iterative technique and established a
strong convergence theorem. In 2017, Kazmi et al. [23] proposed the following Krasnosel’skii-Mann
iteration method to find common solutions of HFPP and SMEP.

Yn = (1 - Tn))(n + Tn(sonSXn + (1 - Qpn)UXn)a
Xn+1 = Ko, (yn + 6D*(Kg, — I)Dyn),
where Ko, = T,'(I = r,81), Ko, = T;(I = r,82) and § € (0, 3m). In 2017, Majee and Nahak [24]

initiated the following hybrid viscosity algorithm to find a common solution of SEP and FPP with the
finite family of nonexpansive mappings.

Yn = KQl(Xn + 5D*(KQ2 - I)Dyn)a
by = OpXn + (1 = o) URUL_ .. USUTy,, (1.13)
Xn+l = wnyh()(n) + [I - a)n,UA]ln,

(1.12)
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where Ko, = T, Ko, = T,*, Ul = (1 = k)l + K,U; and 6 € (0, 7). In 2018, Majee and Nahak [25]
proposed the following viscosity approximation hybrid steepest-descent method to find a common
solution of a SGEP and FPP for a finite collection of nonexpansive mappings.

Y = Ko,(xn + 6D*(Kp, — I)Dy,),
ty = ooxn + (1 = )ULUY_ . UUy,, (1.14)
Xnt1 = WpYh(x) + puxn + [(1 = p)] — wypAlty,

where Ko, = T, Ko, = T,%, Ul = (1 = k)] + ki U; and 6 € (0, 7). In 2020, Kim and Majee [26]
proposed the following modified Krasnosel’skii-Mann type iterative method in order to identify a
common solution of SMEP and HFPP of a finite collection of k-strictly pseudocontractive operators.

Yn = KQ] (Wn)’ ln = KQQ(Dyn),
Up = Yn _6D*(Dyn_ln)9 (115)
Xni1 = (I =@ u, + o,l0,Un, + (1 —o)UR Uy ... Uy Ul uy,],

where Ko, = T/, Ko, = T}> and U" = (1 = k) + k,Pg, ()1 + (1 — £)U,). They proved its strong and
weak convergence. In 2022, Yazdi and Sababe [27] proposed the following method in order to identify
a common solution of a GMEP, common fixed points of a finite collection of nonexpansive mappings
and a general system of variational inequalities.

Wi = ToXn + (1 = Tp)l,

Fi(ty,2) +(§1Wn, 2 — &) + () — ¢ (t0) + ril (z=ty, t, —w,y > 0forallz € Q;
Yu = Po,(I = Bg1)(t), ln = Po,(I = p&g2)Yns

X1 = WnYh(xp) + puxn + [(1 = p)I = w,uAJUNUY, ... USUTL,,

(1.16)

where U = (1 — «))I + k,U;. They proved its strong convergence by taking some conditions on
parameters.

The fixed point problem and its applications are very important in nonlinear analysis. In recent
years, significant progress has also been made in research results; see [28—-33]. We have applied our
result for solving compressed sensing, and one can solve various nonlinear analysis problems using our
algorithm. But, the applicability of our algorithm is not limited to the problems discussed above. It can
be further used to solve many important problems, for instance, uncertain fractional-order differential
equation with Caputo type [34,35].

In recent times, numerous researchers have explored inertial-type methods, drawing inspiration
from the concept of heavy ball techniques. Polyak, in their work from 1964 [36] introduced an iterative
approach aimed at enhancing the convergence rate of iterative sequences through the incorporation of
an inertial extrapolation factor. Inertial approaches typically involve a two-step iterative process, where
the next iteration is determined based on the previous two iterations. In 2021, Rehman et al. [19]
introduced an innovative approach by combining an inertial term with a subgradient extragradient
algorithm. They provided a proof of weak convergence for their proposed method. In the same year,
Chuasuk and Kaewcharoen [37] introduced a Krasnosel’skii-Mann-type inertial technique designed
for solving SGMEP and HFPP involving k-strictly pseudocontractive operators. They demonstrated
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its weak convergence properties. Recently, a variety of inertial techniques have emerged to address a
wide range of equilibrium problems, as documented in the literature [10,37]. In 2023, Ugwunnadi et
al. [38] introduced a Krasnosel’skii-Mann-type inertial technique for solving SMVIP and HFPP. These
techniques offer valuable tools for solving mathematical problems efficiently and effectively.

In this study, influenced and inspired by aforementioned work, we give a new generalized
viscosity approximation method for solving an SGMEP, fixed point problem for a finite collection
of nonexpansive mappings §; with 1 < j < M and an HFPP for a finite collection of y;-strictly
pseudocontractive mappings which involve finding a point £ € Q; and

M
f S ﬂFlX(S]) nNan GMEP(Fl,gl,lﬁl, Ql) and Df S GMEP(Fz,gz,lﬁz, Q2) (117)

J=1

Let the solution set of problem (1.17) be represented by I'. We will prove strong convergence for
Problem (1.17).

Remark 1.1. In this paper, our contribution can be highlighted as

1) For proving the convergence result, we have embedded an inertial term which accelerates the
convergence speed of the algorithm. Majee and Nahak [24,25], Kim and Majee [26], and Yazdi
and Sababe [27] do not consider the inertial approach in their method.

2) We consider Ky, = TZ‘ (I-r,81), Ko, = Tf:z(l—rngz) in our algorithm, and if we take g; = g, = 0,
then various results are special cases of our result.

3) We consider t-strictly pseudocontractive mappings for solving HFPP which include
various mappings like pseudocontractive and nonexpansive mappings. Additionally, 7-strictly
pseudocontractive mappings have more powerful applications than nonexpansive mappings in
solving inverse problems.

4) Yazdi and Sababe [27] take the condition lim,,_, , |#,+1 — ,| = 0, whereas our main proof does not
require such a condition.

5) Our result improved the results of Kazmi et al. [23] from the common solution of HFPP and
SMEP, Majee and Nahak [24] from common solution of SEP and finite family of FPP, Majee and
Nahak [25] from the common solution of a SGEP and finite family of FPP, Kim and Majee [26]
from common solution of SMEP and HFPP to common solution of SGMEP, HFPP and finite
family of FPP.

6) We provide a real-life application to compressed sensing for our problem and show that our
method requires less computation time to recover the signal in comparison with other methods.

7) We compare our iterative technique to other approaches and present numerical examples to show
the effectiveness of our algorithm.

8) Our result generalizes the result of Kazmi et al. [23] from weak convergence to strong
convergence.

In Section 1, we introduce the background and motivation for our research, highlighting the
significance of GMEP and HFPP in real-world applications. Section 2 provides a comprehensive
literature review, discussing previous methods and techniques proposed for solving GMEP, HFPP, and
related problems. Section 3 outlines our proposed method and Algorithm 1, and we prove our main
result. Section 4 discusses the practical applicability of our approach in compressed sensing. Section 5
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presents numerical experiments to validate the effectiveness of the algorithm and compare it with other
existing approaches.

2. Preliminaries

In this section, we consider a real Hilbert space denoted as H, equipped with an inner product
denoted as (.,.) and the corresponding norm denoted as |.||. We assume that Q is a nonempty, closed
and convex subset of this real Hilbert space H. We will use the notations y,, — y and y,, — x to signify
weak and strong convergence, respectively, of the sequence {y,} to the limit y. Furthermore, we denote
the set of all fixed points of the mapping U as Fix(U).

Definition 2.1. [39] A {graph(D,))} converges to {graph(D)} in the Kuratowski-Painleve sense, if

lim sup graph(D,,) C graph(D) C liminf graph(D,,), 2.1)
n—+oo

n—+oo

where D, is a sequence of maximal monotone mappings and D is a multivalued mapping.

Definition 2.2. [40] The metric projection Py : H — Q is defined as
' — Pou'|| = inf{||lu’ — 2'|l; 2 € Q} forallu’ € H. (2.2)
Definition 2.3. [41] Suppose that U : H — H is an operator. Then U is called
1) contraction on H if there is a constant u € [0, 1) and
U — UV|| < pll@’ = V|| for all @', V" € H.
2) L-Lipschitz continuous on H if
\Uw — UV'|| < Llla’ —v'|| forall @',V € H.
3) monotone on Q if
W' -UvV,u' =v)y>0forall ',V € Q.
4) y-inverse strongly monotone on Q if
YNU# - UV|? <@ =¥, Ui’ — UV forall @', v € Q.
5) t-strictly pseudocontractive mapping if there exists 7 € [0, 1), such that
\Uw' — UV <@ =¥+l - U — I - U)¥|* forall ', v € Q.
6) nonexpansive if
\Ua — UV|| < |’ — V|| forall @',V € H.
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Definition 2.4. [42] The monotone bifunction g : Q X Q — R on Q is defined as
g, xX)+g(x,0) <0forall L, x' € Q.
Definition 2.5. [43] The normal cone of Q at 7’ € Q is defined as
No(@)={uw' e H:(u',0-7)<0forall o € Q}.

Definition 2.6. [44] A bounded linear operator D defined on H is called strongly positive if there is a
constant y > 0 such that
(Dv,v) > y|IV|I* for all v € H. (2.3)

Lemma 2.7. [45] Consider a strongly positive bounded linear, self-adjoint operator denoted as D.
This operator has a positive coefficient y > 0, and 0 < p < ||D||"". Then, || — pD|| < 1 — py.

Lemma 2.8. [46] Foru' e Handy € Q,y = Pou' iff (W' =,y —2') < 0 forallZ € Q, where Py
is a metric projection.

Lemma 2.9. [47] Assume that {U ,-}fi , are averaged mappings with a common fixed point. Then,

N
ﬂ Fix(U)) = Fix(U,U,Us...Uy). (2.4)

i=1
Lemma 2.10. [48] Let u’,V',7' € H. Then, the following conditions hold:

D) lléw’ + (1 =&ZIP = ElIP + (A = ONIZIP = € = Ol — Z'|I* for all w’, 2’ € H and & € [0, 1].
2) |l +ZIP < WP +2¢ u' +2) forall w',z € H.
3) (Opial’s condition) Consider a sequence y, with y, — 7/, then the following conclusions hold:

liminf ||y, — Z’|| < liminf ||y, — o|| for all o € H and 7" # 0.
n—+oo n—+oo

Lemma 2.11. [49] Suppose that U : Q — H is a n-strictly pseudocontractive mapping with Fix(U) #
¢. Consider a mapping S as Sv =™+ (1 —1)Uv forall v € H, where T € [, 1). Then, the following
conclusions hold:

1) Fix(PoU) = Fix(U).
2) S is nonexpansive and Fix(U) = Fix(S).

Lemma 2.12. [50] If {v,} C [0, +o0), {w,} € (0, 1), {T,} € (0, 1) and {n,} are real sequences satisfying
the inequality

Vel < (1 =wy)v, + 1, + 7, for all n > ny. (2.5
Suppose Y, % T, < +00, then the conclusions stated below hold:
1) If , < w,M for some M > 0, then {v,} is bounded sequence.

2) If Y r5w, = 40 and lim 2 < 0, then lim v, = 0.

n=
n—+oo N n—+oo
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1725

We need the following assumptions on bifunction g : Q — Q to solve the split generalized mixed
equilibrium problem:
Assumption 1.
1) g is monotone.
2) g’ u)y>0forall u’ € Q.
3) For each u’,w’,y" € Q, limsup g(t'v/ + (1 — ¢ )w',y") < h(w',y").

t—0+

4) For each u’ € Q,y" — h(u’,y’) is lower semi-continuous and convex.
Now, we mention the following lemma which will be utilized for solving the monotone split
generalized mixed equilibrium problem.

Lemma 2.13. [51] Assume that g : Q X Q — R is a bifunction satisfying Assumption 1. Consider
g1 1 QO — H a nonlinear mapping, ¥ : Q — R U {+00} a convex and proper lower semicontinuous
function. Define S$(w) as follows:

SEw) = (x € 0t g(x,2) +{g1(x), 2 — x) + ¥(2) — Y(x) + % (z—x.x—w)>0 forall z € Q).

where w € H and r > 0. Then, the following statements hold:

1) Forevery u’ € H, S$(u’) # ¢.

2) S%is single-valued.

3) Fix(S$)=GMEP(g, g1, ).

4) Solution set GMEP(g, g1, ¥) 1s closed and convex.
5) S¢ is firmly nonexpansive, i.e., for any «’,y’ € H

IS8(’) = SOOI < (S8w') = S8(Y),u —y').

Lemma 2.14. [52] Consider C a Lipschitz maximal monotone mapping and {D,} a sequence of
maximal monotone mappings defined on H. The statements are as follows:

1) If D, is graph convergent to a mapping D on H, then C + D is maximal monotone and {C + D,}
is also graph convergent to C + D.

2) In addition, if D is a maximal monotone mapping defined on H and D~'0 # ¢, then {s;'D} is
graph convergent to Np-1j as s, — +oo.

Lemma 2.15. [53] Suppose {v,}, {w,} and {t,,} are bounded sequences in a Hilbert space H such that
{t,} € (0,1) with O < liminf,,, 7, < limsup,_,,.. 7, < L. If v,uy = (1 = 7)w,, + TV, for all integers
n > 0andlimsup,_, . [Wye1 = Wall = [[Var1 = vall £ 0, then lim,,_, . [[w, — vyl = 0.

Lemma 2.16. [54] Suppose that {U;} : Q — Q is a finite family of nonexpansive mappings with
1 <j<Mand ﬂjﬂil Fix(U;) # ¢. Assume that the sequence {n, ;} converges to {n;}, where 1, ; C
0,11 for 1 < j < M, n; C (0,1)for1 < j< M-1andny C (0,1]. Consider a K-mapping
generated by Uy, U,,...,Uy and 1,12, ...,n,. Let K, be the K-mapping generated by U, U,,...,Uy
and 10,1, Mn.2s - M- Then, the conclusions stated below hold:

1) Fix(K)=, Fix(U)).
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2) lim,_ ., ||K,v — Kv|| = 0 for each v € Q.

Lemma 2.17. [55] Suppose U : Q — Q is a nonexpansive mapping. Let {v,} be a sequence in Q
converging weakly to v € Q and {(I — U)v,} converging strongly tow € Q, then (I — U)v = w and if
w =0, thenv € Fix(U).

3. Main result

In this section, we propose a new inertial generalized viscosity approximation method and prove a
strong convergence theorem for solving split generalized mixed equilibrium problem, common fixed
point problem of a finite family of nonexpansive mappings and hierarchical fixed point problem. Let
Fi: 0, x0 = R F,: 0, X Q, — R be bifunctions satisfying Assumption 1 and F, be upper
semicontinuous. Suppose D : H; — H, is a bounded linear operator with adjoint D* such that 6 €
O, %), where L is the spectral radius of D Let g, : Q; — Hy, g : O, — H, be a), a,-ism mappings
respectively, 1 : QO — Q) be a v-contraction mapping, U, : Q; — Q) be y;-strictly pseudocontractive
mappings for 1 <i < N,y : Q1 = RU {+00}, ¥ : O, —» R U {+00} be convex and proper lower
semicontinuous functions, U : Q; — Q; be nonexpansive mapping and S ; : Q; — Q; be nonexpansive
mappings for 1 < j < M and A is a strongly positive bounded linear self-adjoint operator on H; with
constant y > O such that 0 < y < % <y+ %

Algorithm 3.1. Consider A, C [0, +c0) with },) 54, < +oo, T € [0, 1), go,,,O'n,Kﬁl,w,,,p,, € (0,1),
p = suplp,;n € N} with lim |@,01 — @, = 0, lim |01 — 0y = 0 and Y050, < +co. Setn = 1.
n—-+oo n—+oo

Choose xy, x; € Oy and T, such that 0 < 1, < 7, where

3.1

min{/l—n9T} lf Xﬂ i){n—lv
£ = a1l
T otherwise.

Step 1: Compute

Wp =Xn+ Tn(/\/n _Xn—l),
Yn = KQ] (Wn)a ln = KQZ(Dyn), (32)
Up = Yn — 6D*(Dyn - ln)a

where Ko, = T'(I — r,g1), Ko, = T>(I — r,g») with r,, € min{ay, @} = 20, liminf,_, 7, > 0 and
lim |r —r, =0.
n—+oo
Step 2: Compute
ty = (1 =@ )u, + @ulo,Uuy, + (1 — o, )UyUy,_, ..Uy U], (3.3)
where U = (1 — k)] + &,Po, ({1 + (1 = &)Uy with 0 < g; < ¢, < 1and lim |, —«i| = O for
n—+oo
i<i<M.
Step 3: Evaluate

Xn+l = wnyh(Kn n) +ann + [(1 _pn)I - wnA]Kntn- (34)

Step 4: If x,.1 = x», terminate the process. Otherwise, set n := n + 1 and return to Step 1.
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Remark 3.2. From Eq (3.1) and Y,/%) A, < +00, we get Y50 Tu(Xn — Xn—1) < +00.

Theorem 3.3. Let I, the solution set defined in Eq (1.17) be nonempty. Suppose that Assumption 1
holds and the following conditions are satisfied:

1) lim w, =0and Y5 w, = +co,

n—-+00

2) 0 <liminf,, o p, < limsup,_,, . pon <1,
3) lim l=wl = o,
n—+oo Tn¥n
Then, {y,} generated by Algorithm 3.1 converges strongly to o, where o € I" and g is the unique fixed
point of contraction mapping Pr(/ + yh — A).

Proof. We have divided the proof in various steps. We will establish the theorem for the case when
N = 2 and, subsequently, we will illustrate how the procedure can be readily applied to the general
case.

Claim 1: The sequence {y,} is bounded.

Leto € ﬂj"il Fix(§ ;) QN O =T. Also, with w, — 0 as n — +co, we can assume that

W, for all n 3.5

1 —
<_P

Al
and then

1—
w, < fp, for all n.
Y

Using Lemma 2.7, we get
I — w,All £ 1 - w,Y. (3.6)

As we know that A is strongly positive bounded linear operator, then (Av,v) > ¥||v||* and ||A|| =
sup{|(Av,v)|; |lv]| = 1,v € H;}. Now consider

<((1 _pn)I - U-)nA)V’ V) =1 — Pn — Wy <AV’ V)
>1—-p—-w,lA|l =0 forallv e Hy. (3.7)

Thus, using Eq (3.5), we get (1 — p,)] — w,A is positive operator. Also,

0 < I(1 = p)I = w,All = sup{|{(1 — p)] — w,Av, V) |; |Vl =1,v € H;}
=sup{|l —p, —w, (Av, V) |; [Vl =1,v e H;}
<1 =py—wyy. (3.8)

Consider

”Wn - QH = ”Xn + Tn(Xn _)(n—l) _Q”
< Iln — oIl + Tallxn = Xn-1ll. (3.9)
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Using Lemma 2.9, I — r,g; is a nonexpansive mapping and hence Ky, is a nonexpansive mapping.

From Eq (3.2), we have

Iy — 0l = 1Ko, (W) — Ko, (@I
=TI = rugow, — TN = ragoll
< lwn = 0) = ru(g1(ws) — g1(@)II
< lwa = ol + rilIg1wa) = g1IF = 2rllgi(wy) — g1
= |lw, — ol — r.ay — r)llgiw,) — g1(E)IIP
< lw, — ol

Similarly,

L, — Doll = ||Kg,(Dy,) — Ko,(Do)l
< |IDy, — Dgll.
Using Eq (3.12), we have
<yn -0, D*(ln - Dyn)> = <Dyn - DQ, ln - Dyn>

= <Dyn - DQ - (ln - Dyn) + (ln - Dyn)9 ln - Dyn>

= <ln - DQ, ln - Dyn> - ”ln - Dyn”2
1
|1t = Dl + 1, = DyalP = 1Dy, - Dol |
I, — Dy,

1 1
< 5[||Dyn _ Dol - IDy, - DQHZ] = 31l = DylP

1
= = Il — Dy,IP".
L Yl

A

From Eqs (3.2), (3.11), (3.13) and 6 € (0, 1), we have

l, — ol* = lly, — 6D*(Dy, — 1,) — oll*
= |ly, — ol* + 6*ID*(Dy, — LI* = 26 {y, — 0, D*(Dy, — 1,,))
= |ly, — ol* + 6*ID*(Dy, = I)I* + 26 {y,, — 0, D*(l, — Dy,))
1
< lyn = ol* + 6*LI|L, — Dy,|I* + 26[ - Ellln — Dy,II*]
= |ly, — oll* + (6*L = 6)||l, — Dy,|*
= |ly, — ol* = 6(1 = SL)|IL, — Dy, |I*

< |lw, — ol
From Egs (3.9) and (3.15), we have

llet, — ol < [lwy =@l
< “Xn - Q” + Tn“Xn _/\/n—lll-
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Using Lemmas 2.9 and 2.11, we have UjU7o = o. From Eqs (3.3) and (3.16), we have

I, = oll = II(1 = @ uy + @alo,Uun, + (1 = 0,) UsUfu,] = ol

< (I = )llu, = oll + @uloallUn, — oll + (1 = o )IU; Utu, = oll]

< =@)lluy = oll + pulonllUn, = Upll + 0llU0 - oll

+ (1 = o)llu, — oll]

< (1 = @lluy — oll + @ulllu, — oll + 7,llUe = 0ll]

= [lun —oll + @uollUo — ol (3.17)

< n = oll + Tallxn = Xn-1ll + @uomallUo = all. (3.18)
Using Eqgs (3.4) and (3.18), we have

Ibne1 — oll = llwnYW(Koxn) + puxn + [(1 — pu)] — w,AlKt, — oll
< llwnyh(Kuxn) — wnyh(O)l + llw,yh(0) — waAoll + pullxs — oll + [(1 = pn) — w0, YKt = ol
< wpyVllyn = oll + willyh(o) = Aoll + pullyn — oll + [(1 = pu) — w,Y1lIt, — ol
< wyVllyn — oll + willyh(e) — Aoll + pully, — ol
+ [(1 = pp) = WY1 In = Ol + Talltn = Xan-1ll + @uoallUo = 0ll]
< (I = wu(¥ =yl — oll + wyllyh(o) — Acll
+[(1 = pu) = WY Tallen = Xno1ll + @u0allUo — oll]
< (1 = wu(¥ =yl — oll + wyllyh(o) — Acll
+ Tullvn = Xn-1ll + 0ullUo = ol|
< (I = wu(¥ =yl — oll + wyllyh(o) — Acall
+ Tulltn = Xu-tll + oallUo — ol (3.19)

wp(Y—yv)llyh(o)—Aol|

oy and 7, = Tullyn = Xaill + 0allU = oll.

Letv, =y, —oll, ws = w,(¥y =yv), 0y < w,M =
Thus, we have

1
Vil < (1 - Wn)vn +1, t T,

Using Lemma 2.12, Remark 3.2, condition (i) and Y 2 0, < 400, we get that {v,} is bounded, which
implies {||y, — ol|} is bounded. Hence, {y,} is bounded. Consequently, {,}, {t,}, (W}, {Vn}, {R(Kx0)}
are also bounded.

Claim 2: lim Supn—>+oo(||f;l+l - ﬁz” - ”Xn+1 _)(n”) <0.

Consider
Iw, = 0l* = ln + Tultn = Xuo1) — 0l
< ln = 0l + 7eln = XutIP + 27lln = Xuillllys — ol
= Iln = 0l + Talltn = Yot lTalltn = xactll + 2llx, — oll]
< n — 0l + Talln — Xn1lIM, (3.20)
where M = sup{T,llyx — Xa-1ll + 2llxs — oll; n € N}.
Also,

||Wn+l - Wn” = ”/Yn+1 + Tn+1()(n+l _Xn) - (Xn + Tn(/Vn _/\/n—l))”
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< “Xn+l _Xn” + Tn+]”Xn+] _Xn” + Tn”Xn _Xn—lll-

Asy, = TE (T = r,g)(wy) and Y1 = TP (1 = 70181) (Wi 1), We get

1
Fi1(yn,2) +{€1Wn), 2= yu) + ¥1(2) — Y1 (yn) + - (Z=YnsYn—wp) 20 forallz € Qy,

and

F1(Vn41,2) +{€1(Wns1), 2 = Ynr1) + ¥1(2) = Y1 Yns1)

—+

’ <Z = Yn+1Yn+1 — Wn+1> >0 forall z € Ql~
n+l

Putting z = y,+; and z = y, in Eqgs (3.22) and (3.23), respectively, we get

Fl(ynayn+l) + <g1(wn)a Yn+1 — yn>

1
+ l,l’l(yn+l) - wl(yn) + I"— <yn+1 —Yns¥Yn — Wn> > 0 ’

and

Fi1(ns1,0) + €1 Wnt1), Yn = Ve 1) + ¥1(Vn) = Y1 (Vs1)

+

<yn = Vn+1>Yn+1 — Wn+1> > 0.
Fn+1

Adding Egs (3.24) and (3.25) and using the monotonicity of F;, we get

Yn+1 — Wnyt _ Yn — Wn> > 0.

T+l n

(€1Wns1) — 81(Wn)s Yn — Yus1) + <yn — Y+l

Upon rearranging the terms in Eq (3.26), we get

ri’l
0< <yn = Vns1> Fn(§1(Wni1) — g1(wy)) + r—(y,m —Wy1) — W — wn)>
n+1

Tl

Ty
< <yn+l — YnsYn — Yn+l + (1 - )yn+1>

Ty
+ <yn+1 ~ Yn» (Wn+1 - rngl(wn+1)) - (Wn - rngl(wn)) — Wpe t+ Wn+1>

n+1

Iy

< <yn+1 Yo Yn — Yn+1 T (1 - )(yn+1 - Wn+1)>

n+1
+ <yn+1 — Yn» (Wn+l - rngl(WnH)) - (Wn - rngl(wn))> .
Hence, we get

Iy

2
”yn+l _yn” < ”yn+l _yn” ||Wn+l - Wn“ + ‘1 - ‘”yn+l - Wn+l||]-

T+l

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)
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Subsequently, we have

T
a1 = Yull < MWisr = wall + {1 = ——lyns1 = Wortl
n+1
1
< ||Wn+1 - Wn” + r_ Thyl = Fn ||yn+1 - Wn+1||- (329)
n+1

Assume that for any n > 0, there is a real number c; such that r, > ¢; > 0. From Eq (3.29), we get

M, (3.30)

Ynel — 1n

1
||yn+1 _yn” < ||Wn+1 - Wn” + C‘_
1

where M| = sup{|[W,+1 — Yus+1ll; 7 € N}. In a similar way, we can deduce that

1
||ln+1 - ln” < ||Dyn+l - Dyn” + C_ Thyl — Fn Mz, (331)
2

where M, = Sup{”ln+1 - Dyn+1||; neN}L I, = T;{,:Z(I - rng2)Dyn and [, = TFZ

Tn+1

(I - ”n+182)D)’n+1- AlSO,

st = tall® = lyus1 = SD* (DYpsr = bys1) = O — SD*(Dy,, — L)
< yust = Yall* + PID*IPIDGnet) = D) = (st = LI
+26(Dyn+1 — Dy + (Lis1 = DYns1), (L1 = Dyns1) — (L — Dy,))
=y = Dyn), (lix1 = Dyns1) — (I, = Dyn))
= 26 {(Ls1 = Dyns1) = (lu = Dyy), (Ls1 = Dyns1) = (L — Dy,))
< yust = Yall* + PID*IPIDGnet) = D) = (s = LI

1 1
+28[ St = P + SIDOwD) = D) = st = )P

1
- Sy - Dyn||2] 2601 — Dyns1) — (U — Dy

= yue1 = Yall® = 61 = SIUDIDIDGns1) = DOw) = Uit = LI
+ 61 = Ll? = 11DGs1) = DI
< Y1 = yull? = 61 = SDIDGns1) = D) = U1 = LI

M
+ c_zélrrﬁl - rnl(”ln+1 - ln” + ”D(y;ﬁl) - D(yn)”)
2

M
< et = yull® + c—zélrnn = Tal(lner = Lll + 1D i) = Dyn)ID)- (3.32)
2

Using the inequality |c’| + |d’| < VIc'| + V|d'|, we get

M
ltnsr = tnll < Nlynsr = yull + \/C—25IFn+1 = Tul(lner = Lall + 1D nse1) = DI (3.33)
2

Using Eq (3.30), we get

M
||Mn+1 - Ltn” < ||Wn+1 - Wn” + \/C_26|rn+1 - rn|(||ln+1 - ln” + ||D(yn+1) - D(yn)”)
2
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oyl — Iy Ml-

1
+_
C1

Choose constant M5 such that

M.
\/C_25(||Zn+l = Ll + ID(yns1) = DI < M;.
2
From Egs (3.34) and (3.35), we have
1
”un+1 - un” < ||Wn+1 - Wn” + M3 Vlrn+1 - rnl + C_
1

< |Lvn+l _/\/n” + Tn+1“/\/n+1 _Xn” + Tn”Xn _Xn—lll

1
+M3 V|rn+1 _rn|+_
Ci

Let s, = 0,Uu, + (1 — 0,)US Ul u,, then t, = (1 — @,)u, + ¢,5,, and we estimate

Tnel — 1n Ml

Fayl — Iy Ml-

Isns1 = Sull = ot Uty + (1 = e )DUS U sy = (07, Uy
+ (1= o) UL
= 1041 Uhs1 + 01 Uty — 0 Uty + (1 = 00 D UL U 1t
+(1 = 0p)U U u, = (1 = 0 DU Ut uy, = (0, Uy,
+( - o)UsU )|
< Ol = U]l + |0 ys1 — 0nlllU3 Uy — Uy |
(1= DU U s = USU

In a similar way,

||tn+1 - ln” = ”(1 - 90n+1)un+1 + Gn+1Sn+1 — ((1 - ‘;Dn)un + ‘pnsn)”

< (1 - (pn+l)||un+l - un” + ((;Dn+l - Qon)”un - Sn” + ‘Pn+l”sn+l - Sn”

Using Eqgs (3.37) and (3.38), we get

||tn+1 - tn” < (1 - 90n+1)||un+1 - un” + (90n+1 - (pn)”un - Sn”
+ Q0n+l[o-n+1”Uun+l - Uun” + |0-n+1 - O-n”lUgU?un - Uun”
1 1
+ (1 - O-n+l)||Ug+ U’11+ Up+1 — U;U?un”]

Now, consider

1 1 1 1
”UIZH UiH— Up+1 — UZU?un” < ”UEH— U?+ Upy1 — U;U?Mml”
+ ||U£ZU;Zun+l - U;U?un”
< ”UEH—I Uil+lun+l - ;H—] U?”nﬂ”
1
+ ||U’21+ U7un+1 - U;U’furHl” + ||Mn+1 - un”

1
< ||U?+ Up+1 — U?un+1”
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+ ”U;HU?unH - UZU?MHHH + ”un+l - un”- (340)
Using the definition of U, we estimate that

n

— (1 = kI + K, Po, (L] + (1 = Z)U D)

<N =ty M+ Ky Po, Gy + (1 = L) U1t

+ Kh oy Poy (G + (1= EDUDs1 = Ky Po (Gha T + (1

— L DU DUy = (1= kDT + KL Po, (L + (1 = ZHU D)l

< Kot = Kl |+ 1P, (G + (1 = &)U Dty ]

< k), — KylJ1, (3.41)

n

WU ey = Ul = I(1 = kb, DT+ k) Po (E T+ (1= 2L DU Dty

where Ji = Pg,(ZL + (1 = ZDUDMall + ltnsall. As lim [kl = k] = 0, {u,) and (Pg,(£}1 + (1 -

Q)U i1} are bounded, we have
lim U7 U1 = Ul || = 0. (3.42)
n—+oo

Similarly,

NUS Uty — Uy Ut || < liceyy = iCIHU s |l
+ 1P, (5T + (1 = ) UDU s l]
< K2, = K|, (3.43)

n

where J> = || Uy || +11Po, ({21 + (1 = £2)U 1t || Using Eqgs (3.36), (3.39), (3.40), (3.41) and (3.43),
we get

e = tall < (1 = @) llttner = ll + (i1 = @ty = Sull + Gt [etnsr — 1|
+ (1 = o))k — KnlJ1 + Koy — Kol o)

+ 01 = ollUSUTu, — Uy|l]

< (1 = @pe)lltnsr = all + (@t = @ty = Sull + @it [t — wll
+ Ky — KplJ1 + Ky — KoL + 10wt — CWlllUS Uy, — U]

n+1 n+1
< ”un+1 - un” + (()0n+1 - ‘pn)”un - Sn” + |O-n+] - O-n”lUgU;lun - Uun”

1 1 2 2

+ |Kn+1 - KnlJl + |Kn+l - Kn|J2

< ”un+1 - un” + (()Dn+l - (pn)”un - Sn” + |0-n+1 - O-n”lUgU?un - Uun”
1 1 2 2

+ |Kn+1 - Knl‘]l + |Kn+1 - Knl‘]2

< ”Xn+1 _Xn” + Tn+1”/\/n+l _Xn” + Tn”)(n _Xn—lll

1
+M3 Vlrn+1 _rn|+_
Ci

+ ((pn+1 - ‘;On)”un - Sn” + |O-n+] - O-n”lUgU;lun - Uun”
AN (3.44)

Tpe1 — Ty Ml

- K,lllJl + |/<2

1
+ |K n+1

n+1
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Let v,i1 = (1 —p,) fn + poxs. Then, f, = )mll_;sn)(n and
st = full < Wy 1 YR(Kps 1 X n41) + [1(1 = Pus)] = Wp 1 AlK s 1 st
= Pn+1
a)n’}’h(Kn n) + [(1 —pn)l - wnA]Kntn
1= pn
Wp+l
< TR eIl + IAK 1]
= Pr+l

Wy
+ T Al + AK, ]

+ ||Kn+1tn+1 - Kn+1tn|| + ||Kn+1tn - Kntn”

Wy

< 1—“[||yh<1<n+1xn+1>|| + AK 1 ]
— Pn+1
Wy,

+ Ty AKo)l + IAK 1]

n

+ ||tn+1 - tn” + ||Kn+ltn - Kntn||~
Now, calculating ||K,+1t, — K,t,,|| for each j € {2,3,..., M — 2}, we get

W10 jtn = Toma—jtull = Mnct.m—jS s jTnvtm—j1tn + (1 = Mus1.t- DT 1.4 -1
= =S M- Tpp—jo1tn — (L = M= )T pr—j-1 2l
S Mm-S M= Tnet p—j—1tn + Mt =S M= T = j-1tn
= D18 M—jTnm—j1tn + (1 = Nt - DTt m—j- 1
= Mm-S M=jTnpi-j—1tn + (1 = Qi =) Tnp-j-1tn
= =i m=DTum—j1tn = (I = M=) T = j- 11|
S et M- jlIS - jTnrim—j1tn — S - Ty j-11|
+ (1 = a1 = T st = jm1tn = Top—j-1 2]l
+ Tt = = M=l T pa= =1 2all + IS p1— T pa— j-11l]
ST ns1,m=j=1tn = T j—1tnll + Mns1m—j — M- j 1M,

where My = sup{ 2L, IS ;T joll + 1T joatall + 1S 12l + llall}-

Consider
||Tn+l,ltn - Tn,ltn“ = ||7]n+1,ISltn + (1 - 77n+1,1)tn - 7In,lsll‘n - (1 - nn,l)tn”
< |77n+1,1 - nn,ll[”Sltn” + ”tn”]
< Mnst1 — MMy,
Also,

||Kn+]tn - Knln” = ||Tn+1,Mtn - Tn,Mtn”
ST i1 m-1tn = Topp-1tall + Malnnsi. 0 — Ml

< ||Tn+1,M—2tn - Tn,M—Ztn”

(3.45)

(3.46)

(3.47)
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+ Ml v — Nl + Malfnr -1 — -1

M
<N Teaty = Tustall + Ma Y et ;= 1
=)

M
< M4 Z |nn+1,j - 77n,j|- (348)

=1

From Egs (3.44), (3.45) and (3.48), we get

Wy
Uit = fill < 5 ; Y ACK ) Dl + IAK it ]
— Pn+l
Wy
+ _ [||7h(Kan)|| + ”AKntn”] + |L\/n+l _Xn” + Tn+1”/\/n+1 _Xn”
1
+ Tn“/Yn _Xn—lll + M3 Vlrn+1 - rnl + C_ Thyl — TFn Ml
1

+ (‘pn+1 - ‘pn)”un - sn” + |O-n+l - O-n”lUgU;lun - Uun”

M
1 1 2 2
+ Ky — K1+ Ky — K1 T2 + My Z M1, = 1 jl- (3.49)
=1

Using Remark 3.2, lim |, -« =0,fori=1,2, lim w, =0, im |y —r,] =0, lim |0 —0y| =
n—+oo M n—s+0o n—+oo

n—+00

0, lim |¢,+1 — ¢, = 0 and taking lim sup in Eq (3.49), we have
n—+0co

hm Sllp(“ﬁ;+1 - fn” - ”Xn+1 _/\/n”) < O

n—+oo

Claim 3: lim, e llxs — Xoaill = lim [If, — xull = 0 and lim,, ., It — wall = Lm [jw, — x,ll =
n—+oo n—+0eo

lim “/Vn - K|l = 0.

n—+oo

Using Lemma 2.15, we have

Tim I/, —xll = 0. (3.50)

AISO, Xn+l = (1 - pn)ﬁl + PnXns which 1mphes ||Xn+1 _Xn” = ”(1 _pn)(fn _Xn)” Now USing Eq (350),
we have

Him e = xall = 0. (3.5
From Eq (3.2), we have [|[w, — x.ll = [t.(x» — Xu-1)ll- Taking the limit n — +co, we get
Jim [lw, = xall = 0. (3.52)
Also,
Iben = Kntall = [ln = Xne1 + Xne1 = Kutall
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< “/Yn _/\/n+1” + ||wn7h(Kn n) +pn)(n
+ [(1 _pn)l - a)nA]Kntn - Kntn”

< “Xn _Xn+1|| + wn”yh(Kan) - AKntn” +pn”Xn - Kntn”’
which implies
(1 _pn)“/\/n - Kntn“ < ”Xn _)(n+1|| + wnllyh(Kan) - AKntn”-

Taking the limit n — +oc0 and using lim w, = 0, we have

n—+oo
lim |y, — K,t,|| = 0.
n—+oo
Consider

et — ol = llwnyh(Kuxa) + puxn + [(1 = p)I — w,A1K, 1, — ol
<11 = WA Kty = 0) + Pulitn — Kut)II?
+ 2w, (YK x0) — AQs Xnt1 — ©)
< (1= w¥)lits = ol + pollyn — Kt

+ 2Pn(1 - wn’?)”tn - QH”/\/n - Kntn” + 2wn <7h(Kn/Yn) - AQ’X}’!+1 - Q> .

Also,

llyw —oll? = 1T = rugw, = L' = rugoll®
< n =0, =rugw, — (I — 1,81)0)

1
= 5|l - ol* + I = rugn)w, — (I = r,g1)oll”

—llyn —0 = (I = rag)w, — (I = rag)O)IP

<N = rag)wn = (I = ragDell® = 1 = wa) = ra(g1(wn) = g1)IP,

which implies
llyn = @I < lwy = ol = {Iwy = yull* = 2rllw, = yullllgiw, = 10l
Using Eq (3.14), we have

lu, — ol* = lly, + 6D*(l, — Dy,) — oll*
<y —0,y, —0D*(Dy, — I,) — 0)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

1 [ * *
= 5 ”un - Q”Z + “yn - 6D (Dyn - ln) - Q”Z - ”un —0—- (yn - 6D (Dyn - ln) - Q)”z]
< ity = 0l + llys 0l = llty — @ = (s — 8D* Dy, ~ 1,) - )P
< 5|llun—e VYo —0l" = llty —0 = (Y (Dyn = 1,) = 0)ll
_ l _ 2 _ 2 _ _ 2 2 * _ 2 _ _ * _
=3 i, — olI” + [y, — oll” = {lltty, = yull” + 7D (L, — Dy )II” = 26 {utyy — Y, D*(Dy, — L))},

(3.58)
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which implies
lltw = 0l < llyw = 0l = it = yull® + 261Dy, = Lullllitn = yulllD*]I. (3.59)
Using Eqgs (3.11), (3.14), (3.17) and (3.55), we get

nst = ol = (1 = 0,7y — oll + @a0llUo = 0lD)* + p2lln — Katal?
+20,(1 = W, P)llty = 0lllln = Kol
+ 2w, (h(Kyxn) — A0, Xn+1 — 0)
< (1 = w3 (lun = ol* + @o2llU0 - ol
+20,0,lU0 = ollllu, — ol) + pillxn — Kutal?
+20,(1 = Wity = 0lllln = Katall + 20, (h(Kxn) = A0 X1 —0)  (3.60)
< (1= 0, 9)(w, — ol = 6(1 = SL)IIL, — Dy,
+groallUo = oll* + 2¢,04/1Uo = ol — o
+ Paln — Katal* + 20,(1 = 0,9ty = 0lllln — Kol
+ 2w, (h(Kxn) = AO, Xns1 — 0) - (3.61)

Using Eqgs (3.20) and (3.60), we get

(1 = w,)*6(1 = L)\, — Dyull* < lln — 0l = llnsr — ol + (@) llxn — ol
+ (1 = 0 (Tlln = X1 IM
+ proallUo — ol* + 2¢,041Uo — ollllu, — oll)
+ prln — Kutil®
+20,(1 = 0 P)lltn = 0lllln = Kol
+ 20, (W(Kyxn) — A0, Xnt1 — ©)
< (Iw = Ol + st = IDIn = Xl
+ (W) ln = ol + (1 = 0¥ @alln = xutIM
+ roallUo — ol* + 2¢,0411Uo — ollllu, — oll)
+ Pallen — Ktall?
+20,(1 = 0PIty — 0llllen — Kotl
+ 2w, (W(Kyxn) — A0, Xnt1 — 0) (3.62)

and using Eqgs (3.20), (3.59) and (3.60), we estimate

(1 = W)t = yall* < ln = 0l = llnsr = 0l + P2ln — Katal?
+ (1 = w,)* 261Dy, — Lllllw, — y,lllD*|| + 202U — ol
+ 2¢,04lUo = ollllu, = ol) + 20,(1 = w, Pl — ol — Kutall
+ 2w, (WK xn) — AQ, Xns1 — 0)

< (ben = ol + hxnst = @DIxn = Xusill + O2lln — Kutall®
+ (1 = w,7)*28IIDy, = Lllllu, — yulllD*]| + @202 Uo — oll*

AIMS Mathematics Volume 9, Issue 1, 1718-1754.



1738

+ 290n0'n||UQ - Q””un - Q”) + 2pn(1 - wn?)”tn - Q”“Xn - Kntn”
+ 2w, (WMKxn) = AQ, X1 — 0) - (3.63)

Using Eqgs (3.14), (3.20) and (3.57), we have

(1 = w0 ¥)raQe = r)llg1wa) — 81N < Il — 0l = lust — I’ + @il — ol
+ (1 = 0 (TllXn = X1 lIM + roallUo — ol
+ 20,04/1Uo = ollllin = oll) + pplln — Ktall?
+20,(1 = w,)ltw = ollilen — Kutil
+ 2w, (WK Xn) — AO> Xns1 — 0)
< (bn = oll + hns1 = 2IDIn = Xl
+ (@7l — ol
+ (1 = 0, (Tulln = XuoiIM
+¢2o2llUe - ol
+ 20,0/1Uo - ollllu, — oll)
+ Pl — Katall®
+20,(1 = w,)lt = olllln = Katal
+ 2w, (A(KXn) = AO, Xnr1 — ©) - (3.64)

Using Egs (3.20), (3.60) and (3.57), we have

(1 = 0 ) lwn = yall* < Ixw — 0l = Ihnsr — ol
+ p2ln — Katal® + (@,7)llxn — ol
+ (1 = W, [Talltn = Yoot IM + 27, lw, = yalllgi () = g1 (@)l
+groallUo = oll” + 20,04/1Ue — ollllun — oll]
+ P2l = Katal® + 20,(1 = 0, )Nty — 0lllln — Koty
+ 2w, (h(Kyxn) — AO, Xn+1 — 0)
< (n = oll + Ieusrt — @IDIn = Xastll + P2l — Kutall®
+¢rollUo — ol
+2¢20,llU0 — oll + prlln — Kutall® + (0, ¥)* |y — lI”
+2(1 = W) rallwn = Yalllg1 (W) — 810l
+ (1 = 0, @llvn = xaatIM + gooallUo — ol
+20,04IU¢ = olllu, — oll)
+ P2l — Kutal® + 20,(1 = 0, 9)lIty = 0lllln — Koty
+ 20, (h(K)n) = AO, X1 = ©) - (3.65)

From Eqgs (3.54), (3.62) and (3.64) and using lim,,_, ,, 07, < +00, lim,, ;o X2 —Xn-1ll = 0, lim,_, ;o w, =
0 and Remark 3.2, we get

Lim |Il, — Dy,|| = 0 and lim [igi(w,) - g1(0)ll = 0. (3.66)
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Using Eqgs (3.54), (3.62) and (3.66) and using lim, 0, < +co, lim, e |lxn — Xuill = O,
lim,_, ;. w, = 0 and Remark 3.2, we get

lim ||u, — y,|| =0and lim [jw, —y,|| = 0. (3.67)
n—+oo n—+oo
Using the triangle inequality and Eqs (3.52) and (3.67), we get
lim ||u, — x.ll = 0. (3.68)
n—+oo

As we know that U and USUY are nonexpansive mappings and {u,} is bounded, one may suppose that
there is a nonnegative real number k such that ||Uu, — Uy U"u,|| < k for all n > 0. Now, consider

”tn - UgU?un” = ”(1 - ‘pn)un + ‘pn[o-nUMn + (1 - Un)UgU’fun] - USU?MI’[”
< (1 = @llity = U3 U]l + @u0al| Uy = U3 U |
< (1 - (;Dn)”un - tn” + (1 - ‘pn)”tn - UgU?un” + Qono-n”Uun - U;U?un” (369)

Subsequently, we have

(I - ¢n)

n

Iz, — U3 Utu,|| < llu, — t,|| + o,k. (3.70)

Using condition (ii7) and lim,,_,,, 0, < +00, we get

lim ||t, — UZUTu,|| = 0. (3.71)
—+00

n

Also,

”tn - un” = ”(1 - ‘Pn)un + ‘;On[o-nUun + (1 - O-n)U;U?un] - un”
< ‘pno-n”Uun - un” + (1 - O-n)‘pn”UgU;lun - un”
< QDno_n[”Uun - tn“ + ”ln - un”] + (1 - O—n)(pn[”UgU?un - tn” + ”tn - un”] (372)
Hence, we have
(1 - Qon)”tn - un” < O-n”Uun - tn” + (1 - O-n)”UgUlfun - Z‘n”- (373)

From Eq (3.71) and lim,,_, ; ., 07, = 0, we have

lim ||, — u,|| = 0. (3.74)

n—+oo

Claim 4: v’ € GMEP(FI, g1, lﬂl, Ql)

As we know that {u,} is bounded, there exists a subsequence {u,,} of {u,} that converges weakly to some
u’ € Q. Also, from Eq (3.54), we have K,t,, — u’. Now, we show v’ € GMEP(F, g, ¢, 01). Using
Lemma 2.13, we have

Fy(ttn, 2) + (€1(Vn)> 2 = ) + 1(2) — Y1 (ua) + rl (2= tty, uy — yo) 2 0 forall z € Q.

n
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Using the monotonicity of F;, we have

1
(€10m): 2 = tn) + 1) = Y1 () + = 2 = s Uy = yu) 2 Fi(2,uy) forall z € Oy

Replacing n by n;, we have
1
(81(@n)s 2 = Un) + Y1 (2) = Y1 (uy,) + — (Z = Uy U, — Znyy = F1(z,uy,) forall z € Q.
g
Let m with O < m < 1 and u € Q, satisfying u,, = mu + (1 — m)u’, then u,, € Q; and, from the above
inequality, we have

<um — Upy, gl(um)> > <um — Up, gl(um)> + l//](btnk) - l/’l(um) - <81(an), <~ unk>

1
+ <um - unka r_(unk - an)> + Fl(um’ unk)

nk

= <um — Uy, gl(um) - gl(”m)) + <um — Uy, gl(unk) - gl(znk)>

+ wl(unk) - wl(um) + <um — Upys ri(unk - an)> + Fl(um’ unk)~ (375)

nk

Using the Lipschitz continuity of g, and Eq (3.67), we have ||g;u,, — g1z,,|| = 0 as k — +oco. Further,
as F; is monotone and ¢, is convex and lower semicontinuous, the above equation implies

(= ', 81(Up)) = Fi(, u') + (') — i (uy,). (3.76)
Consider for m > 0
0 = Fi(Uy, ) < mF (U, 1) + (1 = m)Fy(u, 1)

< mFl(um’ l/t) + (1 - m)((”m - u,’ gl(um» - lpl(u/) + lpl(um))
< mFy (U, ) + (1 = mym(Qu — o', g1(up)) — Y1 (u') + g1 (w)). (3.77)

Taking m — 0., we get
Fi(,u)+wu—u',g1(u")y —y(u") + () > 0forall u € Q. (3.78)

Hence, v’ € GMEP(F],gl, I,D], Q])

Claim 5: Now we will prove Du’ € GMEP(F,, g2,¥>, Q>).

As D is a bounded linear operator, and using Eqs (3.66) and (3.67), this implies Dz,, — Du’. Taking
I, = Dz — T;>(I = 1, 82)Dz; and using Eq (3.66) we have lim,_,,o £, = 0 and T;*(I = r,, 82)Dz =
Dz — I, . Now, using Lemma 2.13, we get

Fy(Dzy, = 1), 8) + (5 = D2y + I, 82(zn)) = W2(Dz, = I},) + 2(s)

1
+— (5= (D2, = ). D2y, = ), = Dz,,) 2 0, forall s € Q. (3.79)
T,

n,
s
As F, is upper semicontinuous, we use limsup in the above equation as k — +4oco. Also, with
liminf,_ .. , > 0, we have

Fy(Du', s) + (s — Du’, go(u')y — yo(Du’) + 5(s) = 0 for all s € Q,. (3.80)
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Hence, Du’ € GMEP(Fz, 22, l,[lz, Qz)

Claim 6: Now we will prove v’ € Fix(K).

Assume that K is the K-mappings generated by S,S,,...,Sy and n,1m,...,7. Now, using
Lemma 2.16, we have

M
K,x = Kxand Fix(K) = [ | Fix(S ). (3.81)
j=1
We have to show u’ € Fix(K). We will do it by contradiction. Assume that " ¢ Fix(K), which implies
Ku' # u’. Now using opial conditions, we get

liminf ||z, — || < liminf ||z,, — Ku/||
Jj—+oo J J—+oo J
< liminf (|t — Kyt || + 1Ky b, — K ' || + ||Ku” — Kud'||
Jj—=+oo . .

< liminf ||K,, t,, — Ko, i/

Jj—=+oo

< liminf ||z, — '], (3.82)
Jjo+oo ’

which is a contradiction. Thus, u’ € Fix(K)= N, Fix(§ ).

Claim 7: We claim that ' € Fix(U;) N Fix('Uz). As the sequence {y,} is bounded, then there is
a subsequence {x,,} of {y,} such that {x,} — u’ as k — +o0. Also, ' is bounded, which implies
K, — K. fori=1,2and k — +oo, where 0 < &, < 1. Consider U™ = (1 — &, ) + K, Pg, ({1 ] +
(1= )U;) fori=1,2. Using Lemma 2.11, we conclude that Fix(Py, (£ ..] + (1 -.)U,)) = Fix(U,).
As Py, ({8 I + (1 — £ )U,) is a nonexpansive mapping, Fix(U;) = Fix(U;) and U;® is averaged.
Further,

Fix(U;*) N Fix(U;*) = Fix(U;) N Fix(U,) = Fix(U) # ¢. (3.83)

Using Lemma 2.9, we get

Fix(U{*U5>) = Fix(U;™) N Fix(U5) = Fix(U) # ¢. (3.84)
Additionally,
1U7%s = UFsll < iy, = Kool + 1P, (&5 + (1 = GUs)ID. (3.85)
Subsequently, we get
lim sup ||U*s — U;s]| = 0, (3.86)
Jo+e0 sek

where K is any bounded subset of H;. Note that
”xnk - U;oon—ooxnk” < ”xnk - U;k Uilkxnk” + ||U;]‘ U;lkxnk - U;ooUilk-xnk”
+IU3Z U Xy, = Us¥ U2l
<X, = U U X |l + UG U X, = U3 Ul

+ U5 UFx,, = Uy S U Xl

AIMS Mathematics Volume 9, Issue 1, 1718-1754.



1742

< llx, = U3 U x, ]l + sup U5 s — U3 sl|
SGK]

+sup [|U}*s — U™ sll, (3.87)

sekKy

where K and K, are bounded subsets including {U}" x,, } and {x,, } respectively. From Eqs (3.71), (3.86)
and (3.87), we conclude that

Bim lx, = U3=U x| = 0. (3.88)
—+400

Subsequently, using Lemma 2.17, we get u’ € Fix(U{*U;*) = Fix(U,) N Fix(U,).
Claim 8: Next, we will show u’ € Q. From Eq (3.3), we get

ty =ty = @alow(U — Dy + (1 = ) (U3 U1ty — uy)] (3.89)

and hence

Wy —t,) = =D, + (1 —0,)U = UyU)u,. (3.90)

n“¥n

Using Lemma 2.14 (i), the sequence {(1;—"")(1 -UjU ?)} 1s graph convergent to Nrixw,)nFix(v,)» and using

Lemma 2.14 (i), one can conclude that the sequence (I — U) + {(];—‘:”)(1 -Uj U’f)} is graph convergent
to (I — U) + Nrixw,nFixw,)- Replacing n by n; and taking the limit j — +oo in Eq (3.90) and using
condition (iii), we have

By substituting n; for n and taking the limit as j tends to infinity in Eq (3.90) while utilizing
condition (iii), we obtain:

0 e (- U + Neixw,nFixw)i s (3.91)

which implies " € Q. From Claims 5-8, we have u” € T.
Claim 9: Now we show limsup,_,,  ((yh — A’ x, —v) < 0, where v’ = Pr(I + yh — A)u’. As the
sequence {t,,} weakly converges to u#’ and using Lemma 2.8, we have

lim sup {((yh — A)o, x» — 0) = limsup ((yh — A)o, K,t,, — 0)

n—+o0o n—+o0o

< limsup {(yh — A)o, t, — 0)

n—+oo

=0. (3.92)

As h is a contraction mapping, one can easily prove Pr(/+yh—A) is also a contraction mapping from H,
to itself. Using the Banach contraction principle, there exists a v’ € H; such that v’ = Pr(I +yh—A)u’.
Claim 10: Next we show y, — o.

Consider

”Xn+1 - Q”2 = <wn(7h(Kan) - AQ) +pn()(n - Q)’Xn+1 - Q>
+ <[(l - pn)l - wnA](Kntn - Q)’Xn+l - Q>
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< wp (YKo x0) = AQs Xnt1 = 0) + Pn Xn = 0> Xnt1 — ©)

+ [(1 = p)] — W, Al (Kt = 05 X1 — ©)

< W (YW(Kxn) — AQs Xns1 — ©)

+ oullxn — Ol — ol + [(1 = p) — W Y1I1Knty = Ollllns1 — ol
< Wn (YR(KoXn) = YHO, Xni1 — O) + Wy (Yho — AQ, Xn+1 — ©)

+ Palln = 0lllnst — ol + [(1 = p)] — W Y1litn = ollllxast —oll

< waylln = Olllns1 — Ol + W, (Yho — AQ, Xns1 — ©)

+ Pallyn = Olllas1 —oll + [(1 = p)I

— WY1 = Oll(lxn = oIl + Tullxn = Xu-1ll + €a0allU0 — oll)

< (1 = wa(¥ = YD)l = Ollllxns1 — Ol + Wy (yho — A0, Xns1 — 0)
+ [(1 = p)I = W Ylxns1 = Ol(Tallxn = Xa-1ll + @uoallUo = oll)

1
< (I —w(y - VV))E[IIXn = 0l + Ilyns1 — 0ll’]

+ W, (Yho — AQ, X1 — ©)
+ [1 —Pn— («‘)n)_/]“)(nﬂ - Q”(Tn”/\/n _Xn—l” + (pno-n”UQ - Q”)’ (393)

which implies
ns1 = olF < (1 = wa(¥ = y)lxa — 0l

+

— ¥ —y)w, {yho — Ao, Xn+1 — 0)
-

+ Ms(Tullyn = Xn-i1ll + 0ullUo = 0lD), (3.94)

where Ms = sup{||ly, — ol : n € N}. Hence, we get
p+1 < (1 - bn)an + dn + Cp, (395)

where a, = |, =0l by = W,(F = ¥¥), dp = =5 (7 = YV)wn (Yho = A0, Xur1 — 0) and ¢, = Ms(T,llx,
Xn-1ll + oullUg = oll). From Remark (3.2) and ') o, < +c0, we have Y.’ ¢, < +oo. From Eq (3.92),
we get limsup,_, ., Z—: < 0. Also, Y»_, o0b, = +o0 and from Lemma 2.12 (i), we obtain

lim a, = lim |}y, —ol* = 0. (3.96)
n—+o0o

n—+oo
Therefore, y, — o. i

Corollary 3.4. Let xy, x| € Qy and 7,, such that 0 < 1, < 7,,. Define a sequence {x,} as:

Wi = Xn + TalXn = Xn-1)

up, = Ko, (wn),

ty = (1 =@ u, + o, lo,Uu, + (1 — o) U UYL, _,... U U, ],
Xnr1 = WpYUEKuXn) + puxn + [(1 = pp)I — w0, AlK 1y

(3.97)
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Ay .
7, = {mm{IIX —Xn 1H’T} if xn # Xo-1, (3.98)

T if otherwise,

where Ky, = T1'(I - r,g1), liminf,_, o 7, > 0 and nl_r}rJrlo0 et — ral = 0, UM = (1 = kDI + &P, ({11 +
(1-¢)U)with0 < u; < ¢, < 1 and lirn k., — k| =0fori <i< M. Also 4, C [0, +o0) with
YAy < +00, T € [0, 1), gon,O'n,Kn,w,,,p,, € (0,1), p = sup{p,;n € N} with hm |©ne1 — @nl = 0,
Mnj = 1) e %0 1Mn,j = M= | < o0, hm low1 — 0l = 0 and Y15 0 < +o00. Under the assumptions

that conditions (i)—(iii) of Theorem 3 3 are satisfied, we can conclude that the sequence y, generated
by Eq (3.97) strongly converges to the element & € A. This element £ represents the unique solution to
the fixed-point problem associated with the contraction mapping Px(I/ + yh — A). In other words, ¢ is
the solution to the variational inequality stated below:

((A—vyh)é,y—§&) >0, forally € A.

Proof. By taking D = O, Hy = H,, Q1 = O, F1 = F», g1 = g; and ¥y = ¢, in Theorem 3.3, we get the
required conclusion. O

Corollary 3.5. Let xy, x; € Q1 and 7, such that 0 < 1, < 7,,. Define a sequence {y,} as

Wi = Xn + TulXn = Xn-1),

Yn = Ko (Wn), l, = Kg,(yn),

Up = Yn = 6(yn — ), (3.99)
ty = (1 =@ u, + g, lo,Uu, + (1 — o) Uy UYL, ..U U, ],

Xn+1 = WnYR(Kuxn) + puxn + [(1 = p)] — W, A1K, 8.

An .
£, = {mm{“)( )i #F e, (3.100)

T if otherwise,

where Ky, = T!'(I - rg1), liminf, ., 7, > 0 and nl_r}rJrnoo et — ral = 0, U = (1 = kDI + k4P, ({11 +
A-2)U) with0 < y; < < 1 and lim k., — k| =0fori <i< M. Also 4, C [0, +o0) with
Yoy < 400, T € [0, 1), gon,O'n,Kn,w,,,pn € (0,1), p = sup{p,;n € N} with hm lne1 — @nl = 0,
Mnj = 1) > o M j = Mz j| < 400, hm |01 — 0l = 0 and Y75 0 < +o0. Under the assumptions

that conditions (i)—(iii) of Theorem 3 3 are satisfied, we can conclude that the sequence y, generated
by Eq (3.97) strongly converges to the element £ € A. This element £ represents the unique solution to
the fixed-point problem associated with the contraction mapping Px(I + yh — A). In other words, £ is
the solution to the variational inequality stated below:

((A—=yh)é,y—£) >0, forally € A.

Proof. By taking D =1, Hy = H, Q1 = O, F = F», g1 = g, and ¥; = ¢, in Theorem 3.3, we get the
required conclusion. O
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Remark 3.6.

1) Theorem 3.3 generalizes and enhances the findings of Rizvi [56] from a nonexpansive mapping to
a finite family of nonexpansive mappings. Furthermore, our findings extend the outcomes of Rizvi [56]
from a common solution of SMEP and HFPP to a common solution of HFPP, SGMEP and FPP for a
finite collection of nonexpansive mappings.

2) Theorem 3.3 generalizes the Husain and Singh [57] result from a common solution of SMEP and
HFPP to a common solution of HFPP, SGMEP and FPP for a finite family of nonexpansive operators.
In addition, we consider HFPP for a finite collection of strictly pseudocontractive operators, which is
more general than the nonexpansive mappings taken in Husain and Singh [57] result.

3) Theorem 3.3 generalizes and enhances the findings of Kim and Majee [26] (Theorem 3.6) from
a common solution of SEP and HFPP to a common solution of HFPP, SGMEP and FPP for a finite
collection of nonexpansive operators.

4) Theorem 3.3 generalizes and enhances the result of Majee and Nahak [24] from a common
solution of SEP and HFPP to a common solution of HFPP, SGMEP and FPP for a finite collection of
nonexpansive operators.

4. Application in compressed sensing in signal processing

Compressed sensing in signal processing [58] can be represented by the following linear equation:
y=Dx+e. (4.1)

Here, € is the noise, D is an M x N matrix with M < N, x € R" is a recovered vector with m non-zero
components and y € R is the observed data. The problem described in Eq (4.1) can be considered as
a LASSO problem:

1
min~|ly — Dx||} subject to ||x||; < u. 4.2)
xeRN 2

Here, u > 0 is constant.

In this case, a uniform distribution in the interval [-1, 1] is used to construct the sparse vector x € RY,
which has m non-zero members. A normal distribution with a zero mean and a unit variance is used
to produce the matrix D. As ¢ € (0, 1/L), it is randomly generated in MATLAB. By applying white
Gaussian noise with a signal-to-noise ratio (SNR) of 40, the observation y is produced. The process
starts with an initial point x; = onesyx; and u = m. Specifically, the LASSO problem can be seen as
an SFP (Split Feasibility Problem) if Q; = {x € R" : ||x|l; < u} and Q, = {y}. In this connection, we
can solve Eq (4.2) using the CQ technique. The stopping criterion is given by the mean squared error
(MSE):

1
En =% llxn —oll; <A,

where A is a tolerance and y, is the estimated signal of x. Note that if in Problem (1.5)—(1.6) we
set g1 = g = Y1 = Yo = 0, we obtain the split equilibrium problems (SEQ) and if, in addition,
Fi(v,w) = Ip,(v) = Ip,(w) and F,(v',w') = Ip,(v') — Io,(W’), where Iy, and I, are identity operators
on Q; and Q, respectively, then SEQ becomes SFP. Hence, we can apply our algorithm to the SFP
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with the resolvent operator T'7* and T} being the projection onto Q; and Q,, respectively. In order to
implement our algorithm, we choose the following parameters: A, = nl—z, t=05U=U;=8;=1for
all 7, j so that K,, = I (Identity mapping), A = I (Identity operator), p, = w, = ﬁ and h(x) = x/2 so
thaty = 1 and A = 10719,

Figure 1 represents the original signal, observed value and recovered signals by Algorithm 3.1, the
Chuasuk Algorithm [37], the Kim Algorithm [26] and the Majee Algorithm [24]. Table 1 and Figure 2
give the mean square error of Algorithm 3.1, the Chuasuk Algorithm [37], the Kim Algorithm [26] and
the Majee Algorithm [24]. The experiment shows that all three methods are effective in recovering the
signal, however, the time taken by the Chuasuk Algorithm [37] (Average time = 7.8654s), the Majee
Algorithm [24] (Average time = 10.9854s) and the Kim Algorithm [26] (Average time = 13.5864s) is
more than the time taken by the proposed algorithm (Average time = 5.8754s).

Table 1. Numerical results for MSE versus the number of iterations (n) when N = 1024,
M = 512 and m = 60.

Number of Iterations CPU Time (Seconds)

Algorithm 3.1 11 0.2965
Chuasuk Algorithm 27 0.7008
Majee Algorithm 17 0.8665
Kim Algorithm 41 0.9545

"o 100 200 300 400 500 600 700 800 900 1000
Observation Noise with SNR=40_

0 50 "~ 100 200 250 300 350 ) 400 450 500
; Recovered Signal by Algorithm 1
] ) O I Ty

0 100 200 300 400 500 600 700 800 900 1000
; Recovered Signal by Cl Algorithm
) I

ST

0 100 200 300 400 500 600 700 800 900 1000
; - Recovered Signal by Kim Algorithm
D e

T o0 o

Figure 1. From top to bottom: original signal, observed value and recovered signals
by Algorithm 3.1, the Chuasuk Algorithm [37], the Kim Algorithm [26] and the Majee
Algorithm [24].
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Figure 2. Numerical results for MSE versus the number of iterations (n) when N = 1024,
M =512, and m = 60.

5. Numercial examples

In this section, we first conduct a comparison of the convergence rates between our algorithm and
those presented in the Chuasuk Algorithm [37], the Kim Algorithm [26] (Theorem 3.6), and the Majee
Algorithm [24]. We implemented the proposed algorithm using MATLAB 9.10.0 (R2021a) on a laptop
equipped with an Intel Core i5 CPU running at 1.60GHz, 256 GB SSD and 1 TB hard-disk capacity.
The operating system used is Microsoft Windows 11, version 21 H2. Secondly, we present numerical
experiments related to compressed sensing.

Example 5.1. Assume that H, = H, = R>, and

5
Q=0 ={xeR’: Y x;>-1,-6<x<6,1<i<5).

i=1
Letg; : O — R, g : Q> — R be inverse strongly monotone mappings defined by g;(x) = 3x
and g>(x) = 3x. Suppose F|, : Q1 X Q1 —» R, F, : O, X O, — R are the bifunctions defined
by Fi(x,y) = Fy(x,y) = (Px+ Qy+gq,y— x), arising from Nash Cournot Oligopolistic market
equilibrium model [17] where ¢ € R’ and P,Q € R> are two matrices of order 5 with Q being
symmetric, positive semidefinite and Q — P being negative semidefinite. Obviously, bifunction g
satisfies Assumption 1 and A : R — R is defined by A(x) = x with constant ¥ = 1. Let
Y1 Q1 = RU {400}, ¥ 1 O = R U {+00} be defined by ¢;(x) = ¥»(x) =0, D : R — R be defined by
D(x) = x, D*(x) = x, then T/ (x) = T (x) = (P+ Q+3Dr+1)'x. Leth : O, — O, be %-contraction
defined by i(x) = 5 and §; : Q1 — Q) be pseudocontractive mappings defined by § ;(x) = ﬁ,
for j = 1,2. Assume that U : Q; — Q; and U; : Q; — Q, are nonexpansive mappings defined by
Ux)=7% and U(x) = o ,forz =12, x= (xl,xz,x3,x4,x5) Choose 6 = 16, =1, 4, 2,T =0.5,
il = 20n+5]

_ +1
fori,j=1,2,0, = W’ On = g,Pn = 2(Z+50) and Wy = n+200 One can

— n+l l —_
K, = misn on = 20’
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easily see that Fix(I') = {0} # ¢. We can obtain Ky, (x) = Kp,(x) = =2(P + Q + 41 'x. Take P = I,
Q = 0sys, xo = (0.5,0.5,0.5,0.5,0.5)7, x; = (0.8,0.8,0.8,0.8,0.8)" and ¢ = [0,0,0,0,0]". We take
a stopping criterion of E, = ||y, — x»+1/l < 107 and plot the graphs between number of iterations n
and errors E,. We do comparative analysis of the numerical result of Algorithm 3.1 with the Chuasuk
Algorithm [37], the Kim Algorithm [26] (Theorem (3.6)) and the Majee Algorithm [24]. Table 2 and
Figure 3 represent the comparative analysis.

Table 2. Example 5.1: Comparison of Algorithm 3.1 with the Chuasuk Algorithm [37], the
Kim Algorithm [26] and the Majee Algorithm [24].

Number of Iterations CPU Time (Seconds)

Algorithm 3.1 38 0.2755
Chuasuk Algorithm 172 0.9870
Majee Algorithm 93 0.8106
Kim Algorithm 307 1.0956
0.05 T
Algorithm 3.1
0.045 Kim Algorithm
Chuasuk Algorithm
0.04 Majee Algorithm

0 50 100 150 200 250 300 350
Number of Iterations (n)

Figure 3. Example 5.1: Comparison of Algorithm 3.1 with the Chuasuk Algorithm [37], the
Kim Algorithm [26] and the Majee Algorithm [24].

Example 5.2. Assume that Hy = H, = [, are real Hilbert spaces with square-summable infinite
sequences of real numbers as its elements and Q1 = Q, = {v e b, : |Vl < 3}. Let g, : [-5,5] - R,
g2 : [-5,5] — R be ism mappings defined by g,(x) = 10x and g>(x) = 2x. Suppose F : Q1 X Q1 —
R, F5 : Q»x Q> — R are the bifunctions defined by F\(x,y) = =5x>+xy+4y?, Fa(x,y) = =3x*+xy+2)?
Jorall x = (X1, X2, X3y eeey Xpy o) ARAY = (Y1, V2, V35 ey Yy ) With ||.|| : b = Rand (.,.) : Lbxl, — R given
by Il = (i 1) and (x,y) = S5 xivw where x = {1, vy = (Wi Suppose that A : R — R
is defined by A(x) = x for all x = (x1, X2, X3, ..., Xp, ...) with constant y = 1. Let Yy : Q1 — R U {400},
Yy 1 Oy — R U {+00) be given by yri(x) = x%, yn(x) = 2x*, D : R — R be defined by D(x) = —5x,
D* = —5x, then TF'(x) = so and TH(x) = - Leth : Q1 — Q) be %—contraction defined by
h(x) = 5 and S; : Q1 — Q) be pseudocontractive mappings defined by S j(x) = ﬁ for j =1,2.
Assume that U : Q1 — Q) and U; : Q — Q) are nonexpansive mappings defined by U(x) = x

AIMS Mathematics Volume 9, Issue 1, 1718-1754.
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and Ui(x) = 1, for i,= 1,2. Choose § = e, r, = 1, 4, = 5, 7 =09, « = 2 0 = I
nﬁ = 20n1+5j fori,j = 1,2, o, = niz ©n = %, On = WLS) and w, = m. One can easily see
that Fix(I') = {0} # ¢. We can obtain Ky, (x) = _2—91" and Kg,(x) = 35. We take a stopping criterion
of E, = llvn — xnsill < 107 and plot the graphs between errors E, and the number of iterations
n. Take initial values xy = (0.5,0.5,0.5,0.5,...,0.5,...) and x; = (0.8,0.8,0.8,0.8, ...,0.8, ...). We do
comparative analysis of the numerical result obtain from Algorithm 3.1 with the Chuasuk [37], the
Kim [26] (Theorem (3.6)) and the Majee [24] algorithms. Table 3 and Figure 4 show the numerical

results

Table 3. Example 5.2: Comparative analysis of Algorithm 3.1 with the Chuasuk Algorithm
[37], the Kim Algorithm [26] and the Majee Algorithm [24].

Number of Iterations CPU Time (Seconds)

Algorithm 3.2 12 0.03876
Chuasuk Algorithm 38 1.756
Kim Algorithm 25 0.1638
Majee Algorithm 21 0.1548
0.05 T T
Algorithm 3.1

Chuasuk Algorithm
Kim Algorithm (Theorem3.6)
Majee Algorithm

‘ |
5 10 15 20 25 30 35 40
Number of Iterations (n)

Figure 4. Example 5.2: Algorithm comparison 3.1 with the Chuasuk Algorithm [37], the
Kim Algorithm [26] and the Majee Algorithm [24].

6. Conclusions

This paper discussed a new inertial generalized viscosity approximation method for solving split
generalized mixed equilibrium problem, fixed point problem for a finite family of nonexpansive
mappings and hierarchical fixed point problem in real Hilbert spaces. Under certain appropriate
conditions, we have established the result of strong convergence. We have demonstrated the use of
our main finding with compressed sensing in signal processing. We have explained the numerical
effectiveness of our approach in comparison to another method. The results discussed in this paper

AIMS Mathematics Volume 9, Issue 1, 1718-1754.
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enhance and summarize previously published findings in the literature.
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