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Abstract: In this paper, the bifurcation theory of planar dynamical systems is employed to investigate
the mixed Korteweg-de Vries (KdV) equation. Under different parameter conditions, the bifurcation
curves and phase portraits of corresponding Hamiltonian system are given. Furthermore, many
different types of exact traveling waves are obtained, which include hyperbolic function solution,
triangular function solution, rational solution and doubly periodic solutions in terms of the Jacobian
elliptic functions. Furthermore, as all parameters in the representations of exact solutions are free
variables, the solutions obtained show more complex dynamical behaviors, and could be applicable to
explain diversity in qualitative features of wave phenomena.
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1. Introduction

The investigation of the exact solutions for nonlinear evolution equations (NEEs) plays an important
role in the study of nonlinear physical phenomena. Exact solutions, such as multidimensional
transonic shock wave solutions [1], positive ground state solution [2] and single peaked traveling
wave solutions [3], can provide us with a deeper understanding of complex physical phenomena.
Due to its high degree of nonlinearity, searching for exact solutions of NEEs, and conducting specific
research on certain characteristics of the solutions has always been a fundamental and challenging
task. In recent years, important process has been made in understanding nonlinear partial differential
equations. Various powerful methods have been presented in finding the explicit exact solutions, such
as the inverse scattering transformation [4], Bäcklund and Darboux transformations [5], direct integral
method [6], algebraic geometric method [7], the Fan sub-equation method [8], the Hirota bilinear
method [9], Painlevé analysis [10] and so on. Among them, bifurcation theory of planar dynamical
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system is a very useful method in seeking for explicit traveling wave solutions, from which different
types of exact solutions can be obtained, including the solitary solution, rational function solutions,
hyperbolic function solutions, triangle function solutions and Jacobian elliptic function solutions with
double periods [11, 12].

The mixed Korteweg-de Vries (KdV) equation is an extension of the nonlinear crystal propagation
equation [13]

ut + a1uux + a2u2ux + βuxxx = 0,

which has the following form

ut + a0ux + a1uux + a2u2ux + βuxxx = 0, (1.1)

where u = u(x, t), a0, a1, a2, β ∈ R and a0a1a2 , 0, β > 0. It has a broad background in hydrodynamics,
plasma physics, ocean dynamics. It models a variety of nonlinear phenomena, including interfacial
solitary waves, dust-acoustic solitary waves, ion-acoustic waves in plasmas with a negative ion, and so
on. All this time, Scientists have taken a deep interest in the study on KdV and KdV-like equations. By
using the theory of planar dynamical systems, Zhang and Bi [14] investigated a compound KdV-type
nonlinear wave equation, and obtained the bifurcation boundaries of the system. Khan, Saifullah,
Ahamd, et al. [15] studied multiple bifurcation solitons, lumps and rogue wave solutions of the
generalized perturbed KdV equation with the Hirota bilinear technique. Notably, Chen and Li [16]
considered the generalized KdV-mKdV-like equation

ut + α̃ux + β̃upux + γ̃u2pux + uxxx = 0 (1.2)

When p = 1, Eq (1.2) turns into Eq (1.1) (β = 1). Chen and Li concentrated on obtaining solitary
wave solutions and rational solutions (1-blow-up wave solutions, 2-blow-up wave solutions), but they
did not investigate the periodic solutions. On the other hand, Wick-type stochastic KdV equation is
also an interesting research subject. Ghany used many tools, such as white noise analysis, Hermite
transforms and the modified tanh-coth methd, to obtain some white noise functional solutions for
generalized stochastic Hirota-Satsuma coupled KdV equations [17], stochastic space-time fractional
KdV equation [18] and stochastic fractional 2D KdV equations [19].

The outline of this paper is organized as follows. In Section 2, phase portraits and bifurcations of
the mixed KdV equation are given according to the bifurcation theory of planar dynamical system.
In Section 3, the exact representations of bounded traveling wave solutions for (1.1) under different
parametric regions are investigated, and many different types of exact solutions are obtained, such
as hyperbolic function solution, triangular function solution, rational solution and doubly periodic
solutions in terms of the Jacobian elliptic function. At last, a short conclusion is given.

2. Phase portraits and Bifurcations of the mixed KdV equation

Using of the traveling wave transformation u(x, t) = φ(ξ), ξ = x − ct, where c is the wave
velocity, (1.1) is reduced to

(a0 − c)φ′ + a1φφ
′ + a2φ

2φ′ + βφ′′′ = 0. (2.1)
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Integrating (2.1) with respect to ξ once and letting the integral constant be zero yields

(a0 − c)φ +
1
2

a1φ
2 +

1
3

a2φ
3 + βφ′′ = 0, (2.2)

which is equivalent to

φ′′ = b1φ + b2φ
2 + b3φ

3, (2.3)

where b1 = −
(a0−c)
β

, b2 = − a1
2β , b3 = − a2

3β and easily find that b2b3 , 0.

Furthermore, letting φ′ =
dφ
dξ = y, then (2.3) is equivalent to the following Hamiltonian system

dφ
dξ

= y,
dy
dξ

= b1φ + b2φ
2 + b3φ

3 = φ(b1 + b2φ + b3φ
2), (2.4)

which has the Hamiltonian function

H(φ, y) = y2 − (b1φ
2 +

2
3

b2φ
3 +

1
2

b3φ
4) = h, (2.5)

where h is the Hamiltonian constant. Hamiltonian function represents a family of orbits with different
phase diagrams, which are determined by parameters h, bi, i = 1, 2, 3.

Notice that the invariance of (2.4) under the transformation φ → −φ, y → −y, b2 → −b2 enable us
just consider the case b2 > 0.

According to the bifurcation theory of planar dynamical systems [20–22], we have the following
propositions on the distribution of the equilibrium points of (2.4).
Proposition 2.1. Suppose that b3 , 0, then

(2.1a) For ∆ = b2
2−4b1b3 > 0, b1 , 0, (2.4) has three equilibria at E1(φ∗1, 0), E2(φ∗2, 0) and E3(φ∗3, 0),

where φ∗1 = 0, φ∗2 = −b2+
√

∆

2b3
, φ∗3 = −b2−

√
∆

2b3
.

(2.1b) For ∆ > 0, b1 = 0, (2.4) has two equilibria at E1(φ∗1, 0), E4(φ∗4, 0), where φ∗4 = −b2
b3

.
(2.1c) For ∆ = 0, (2.4) has two equilibria at E1(φ∗1, 0) and E5(φ∗5, 0), where φ∗5 = − b2

2b3
.

(2.1d) For ∆ < 0, (2.4) has a unique equilibrium point at E1(φ∗1, 0).
Proof. Obviously, all the equilibrium points of (2.4) lie in the φ-axis and their abscissas are the real
zeros of f (φ) = φ(b1 + b2φ + b3φ

2).
Proposition 2.2. Suppose that b3 > 0, then

(2.2a) For ∆ > 0, E1, E3 are both saddles, and E2 is a center for b1 > 0, while E2, E3 are both
saddles, and E1 is a center for b1 < 0.

(2.2b) For ∆ > 0, b1 = 0, E1 is a cusp, and E4 is a saddle.
(2.2c) For ∆ = 0, E1 is a saddle for b1 > 0 and a center for b1 < 0, while E5 is a cusp.
(2.2d) For ∆ < 0, E1 is a saddle for b1 > 0 and a center for b1 < 0.

Proof. According to the Hamiltonian system (2.4), let E(φe, 0) be an equilibrium point of (2.4) and
M(φe, 0) be the coefficient matrix of the linearized system of (2.4) at the equilibrium point E(φe, 0).
We have

M(φe, 0) =

(
0 1

b1 + b2φe + b3φ
2
e 0

)
,

AIMS Mathematics Volume 9, Issue 1, 1652–1663.



1655

and

J(φe, 0) = det M(φe, 0) =



−b1, φe = φ∗1√
∆(b2−

√
∆)

2b3
, φe = φ∗2

−
√

∆(b2+
√

∆)
2b3

, φe = φ∗3
−b2

2
b3
, φe = φ∗4

0, φe = φ∗5

.

By the bifurcation theory of planar dynamical systems, the equilibrium E(φe, 0) of the Hamiltonian
system is a center (saddle) if J(φe, 0) > 0(< 0), and a cusp if J(φe, 0) = 0, then we have the
proposition above.
Proposition 2.3. Suppose that b3 < 0, then

(2.3a) For ∆ > 0, E1 is a saddle, and E2, E3 are centers for b1 > 0, while E1, E3 are both centers,
and E2 is a saddle for b1 < 0.

(2.3b) For ∆ > 0, b1 = 0, E1 is a cusp, and E4 is a center.
(2.3c) For ∆ = 0, E1 is a saddle for b1 > 0 and a center for b1 < 0, while E5 is a cusp.
(2.3d) For ∆ < 0, E1 is a saddle for b1 > 0 and a center for b1 < 0.

Proof. The proof is similar to Propisition 2.2, we omit it here.
Using the qualitative analysis above, we can obtain the bifurcation curves and phase portraits under

various parameter conditions shown as follows.
Case (I): For b3 > 0, there are three bifurcation curves (Figure 1a).

L1 : b1 =
b2

2
4b3
,

L2 : b1 =
2b2

2
9b3
,

L3 : b1 = 0, b2 > 0,

which separate the upper half (b1, b2)-plane into four subregions

A1 : 0 < b2 < 2
√

b1b3, b1 > 0,
B1 : 2

√
b1b3 < b2 <

3
√

2b1b3
2 , b1 > 0,

C1 : b2 >
3
√

2b1b3
2 , b1 > 0,

D1 : b2 > 0, b1 < 0.

The phase portraits of (2.4) are shown in Figure 2.

(a) b3 > 0 (b) b3 < 0

Figure 1. The bifurcation set of (2.4) in (b1, b2)-parameter plane.
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(a) (b1, b2) ∈ A1 (b) (b1, b2) ∈ L1 (c) (b1, b2) ∈ B1 (d) (b1, b2) ∈ L2

(e) (b1, b2) ∈ C1 (f) (b1, b2) ∈ L3 (g) (b1, b2) ∈ D1

Figure 2. The phase portraits of (2.4) under the condition that b3 > 0.

Case (II): For b3 < 0, there are another three bifurcation curves (Figure 1b).

L4 : b1 =
b2

2
4b3
,

L5 : b1 =
2b2

2
9b3
,

L6 : b1 = 0, b2 > 0,

which separate the upper half (b1, b2)-plane into four subregions

A2 : 0 < b2 < 2
√

b1b3, b1 < 0,
B2 : 2

√
b1b3 < b2 <

3
√

2b1b3
2 , b1 < 0,

C2 : b2 >
3
√

2b1b3
2 , b1 < 0,

D2 : b2 > 0, b1 > 0.

The phase portraits of (2.4) are shown in Figure 3. According to the bifurcation theory of planar
dynamical systems, a homoclinic (heteroclinic) orbit corresponds to a solitary (kink) wave solution,
while a periodic orbit corresponds to a periodic wave solution. Obviously, there are three homoclinic
orbits in Figure 2(c), (e) and (g), respectively. Two heteroclinic orbits intersect in Figure 2(d), and
there are infinite periodic orbits in Figure 3, which means that there are infinitely many periodic wave
solutions in the system (2.4).

3. Exact solutions of the mixed KdV equation determined by the phase portraits

In this section, we search for various types of traveling wave solutions based on the phase diagrams
of corresponding Hamiltonian systems.
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(a) (b1, b2) ∈ A2 (b) (b1, b2) ∈ L4 (c) (b1, b2) ∈ B2 (d) (b1, b2) ∈ L5

(e) (b1, b2) ∈ C2 (f) (b1, b2) ∈ L6 (g) (b1, b2) ∈ D2

Figure 3. The phase portraits of (2.4) under the condition that b3 < 0.

Denote that hi = H(φ∗i , 0), i = 1, 2, 3, 4, 5, easily find that

h1 = 0, h2 = −
(−b2+

√
∆)2(b2

√
∆+6b1b3−b2

2)
48b3

3
, h3 =

(b2+
√

∆)2(b2
√

∆−6b1b3+b2
2)

48b3
3

, h4 =
b4

2
6b3

3
, h5 =

−b2
1

6b3
.

Case (I): b3 > 0.
(1) When (b1, b2) ∈ A1

⋃
L1

⋃
B1 (Figure 2(a)–(c)), for h = h1 = 0, from the first equation in (2.4),

we have ∫ φ

−∞

dφ

φ

√
(φ + 2b2

3b3
)2 +

18b1b3−4b2
2

9b2
3

= ±

∫ ξ

0

√
b3

2
dξ. (3.1)

Thus we obtain two unbounded solutions to (2.4)

φ±1 =
6b1b2 ± 3b1

√
18b1b3 − 4b2

2 sinh(
√

b1ξ)

(9b1b3 − 2b2
2) cosh(

√
b1ξ)2 − 9b1b3

. (3.2)

(2) When (b1, b2) ∈ L1 (Figure 2(b)), for h = h5, we obtain a unbounded solution to (2.4)

φ2 = −

√
b1

b3

2b1ξ
2 + 3

2b1ξ2 − 9
. (3.3)
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(3) When (b1, b2) ∈ B1 (Figure 2(c)), for h = h3, it can be observed that there are two independent
orbits (a homoclinic orbit to saddle point E3 and a special orbit) with three intersections with the φ-axis,
so (2.5) can be written in the following form

y2 =
b3

2
(φ − φ∗3)2(ϕ2 − φ)(ϕ3 − φ), (3.4)

where φ∗3 < ϕ2 < ϕ3. Then∫ φ

φ∗3

dφ

(φ − φ∗3)
√

(ϕ2 − φ)(ϕ3 − φ)
=

∫ ξ

0

√
b3

2
dξ. (3.5)

We obtain a smooth soliton solution with peak form

φ3 = φ∗3 +
4ν1 exp(

√
b3ν1

2 ξ)

2µ1 exp(
√

b3ν3
2 ξ) + exp(

√
2b3ν1ξ) + (ϕ2 − ϕ3)2

, (3.6)

where µ1 = ϕ2 + ϕ3 − 2φ∗3, ν1 = (ϕ2 − φ
∗
3)(ϕ3 − φ

∗
3).

(4) When (b1, b2) ∈ L2 (Figure 2(d)), we have

b2
2 =

9
2

b1b3, h2 = −
b2

1

8b3
, h1 = h3 = 0. (3.7)

(4.1) For h = h1 = 0, it’s clearly that there are two heteroclinic orbits connecting saddles E1 with
E3, then (2.5) can be written as following form

y2 =
b3

2
φ2(φ +

√
2b1

b3
)2. (3.8)

Then ∫ 0

φ

dφ√
φ2(φ +

√
2b1
b3

)2

= ±

∫ 0

ξ

√
b3

2
dξ. (3.9)

We obtain two smooth kink wave soliton solutions

φ±4 = −

√
b1

2b3
(1 ± tanh(

√
b1

2
ξ)). (3.10)

(4.2) For h ∈ (h2, 0), we have

y2 =
b3

2
[(φ +

√
b1

2b3
)2 −

b1 −
√
−8hb3

2b3
][(φ +

√
b1

2b3
)2 −

b1 +
√
−8hb3

2b3
]. (3.11)

Then ∫ ξ

0

√
b3

2
dξ =

∫ φ

−B

d( φ̃B)

A
√

(1 − ( φ̃B)2)(1 − ( B
A )2( φ̃B)2)

, (3.12)
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where A =
√

ν2
2b3

, B =
√

µ2
2b3

, µ2 = b1 −
√
−8hb3, ν2 = b1 +

√
−8hb3 and φ̃ = φ+

√
b1
2b3

. Then we obtain
a family of doubly periodic solutions

φ6 = −

√
b1

2b3
+

√
µ2

2b3
sn(
√
ν2

2
ξ,

√
µ2

ν2
), (3.13)

where sn(x, k) and below cn(x, k), dn(x, k) are Jacobian elliptic functions with modulus k ∈ (0, 1).
(5) For (b1, b2) ∈ C1 (Figure 2(e)) and h = h1 = 0, we have

y2 =
b3

2
φ2(φ +

2b2 +

√
4b2

2 − 18b1b3

3b3
)(φ +

2b2 −

√
4b2

2 − 18b1b3

3b3
). (3.14)

Then we obtain two smooth soliton solutions

φ±7 =
3b1(−2b2 ±

√
4b2

2 − 18b1b3 sinh(
√

b1ξ))

(2b2
2 − 9b1b3) cosh(

√
b1ξ)2 + 9b1b3

. (3.15)

(6) For (b1, b2) ∈ L3 (Figure 2(f)) and h = h1 = 0, we obtain an unbounded solution

φ8 =
12b2

2b2
2ξ

2 − 9b3
. (3.16)

(7) For (b1, b2) ∈ D1 (Figure 2(g)) and h = h2, it can be observed that there are two independent
orbits (a homoclinic orbit to saddle point E2 and a special orbit) with three intersections with the φ-axis,
so (2.5) can be written in the following form

y2 =
b3

2
(φ∗2 − φ)2(φ − ψ2)(φ − ψ3), (3.17)

where ψ3 < ψ2 < φ
∗
2. Then∫ φ

ψ2

dφ

(φ∗2 − φ)
√

(φ − ψ2)(φ − ψ3)
=

∫ ξ

0

√
b3

2
dξ. (3.18)

We obtain a smooth soliton solution with peak form

φ9 = φ∗2 −
4ν3 exp(

√
b3ν3

2 ξ)

2µ3 exp(
√

b3ν3
2 ξ) + exp(

√
2b3ν3ξ) + (ψ2 − ψ3)2

, (3.19)

where µ3 = ψ2 + ψ3 − 2φ∗2, ν3 = (φ∗2 − ψ2)(φ∗2 − ψ3).
Case (II): b3 < 0.

(1) When (b1, b2) ∈ L4 (Figure 3(b)), for h = h5 = −
b2

1
6b3

, (2.4) has a soliton solution with valley form

φ10 = −

√
b1

b3

2b1ξ
2 + 3

2b1ξ2 − 9
. (3.20)
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(2) When (b1, b2) ∈ L5 (Figure 3(d)), where b2 =
3
√

2b1b3
2 , b1 < 0 and

φ∗2 = −

√
b1

2b3
, φ∗3 = −

√
2b1

b3
, h2 = −

b2
1

8b3
, h3 = 0. (3.21)

(2.1) For h = h2, we have

y2 = −
b3

2
(φ − φ∗2)2(−φ2 −

√
2b1

b3
φ +

b1

2b3
), (3.22)

then there are two soliton solutions with peak form and valley form, respectively

φ±11 =

√
b1

2b3
(1 ±

√
2sech(

√
−b1

2
ξ)). (3.23)

(2.2) For h ∈ (0, h2), we have

y2 = −
b3

2
(
b1 −

√
−8hb3

2b3
− (φ +

√
b1

2b3
)2)((φ +

√
b1

2b3
)2 −

b1 +
√
−8hb3

2b3
). (3.24)

Then ∫ ξ

0

√
−

b3

2
dξ =

∫ φ

−B̃

d( φ̃B̃)

B̃
√

(1 − ( φ̃B̃)2)(( φ̃B̃)2 − ( Ã
B̃)2)

, (3.25)

where Ã =
√

ν4
2b3

, B̃ =
√
−µ4
2b3

, µ4 = −b1 +
√
−8hb3, ν4 = b1 +

√
−8hb3 and φ̃ = φ +

√
b1

2b3
.

Then with the help of Maple, we get a family of doubly periodic solutions

φ12 = −

√
b1

2b3
+

√
µ4

−2b3
dn(
√
µ4

2
ξ,

√
µ4 + ν4

µ4
). (3.26)

(2.3) For h > h2, we have

y2 = −
b3

2
(B̃2 − φ̃2)(φ̃2 + C̃2), (3.27)

where C̃ =
√
−ν4
2b3

.
Then ∫ ξ

0

√
−

b3

2

√
B̃2 + C̃2dξ =

∫ φ

−B̃

d( φ̃B̃)

B̃
√

B̃2+C̃2

√
(1 − ( φ̃B̃)2)(( φ̃B̃)2 + ( C̃

B̃ )2)
. (3.28)

Then with the help of Maple, we get a family of doubly periodic solutions

φ13 = −

√
b1

2b3
+

√
µ4

−2b3
cn(
√
µ4 + ν4

2
ξ,

√
µ4

µ4 + ν4
). (3.29)
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(3) When (b1, b2) ∈ B2
⋃

C2 (Figure 3(c)), for h = h2, it can be observed that there is a closed
homoclinic orbits to saddle point E2 with three intersections with the φ-axis, so (2.5) can be written in
the following form

y2 = −
b3

2
(φ − χ1)(φ − φ∗2)2(χ3 − φ), (3.30)

where χ1 < φ
∗
2 < χ3. Then we obtain two smooth soliton solutions with peak form

φ±14 = φ∗2 −
2ν5(µ5 ± (χ1 − χ3) sinh(

√
−b3ν5

2 ξ))

(χ1 − χ3)2 cosh(
√
−b3ν5

2 ξ)2 − 4ν5

, (3.31)

where µ5 = χ1 + χ3 − 2φ∗2, ν5 = (χ2 − φ
∗
2)(φ∗2 − χ1).

(4) When (b1, b2) ∈ L6 (Figure 3(f)), for h = h1 = 0, we have a soliton solution

φ15 =
12b2

2b2
2ξ

2 − 9b3
. (3.32)

(5) For (b1, b2) ∈ D2 (Figure 3(g)), for h = h1 = 0, we have

y2 = −
b3

2
φ2(φ −

2b2 −

√
4b2

2 − 18b1b3

−3b3
)(

2b2 +

√
4b2

2 − 18b1b3

−3b3
− φ). (3.33)

Then we obtain two soliton solutions

φ±16 =
3b1(−2b2 ±

√
4b2

2 − 18b1b3 sinh(
√

b1ξ))

(2b2
2 − 9b1b3) cosh(

√
b1ξ)2 + 9b1b3

. (3.34)

4. Conclusions

In this work, all bifurcations of phase portraits in different subregions for the mixed KdV equation
are studied using the approach of dynamical systems. Many different types of traveling wave
solutions are obtained with the aid of Maple, such as hyperbolic function solution, triangular function
solution, rational solution and Jacobian elliptic function solution with double periods. Moreover, these
dynamical behaviors can provide us with a deeper understanding of complex physical phenomena.
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