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Abstract: Recently, delayed dynamical model has witnessed a great interest from many scholars
in biological and mathematical areas due to its potential application in describing the interaction
of different biological populations. In this article, relying the previous studies, we set up two new
predator-prey systems incorporating delay. By virtue of fixed point theory, inequality tactics and an
appropriate function, we explore well-posedness (includes existence and uniqueness, boundedness
and non-negativeness) of the solution of the two formulated delayed predator-prey systems. With
the aid of bifurcation theorem and stability theory of delayed differential equations, we gain the
parameter conditions on the emergence of stability and bifurcation phenomenon of the two formulated
delayed predator-prey systems. By applying two controllers (hybrid controller and extended delayed
feedback controller) we can efficaciously regulate the region of stability and the time of occurrence of
bifurcation phenomenon for the two delayed predator-prey systems. The effect of delay on stabilizing
the system and adjusting bifurcation is investigated. Computer simulation plots are provided to sustain
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the acquired prime outcomes. The conclusions of this article are completely new and can provide some
momentous instructions in dominating and balancing the densities of predator and prey.

Keywords: predator-prey system; well-posedness; Hopf bifurcation; stability; hybrid controller; delay
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1. Introduction

As is known to us, predator-prey models play a vital role in describing the interaction between
predator population and prey population in real natural world. In order to expose the internal change
process and development law of predator population and prey population, a great deal of predator-
prey models have been established. Through the discussion on predator-prey models, we can find the
impact of parameters on the biological population densities in some specific environment. During the
past decades, a lot of work on predator-prey models has been carried out and abundant fruits have
been resulted. For example, Balc [1] explored the stability, well-posedness, and bifurcation issue of
a fractional prey-predator model. Pandey et al. [2] explored the rich dynamics (e.g., transcritical,
saddle-node, Hopf-bifurcation, etc.) of a delayed predator-prey model. Rao and Kang [3] established
the conditions for the existence of a unique ergodic stationary distribution and the extinction conditions
of predator species and prey species for a stochastic predator-prey model. Sarkar and Khajanchi [4]
dealt with the spatiotemporal dynamical trait of a prey-predator model involving the fear effect. For
more concrete examples, one can see [5–8].

In 2020, Sen et al. [9] formulated the following predator-prey system:
du1(t)

dt
= u1(t)(h1 − a1u1(t)) −

d1u1(t)u2(t)
1 + bu1(t)

,

du2(t)
dt

= u2(t)[h2 − a2u2(t)] +
dd1u1(t)u2(t)

1 + bu1(t)
,

(1.1)

where u1(t) stands for the density of prey at time t and u2(t) stands for the density of predator at time
t, h1 is the intrinsic growth rate of prey and h2 is the intrinsic growth rate of predator, a1 denotes the
intra-species competition of prey and a2 denotes the intra-species competition of predator, b denotes
the handling parameter, which is the product of the handling time and the searching efficiency, d > 0 is
the conversion efficiency and d1 represents the searching efficiency by an individual predator per unit
time. All other parameters are positive real numbers. In details, one can see [9–12].

In many cases, the densities of prey and predator are affected due to the time delay of population
development, then it is necessary to introduce the delay into the predator-prey models. Based on this
viewpoint, we can establish more suitable delayed predator-prey models. Assume that the density of
prey is affected by the self feedback time from u1 to u1, then we can modify model (1.1) as follows:

du1(t)
dt

= u1(t)(h1 − a1u1(t)) −
d1u1(t)u2(t)
1 + bu1(t)

,

du2(t)
dt

= u2(t)[h2 − a2u2(t − δ)] +
dd1u1(t)u2(t)

1 + bu1(t)
,

(1.2)
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where δ > 0 is a time delay. All other parameters are positive real numbers. Assume that the density
of prey is affected by the self feedback time from u1 to u1 and the density of predator is affected by the
self feedback time from u2 to u2, then we can modify model (1.1) as follows:

du1(t)
dt

= u1(t)(h1 − a1u1(t − δ)) −
d1u1(t)u2(t)
1 + bu1(t)

,

du2(t)
dt

= u2(t)[h2 − a2u2(t − δ)] +
dd1u1(t)u2(t)

1 + bu1(t)
,

(1.3)

where δ > 0 is a time delay. All other parameters are positive real numbers.
Many studies show that delay is often a vital factor that affects the dynamical behavior of the

delayed dynamical model. In many instances, delay will make the system lose its stability, produce
periodic vibration, generate chaotic behavior and so on [13–22]. In particular, delay-induced Hopf
bifurcation is an important dynamical peculiarity. Biologically, delay-induced Hopf bifurcation plays
a vital role in describing the balanced relationship among the concentrations of numerous biological
populations. In the light of this viewpoint, we argue that exploring the delay-induced Hopf bifurcation
in abundant predator-prey models has very important theoretical significance. Inspired by the above
idea, we are going to investigate the delay-induced Hopf bifurcation and control of bifurcation for
models (1.2) and (1.3). Specifically, we are to deal with the following three core points: (1) Study
the well-posedness (e.g., non-negativeness, boundedness, existence and uniqueness) of solution to
models (1.2) and (1.3). (2) Explore the emergence of Hopf bifurcation and stability of models (1.2)
and (1.3). (3) Construct two different controllers to control the region of stability and the time of
generation of bifurcation behavior of models (1.2) and (1.3).

The key highlights of this study are stated as follows: (I) Depending on the previous studies, a new
bifurcation and stability criterion without relying on time delay for model (1.2) is built. (II) By virtue
of two different controllers, the domain of stability and the time of generation of Hopf bifurcation of
models (1.2) and (1.3) are effectively under control. (III) The impact of time delay on dominating Hopf
bifurcation phenomenon and stabilizing the densities of predators and preys of models (1.2) and (1.3)
is presented.

This structure of this article is presented as follows: The well-posedness involving existence
and uniqueness, non-negativeness and boundedness of the solution of system (1.2) is discussed
in Section 2. Section 3 explores the bifurcation phenomenon and stability nature of system (1.2).
Section 4 focuses on the control problem of bifurcation phenomenon for system (1.2) by virtue of a
reasonable hybrid controller incorporating state feedback and parameter perturbation involving delay.
Section 5 handles the control problem of bifurcation phenomenon and stability for system (1.3).
Section 6 handles the control problem of bifurcation phenomenon for system (1.3) by virtue of a
reasonable hybrid controller incorporating state feedback and parameter perturbation involving delay.
Section 7 carries out numerical experiments to verify the rationality of the acquired key outcomes. A
brief conclusion is included to finish this work in Section 8.

2. Well-posedness

In this part, we are going to explore the well-posedness of solutions to model (1.2) and model (1.3)
(include boundedness, existence and uniqueness, non-negativeness) via making use of fixed point
theory, inequality technique and construction of a reasonable function.
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Theorem 2.1. Denote Ψ = {u1, u2 ∈ R2 : max{|u1|, |u2|} ≤ U}, where U > 0 denotes a constant.
For each (u10, u20) ∈ Ψ, system (1.2) under the initial state (u10, u20) owns a unique solution U =

(u1, u2) ∈ Ψ.

Proof. Define the following mapping:

f (U) = ( f1(U), f2(U)), (2.1)

where 
f1(U) = u1(t)(h1 − a1u1(t)) −

d1u1(t)u2(t)
1 + bu1(t)

,

f2(U) = u2(t)[h2 − a2u2(t − δ)] +
dd1u1(t)u2(t)

1 + bu1(t)
.

(2.2)

For every U, Ū ∈ Ψ, we can get

|| f (U) − f (Ū)||

=

∣∣∣∣∣∣u1(h1 − a1u1) −
d1u1u2

1 + bu1
−

[
ū1(h1 − a1ū1) −

d1ū1ū2

1 + bū1

]∣∣∣∣∣∣
+

∣∣∣∣∣∣u2[h2 − a2u2(t − δ)] +
dd1u1u2

1 + bu1
−

[
ū2[h2 − a2ū2(t − δ)] +

dd1ū1ū2

1 + bū1

]∣∣∣∣∣∣
=

∣∣∣∣∣u1h1 − a1u2
1 −

d1u1u2

1 + bu1
− ū1h1 + a1ū2

1 +
d1ū1ū2

1 + bū1

∣∣∣∣∣
+

∣∣∣∣∣u2h2 − a2u2(t)u2(t − δ) +
dd1u1u2

1 + bu1
− ū2h2 + a2ū2(t)ū2(t − δ) −

dd1ū1ū2

1 + bū1

∣∣∣∣∣
=

∣∣∣∣∣∣h1 (u1 − ū1) − a1

(
u2

1 − ū2
1

)
− d1

(
u1u2

1 + bu1
−

ū1ū2

1 + bū1

)∣∣∣∣∣∣
+

∣∣∣∣∣∣h2 (u2 − ū2) − a2 [u2(t)u2(t − δ) − ū2(t)ū2(t − δ)] + dd1

(
u1u2

1 + bu1
−

ū1ū2

1 + bū1

)∣∣∣∣∣∣
≤ h1 |u1 − ū1| + 2Ua1 |u1 − ū1|

+ d1

∣∣∣∣∣u1u2 (1 + bū1) − ū1ū2 (1 + bu1)
(1 + bu1) (1 + bū1)

∣∣∣∣∣
+ h2 |u2 − ū2| + 2Ua2 |u2 − ū2|

+ dd1

∣∣∣∣∣u1u2 (1 + bū1) − ū1ū2 (1 + bu1)
(1 + bu1) (1 + bū1)

∣∣∣∣∣
≤ (h1 + 2Ua1) |u1 − ū1| + d1 |u1u2 (1 + bū1) − ū1ū2 (1 + bu1)|

+ (h2 + 2Ua2) |u2 − ū2| + dd1 |u1u2 (1 + bū1) − ū1ū2 (1 + bu1)|
= (h1 + 2Ua1) |u1 − ū1| + (h2 + 2Ua2) |u2 − ū2|

+ d1 (1 + d) |u1u2 (1 + bū1) − ū1u2 + ū1u2 − ū1ū2 + bu1ū1 (u2 − ū2)|
≤ (h1 + 2Ua1) |u1 − ū1| + (h2 + 2Ua2) |u2 − ū2|

+ d1 (1 + d) |U (u1 − ū1)|
+ d1 (1 + d) |U (u2 − ū2)|
+ d1 (1 + d)

∣∣∣bU2 (u2 − ū2)
∣∣∣
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= [h1 + 2Ua1 + d1 (1 + d)U] |u1 − ū1|

+
[
h2 + 2Ua2 + d1 (1 + d)

(
U + bU2

)]
|u2 − ū2|

≤ ρ||U − Ū ||, (2.3)

where
ρ = max

{
h1 + 2Ua1 + d1 (1 + d)U, h2 + 2Ua2 + d1 (1 + d)

(
U + bU2

)}
. (2.4)

Thus f (U) obeys the Lipschitz condition for U. Using fixed point theorem, one can conclude that
Theorem 2.1 is right.
Theorem 2.2. Every solution of system (1.2) starting with R2

+ is non-negative.
Proof. In view of the first equation of system (1.2), we can get

du1

dt
= u1(h1 − a1u1) −

d1u1u2

1 + bu1
, (2.5)

then

du1

u1
=

(
h1 − a1u1 −

d1u2

1 + bu1

)
dt, (2.6)

which leads to ∫ t

0

du1

u1
=

∫ t

0

[
h1 − a1u1 (s) −

d1u2 (s)
1 + bu1 (s)

]
ds, (2.7)

and then one gets

u1(t)
u1(0)

= exp
{∫ t

0

[
h1 − a1u1 (s) −

d1u2 (s)
1 + bu1 (s)

]
ds

}
. (2.8)

Thus,

u1(t) = u1(0) exp
{∫ t

0

[
h1 − a1u1 (s) −

d1u2 (s)
1 + bu1 (s)

]
ds

}
> 0. (2.9)

In a same way, we know

u2(t) = u2(0) exp
{∫ t

0

[
h2 − a2u2(s − δ) +

dd1u1 (s)
1 + bu1 (s)

]
ds

}
> 0. (2.10)

Thus, Theorem 2.2 is correct.
Theorem 2.3. The solutions of system (1.2) are uniformly bounded.
Proof. We consider two cases: d > 1 and 0 < d < 1.
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Case 1. If d > 1, let W(t) = u1(t) + u2(t). Then

dW
dt

=
du1

dt
+

du2

dt

= u1(h1 − a1u1) −
d1u1u2

1 + bu1
+ u2[h2 − a2u2(t − δ)] +

dd1u1u2

1 + bu1

= u1(h1 − a1u1) + u2[h2 − a2u2(t − δ)] −
d1u1u2

1 + bu1
(1 − d)

≤ u1(h1 − a1u1) + u2(h2 − a2u2) −
d1u1u2

bu1
(1 − d)

= u1h1 − a1u2
1 + u2h2 − a2u2

2 −
d1u2

b
(1 − d)

= −h1(u1 + u2) + 2u1h1 − a1u2
1 + u2

[
h1 + h2 −

d1

b
(1 − d)

]
− a2u2

2

≤ −h1(u1 + u2) +
h2

1

a1
+

[
h1 + h2 −

d1
b (1 − d)

]2

4a2
, (2.11)

where

h2
1

a1
= max

t∈R+

{
2u1h1 − a1u2

1

}
,[

h1 + h2 −
d1
b (1 − d)

]2

4a2
= max

t∈R+

{
u2

[
h1 + h2 −

d1

b
(1 − d)

]
− a2u2

2

}
.

Let

L =
h2

1

a1
+

[
h1 + h2 −

d1
b (1 − d)

]2

4a2
. (2.12)

Then,
dW
dt
≤ −h1W + L. (2.13)

According to the differential inequality theorem, we get

0 ≤ W(t) ≤
L
h1

(
1 − e−h1t

)
+ W(0)e−h1t, (2.14)

then
0 ≤ W(t) ≤

L
h1
, t → ∞. (2.15)

Case 2. If 0 < d < 1, let W(t) = u1(t) + u2(t). Then,

dW
dt

=
du1

dt
+

du2

dt

= u1(h1 − a1u1) −
d1u1u2

1 + bu1
+ u2[h2 − a2u2(t − δ)] +

dd1u1u2

1 + bu1

= u1(h1 − a1u1) + u2[h2 − a2u2(t − δ)] +
d1u1u2

1 + bu1
(d − 1)
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≤ u1(h1 − a1u1) + u2(h2 − a2u2)
= u1h1 − a1u2

1 + u2h2 − a2u2
2

= −h1(u1 + u2) + 2u1h1 + u2(h1 + h2) − a1u2
1 − a2u2

2

≤ −h1(u1 + u2) +
h2

1

a1
+

(h1 + h2)2

4a2
, (2.16)

where

h2
1

a1
= max

t∈R+

{
2u1h1 − a1u2

1

}
,

(h1 + h2)2

4a2
= max

t∈R+

{
u2(h1 + h2) − a2u2

2

}
.

Let

L =
h2

1

a1
+

(h1 + h2)2

4a2
, (2.17)

so
dW
dt
≤ −h1W + L. (2.18)

According to the differential inequality theorem, one gets

0 ≤ W(t) ≤
L
h1

(
1 − e−h1t

)
+ W(0)e−h1t, (2.19)

which results in
0 ≤ W(t) ≤

L
h1
, t → ∞. (2.20)

Based on these two cases, we can conclude that Theorem 2.3 is correct.

3. Exploration of bifurcation of model (1.2)

In this section, we are going to explore the bifurcation and stability issue of model (1.2). Firstly,
we assume that E(u1?, u2?) is the equilibrium point of model (1.2), then u1?, u2? obey the following
condition: 

u1?(h1 − a1u1?) −
d1u1?u2?

1 + bu1?
= 0,

u2?(h2 − a2u2?) +
dd1u1?u2?

1 + bu1?
= 0.

(3.1)

Let {
ū1(t) = u1(t) − u1?,

ū2(t) = u2(t) − u2?.
(3.2)

Substitute system (3.2) into system (1.2), we gain the linear system of model (1.2) at E(u1?, u2?):
dū1

dt
= b1ū1 − b2ū2,

dū2

dt
= b3ū1 + b4ū2 − b5ū2(t − δ),

(3.3)
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where 

b1 = h1 − 2a1u1? −
d1u2?

1 + bu1?
+

bd1u1?u2?

(1 + bu1?)2 ,

b2 =
d1u1?

1 + bu1?
,

b3 =
d1u2?

1 + bu1?
+

bdd1u1?u2?

(1 + bu1?)2 ,

b4 = h2 − a2u2? +
dd1u1?

1 + bu1?
,

b5 = a2u2?.

(3.4)

The characteristic equation of system (3.3) owns the following expression:

det
[
λ − b1 b2

−b3 λ − b4 + b5e−λδ

]
= 0, (3.5)

which leads to
λ2 + (−b1 − b4)λ + (b5λ − b1b5)e−λδ + b1b4 + b2b3 = 0. (3.6)

If δ = 0, then Eq (3.6) becomes

λ2 + (b5 − b1 − b4)λ + b1b4 + b2b3 − b1b5 = 0. (3.7)

If

(A1)
{

b5 − b1 − b4 > 0,
b1b4 + b2b3 − b1b5 > 0,

(3.8)

is fulfilled, then the two roots λ1, λ2 of Eq (3.7) have negative real parts. Thus the equilibrium point
E(u1?, u2?) of system (1.2) with δ = 0 is locally asymptotically stable.

Assume that λ = iε is the root of Eq (3.6), then Eq (3.6) becomes

− ε2 + (−b1 − b4)iε + (b5iε − b1b5)e−iεδ + b1b4 + b2b3 = 0. (3.9)

It follows from (3.9) that {
b5ε sin εδ − b1b5 cos εδ = ε2 − b1b4 − b2b3,

b5ε cos εδ + b1b5 sin εδ = (b1 + b4)ε.
(3.10)

Then
ε4 + (b2

1 + b2
4 − b2

5 − 2b2b3)ε2 + (b1b4 + b2b3)2 − (b1b5)2 = 0. (3.11)

Let
Π1(ε) = ε4 + (b2

1 + b2
4 − b2

5 − 2b2b3)ε2 + (b1b4 + b2b3)2 − (b1b5)2. (3.12)

Assume that
(A2) |b1b4 + b2b3| < |b1b5|.

By virtue of (A2), we know Π1(0) = (b1b4 + b2b3)2 − (b1b5)2 < 0, since limε→∞Π1(ε) > 0, then we will
know Eq (3.11) has at least one positive real root. Therefore Eq (3.6) has at least one pair of purely
imaginary roots. Without loss of generality, we can assume that Eq (3.11) has four positive real roots
(say ε j, j = 1, 2, 3, 4). Relying on (3.10), we know
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δ(n)
j =

1
ε j

arcsin

ε3
j + (b2

1 − b2b3)ε j

b5ε
2
j + b2

1b5

 + 2nπ

 , (3.13)

where j = 1, 2, 3, 4; n = 0, 1, 2, · · · . Assume δ0 = min{ j=1,2,3,4;n=0,1,2,··· }{δ
(n)
j } and suppose that when

δ = δ0, Eq (3.6) has a pair of imaginary roots ±iε0.
Next we present the following assumption:

(A3) G1RG2R + G1IG2I > 0,

where 
G1R = b5 cos ε0δ0 − b1 − b4,

G1I = 2ε0 − b5 sin ε0δ0,

G2R = −ε2
0b5 cos ε0δ0 − b1b5ε0 sin ε0δ0,

G2I = ε2
0b5 cos ε0δ0 − b1b5ε0 cos ε0δ0.

(3.14)

Lemma 3.1. Suppose that λ(θ) = ε1(δ) + iε2(δ) is the root of Eq (3.6) at δ = δ0 such that ε1(δ0) = 0,
ε2(δ0) = ε0, then Re

(
dλ
dδ

) ∣∣∣∣
δ=δ0,ε=ε0

> 0.

Proof. By Eq (3.6), we can get

(2λ − b1 − b4)
dλ
dδ

+ b5e−λδ
dλ
dδ
− (δ

dλ
dδ

+ λ)(b5λ − b1b5)e−λδ = 0. (3.15)

It means that (
dλ
dδ

)−1

=
G1(λ)
G2(λ)

−
δ

λ
, (3.16)

where {
G1(λ) = 2λ − b1 − b4 + b5eλδ,
G2(λ) = λ(b5λ − b1b5)eλδ.

(3.17)

Hence

Re
(dλ

dδ

)−1
δ=δ0,ε=ε0

= Re
[
G1(λ)
G2(λ)

]
δ=δ0,ε=ε0

=
G1RG2R + G1IG2I

G2
2R + G2

2I

. (3.18)

By the assumption (A3), we get

Re
(dλ

dδ

)−1
δ=δ0,ε=ε0

> 0, (3.19)

which ends the proof. According to the above discussion, the following outcome is easily derived.
Theorem 3.1. Suppose that (A1)–(A3) hold, then the equilibrium point E(u1?, u2?) of model (1.2)
holds a locally asymptotically stable state if δ ∈ [0, δ0) and model (1.2) generates a cluster of Hopf
bifurcations around the equilibrium point E(u1?, u2?) when δ = δ0.

4. Control of bifurcation for model (1.2) using hybrid controller

In this section, we are to study the Hopf bifurcation issue of system (1.2) by using a reasonable
hybrid controller consisting of parameter perturbation with delay and state feedback. By virtue of the
idea in [19,20], we formulate the following controlled predator-prey model:
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1631
du1

dt
= α1u1(h1 − a1u1) −

d1u1u2

1 + bu1
+ k[u1(t − δ) − u1(t)],

du2

dt
= u2[h2 − a2u2(t − δ)] +

dd1u1u2

1 + bu1
.

(4.1)

System (4.1) owns the same equilibrium point E(u1?, u2?) as that in system (1.2). Let{
u1? = u1(t) − ū1(t),
u2? = u2(t) − ū2(t).

(4.2)

The linear system of system (4.1) near E(u1?, u2?) can be expressed as follows:
dū1

dt
= c1ū1 − c2ū2 + kū1(t − δ),

dū2

dt
= c3ū1 + c4ū2 − c5ū2(t − δ),

(4.3)

where 

c1 = α1h1 − k − 2a1u1∗α1 −
d1u2?

1 + bu1?
+

bd1u1?u2?

(1 + bu1?)2 ,

c2 =
d1u1?

1 + bu1?
,

c3 =
d1u2?

1 + bu1?
+

bdd1u1?u2?

(1 + bu1?)2 ,

c4 = h2 − a2u2? +
dd1u1?

1 + bu1?
,

c5 = a2u2?.

(4.4)

The characteristic equation of system (4.3) owns the following expression:

det
[
λ − c1 − ke−λδ c2

−c3 λ − c4 + c5e−λδ

]
= 0, (4.5)

which leads to

(c5 − k)λ + kc4 − c1c5 + [λ2 + (−c1 − c4)λ + c2c3 + c1c4]eλδ − kc5e−λδ = 0. (4.6)

If δ = 0, then Eq (4.6) reads as:

λ2 + (c5 − k − c1 − c4)λ + kc4 + c2c3 − c1c5 + c1c4 − kc5 = 0. (4.7)

If

(A4)
{

c5 − k − c1 − c4 > 0,
kc4 + c2c3 − c1c5 + c1c4 − kc5 > 0,

(4.8)

is fulfilled, there are two roots λ1 and λ2 of Eq (4.6) that have negative real parts. Thus the equilibrium
point E(u1?, u2?) of system (4.1) with δ = 0 holds a locally asymptotically stable state. Suppose that
λ = iε∗ is the root of Eq (4.6), then Eq (4.6) becomes:

(c5 − k)iε∗ + kc4 − c1c5 + [−ε∗2 + (−c1 − c4)iε∗ + c2c3 + c1c4]eiε∗δ − kc5e−iε∗δ = 0. (4.9)

It follows from (4.9) that{
(−ε∗2 + c2c3 + c1c4 − kc5) cos ε∗δ − ε∗(−c1 − c4) sin ε∗δ = c1c5 − kc4,

ε∗(−c1 − c4) cos ε∗δ + (−ε∗2 + c2c3 + c1c4 + kc5) sin ε∗δ = (k − c5)ε∗.
(4.10)
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By (4.10), we can get {
E1 cos(ε∗δ) − E2 sin(ε∗δ) = E3,

E2 cos(ε∗δ) + E4 sin(ε∗δ) = E5,
(4.11)

where 

E1 = −ε∗2 + c2c3 + c1c4 − kc5,

E2 = ε∗(−c1 − c4),
E3 = c1c5 − kc4,

E4 = −ε∗2 + c2c3 + c1c4 + kc5,

E5 = (k − c5)ε∗.

(4.12)

So there is 
cos ε∗δ =

E1E2E5 + E1E3E4

E1(E2
2 + E1E4)

,

sin ε∗δ =
E2

1E5 − E1E2E3

E1(E2
2 + E1E4)

.
(4.13)

Because of cos2 ε∗δ + sin2 ε∗δ = 1, we can get[
E1E2E5 + E1E3E4

E1(E2
2 + E1E4)

]2

+

[
E2

1E5 − E1E2E3

E1(E2
2 + E1E4)

]2

= 1. (4.14)

So

E2
1E2

2E2
5 + 2E2

1E2E3E4E5 + E2
1E2

3E2
4 + E2

1E2
2E2

3

−2E3
1E2E3E5 + E4

1E2
5 − E2

1E4
2 − 2E3

1E2
2E4 − E4

1E2
4 = 0. (4.15)

According to Eq (4.12), one gets 

E1 = −ε∗2 + g1,

E2 = g2ε
∗,

E3 = c1c5 − kc4,

E4 = −ε∗2 + g3,

E5 = g4ε
∗,

(4.16)

where 
g1 = c2c3 + c1c4 − kc5,

g2 = −c1 − c4,

g3 = c2c3 + c1c4 + kc5,

g4 = k − c5.

(4.17)

Using (4.15) and (4.16), we know

− ε∗12 + D1ε
∗10 + D2ε

∗8 + D3ε
∗6 + D4ε

∗4 + D5ε
∗2 + D6 = 0, (4.18)

therefore, the results can be obtained as follows:

ε∗12 − D1ε
∗10 − D2ε

∗8 − D3ε
∗6 − D4ε

∗4 − D5ε
∗2 − D6 = 0, (4.19)
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where 

D1 = g2
1 − 2g2

2 + 2g3 + 4g1,

D2 = E2
3 − 2g2E3g4 + g2

2g2
4 − 4g1g2

4 + 2g2E3g4 − g4
2 + 6g1g2

2 + 2g2
2E3

− 6g2
1 − 8g1g3 − g2

3,

D3 = −2g1E2
3 − 2g3E2

3 + 4g1g2E3g4 + 2g2g3E3g4 − 2g1g2
2g2

4 + 6g2
1g2

4
− 6g1g2E3g4 + g2

2E2
3 + 2g1g4

2 − 6g2
1g2

2 − 6g1g2
2g3 + 4g3

1 + 12g2
1g3 + 4g1g2

3,

D4 = g2
1E2

3 + 4g1g3E2
3 + g2

3E2
3 − 2g2

1g2E3g4 − 4g1g2g3E3g4

+ g2
1g2

2g2
4 − 4g3

1g2
4 + 6g2

1g2E3g4 − 2g1g2
2E2

3 − g2
1g4

2
+ 2g3

1g2
2 + 6g2

1g2
2g3 − g4

1 − 8g3
1g3 − 6g2

1g2
3,

D5 = −2g2
1g3E2

3 − 2g1g2
3E2

3 + 2g2
1g2g3E3g4 + g4

1g2
4

− 2g3
1g2E3g4 + g2

1g2
2E2

3 − 2g3
1g2

2g3 + 2g4
1g3 + 4g3

1g2
3,

D6 = g2
1g2

3E2
3 − g4

1g2
3.

(4.20)

Let
Π2 (ε∗) = ε∗12 − D1ε

∗10 − D2ε
∗8 − D3ε

∗6 − D4ε
∗4 − D5ε

∗2 − D6. (4.21)

We can make the following assumption:

(A5) |g1g3E3| >
∣∣∣g2

1g3

∣∣∣ .
If (A5) holds, then Π2 (0) = −D6 < 0. Since limε∗→∞Π2 (ε∗) = +∞ > 0, then Eq (4.19) has at least
one pair of positive real roots, and Eq (4.6) has at least one pair of pure roots. So we can assume that
Eq (4.19) has 12 positive solid roots (say ε∗j, j = 1, 2, 3, ..., 12). It is available according to Eq (4.11),

δ(k)
j =

1
ε∗j

arccos

E1(ε∗j)E2(ε∗j)E5(ε∗j) + E1(ε∗j)E3E4(ε∗j)

E1(ε∗j)
(
E2

2(ε∗j) + E1(ε∗j)E4(ε∗j)
) + 2kπ


 , (4.22)

where j = 1, 2, 3, · · · , 12; k = 0, 1, 2, · · · . Let δ∗ = min{ j=1,2,3,··· ,12;k=0,1,2,··· }{δ
(k)
j }, and assume that when

δ = δ∗, Eq (4.6) has at least one pair of pure real roots ±iε∗0.
Next the following assumption is given:

(A6) H1RH2R + H1IH2I > 0,

where 
H1R = c5 − k − 2ε∗0 sin ε∗0δ∗ − (c1 + c4) cos ε∗0δ∗,
H1I = 2ε∗0 cos ε∗0δ∗ − (c1 + c4) sin ε∗0δ∗,
H2R =

[
ε∗30 + (c2c3 + c1c4)ε∗0 − kc5ε

∗
0

]
sin ε∗0δ∗ − (c1 + c4)ε∗20 cos ε∗0δ∗,

H2I =
[
−ε∗30 − (c2c3 + c1c4)ε∗0 − kc5ε

∗
0

]
cos ε∗0δ∗ − (c1 + c4)ε∗20 sin ε∗0δ∗.

(4.23)

Lemma 4.1. Suppose that λ(θ) = ε̄1(δ) + iε̄2(δ) is the root of Eq (4.6) at δ = δ∗ such that ε̄1(δ∗) = 0,
ε̄2(δ∗) = ε∗0, then Re

(
dλ
dδ

) ∣∣∣∣
δ=δ∗,ε=ε

∗
0

> 0.

Proof. By Eq (4.6), one gets

(c5 − k)
dλ
dδ

+ (2λ − c1 − c4)eλδ
dλ
dδ

+
[
λ2 + (−c1 − c4)λ + c2c3 + c1c4

]
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×eλδ
(
λ + δ

dλ
dδ

)
+ kc5e−λδ

(
λ + δ

dλ
dδ

)
= 0, (4.24)

which implies (
dλ
dδ

)−1

=
H1(λ)
H2(λ)

−
δ

λ
, (4.25)

where  H1(λ) = c5 − k + (2λ − c1 − c4)eλδ,
H2(λ) =

[
−λ2 + (−c1 − c4)λ + c2c3 + c1c4

]
λeλδ − kc5λe−λδ.

(4.26)

Hence

Re
(dλ

dδ

)−1
δ=δ∗,ε=ε

∗
0

= Re
[
H1(λ)
H2(λ)

]
δ=δ∗,ε=ε

∗
0

=
H1RH2R +H1IH2I

H2
2R +H2

2I

. (4.27)

According to (A6), one gets

Re
(dλ

dδ

)−1
δ=δ∗,ε=ε

∗
0

> 0, (4.28)

which completes the proof.
Depending on the analysis above, the following conclusion is acquired:

Theorem 4.1. Suppose that (A4)–(A6) hold, then the equilibrium point E(u1?, u2?) of model (4.1) is
locally asymptotically stable if δ ∈ [0, δ∗) and model (4.1) generates a cluster of Hopf bifurcations
near the equilibrium point E(u1?, u2?) when δ = δ∗.

5. Exploration of bifurcation for model (1.3)

In this section, we are going to explore the Hopf bifurcation phenomenon of system (1.3).
System (1.3) owns the same equilibrium point E(u1?, u2?) as that in system (1.2). Let{

u1? = u1(t) − ū1(t),
u2? = u2(t) − ū2(t).

(5.1)

The linear system of system (1.3) near E(u1?, u2?) can be expressed as follows:
du1

dt
= e1ū1 − e2ū2 − e3ū1(t − δ),

du2

dt
= e4ū1 + e5ū2 − e6ū2(t − δ),

(5.2)

where 

e1 = h1 − a1u1? −
d1u2?

1 + bu1?
+

bd1u1?u2?

(1 + bu1?)2 ,

e2 =
d1u1?

1 + bu1?
,

e3 = a1u1?,

e4 =
dd1u2?

1 + bu1?
−

bdd1u1?u2?

(1 + bu1?)2 ,

e5 = h2 − a2u2? +
dd1u1?

1 + bu1?
,

e6 = a2u2?.

(5.3)
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The characteristic equation of system (5.2) owns the following expression:

det
[
λ − e1 + e3e−λδ e2

−e4 λ − e5 + e6e−λδ

]
= 0, (5.4)

which leads to:

λ2 + (−e1 − e5)λ + (e3λ + e6λ + e1e6 − e3e5)e−λδ + e3e6e−2λδ + e1e5 + e2e4 = 0, (5.5)

that is,
(e3 + e6)λ + e1e6 − e3e5 +

[
λ2 + (−e1 − e5)λ + e1e5 + e2e4

]
eλδ + e3e6e−λδ = 0. (5.6)

If δ = 0, then Eq (5.6) reads as:

λ2 + (e3 + e6 − e1 − e5)λ + e1e6 − e3e5 + e1e5 + e2e4 + e3e6 = 0. (5.7)

If

(A7)
{

e3 + e6 − e1 − e5 > 0,
e1e6 − e3e5 + e1e5 + e2e4 + e3e6 > 0,

(5.8)

is fulfilled, there are two roots λ1, λ2 of Eq (5.7) that have negative real parts. Thus the equilibrium
point E(u1?, u2?) of system (1.3) with δ = 0 is locally asymptotically stable.
Suppose that λ = iετ is the root of Eq (5.6), then Eq (5.6) becomes:

(e3 + e6)iετ + e1e6 − e3e5 +
[
−ετ2 + (−e1 − e5)iετ + e1e5 + e2e4

]
eiετδ + e3e6e−iετδ = 0. (5.9)

By (5.9), we have{
(−ετ2 + e1e5 + e2e4 + e3e6) cos ετδ + ετ(e1 + e5) sin ετδ = e3e5 − e1e6,

−ετ(e1 + e5) cos ετδ + (−ετ2 + e1e5 + e2e4 − e3e6) sin ετδ = −(e3 + e6)ετ,
(5.10)

which means {
Y1 cos ετδ + Y2 sin ετδ = Y3,

−Y2 cos ετδ + Y4 sin ετδ = Y5,
(5.11)

where 

Y1 = −ετ2 + e1e5 + e2e4 + e3e6,

Y2 = ετ(e1 + e5),
Y3 = e3e5 − e1e6,

Y4 = −ετ2 + e1e5 + e2e4 − e3e6,

Y5 = −(e3 + e6)ετ.

(5.12)

So, we can get 
cos ετδ =

Y1Y3Y4 − Y1Y2Y5

Y1(Y2
2 + Y1Y4)

,

sin ετδ =
Y2

1 Y5 + Y1Y2Y3

Y1(Y2
2 + Y1Y4)

.
(5.13)

Because of cos2 ετδ + sin2 ετδ = 1, then[
Y1Y3Y4 − Y1Y2Y5

Y1(Y2
2 + Y1Y4)

]2

+

[
Y2

1 Y5 + Y1Y2Y3

Y1(Y2
2 + Y1Y4)

]2

= 1. (5.14)
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It follows from (5.14) that

Y2
1 Y2

2 Y2
5 − 2Y2

1 Y2Y3Y4Y5 + Y2
1 Y2

3 Y2
4 + Y2

1 Y2
2 Y2

3 + 2Y3
1 Y2Y3Y5

+Y4
1 Y2

5 − Y2
1 Y4

2 − 2Y3
1 Y2

2 Y4 − Y4
1 Y2

4 = 0. (5.15)

By (5.12), one gets 
Y1 = −ετ2 + y1,

Y2 = y2ε
τ,

Y4 = −ετ2 + y3,

Y5 = y4ε
τ,

(5.16)

where 
y1 = e1e5 + e2e4 + e3e6,

y2 = e1 + e5,

y3 = e1e5 + e2e4 − e3e6,

y4 = −(e3 + e6).

(5.17)

Using (5.15) and (5.16), we know

− ετ12 + N1ε
τ10 + N2ε

τ8 + N3ε
τ6 + N4ε

τ4 + N5ε
τ2 + N6 = 0. (5.18)

Therefore, the results can be obtained as follows

ετ12
− N1ε

τ10
− N2ε

τ8
− N3ε

τ6
− N4ε

τ4
− N5ε

τ2
− N6 = 0, (5.19)

where 

N1 = 2y3 + 4y1 − 2y2
2 + 4y2

4,

N2 = Y2
3 + 2y2Y3y4 + y2

2y2
4 − 4y1y2

4 − 2y2Y3y4

− y4
2 + 6y1y2

2 + 2y2
2Y3 − 6y2

1 − 8y1y3 − y2
3,

N3 = −2y1Y2
3 − 2y3Y2

3 − 4y1y2Y3y4 − 2y2y3Y3y4

+ 2y1y2
2y2

4 + 6y2
1y2

4 + 6y1y2Y3y4

+ y2
2Y2

3 + 2y1y4
2 − 6y2

1y2
2

− 6y1y2
2y3 + 4y3

1 + 12y2
1y3 + 4y1y2

3,

N4 = y2
1Y2

3 + 4y1y3Y2
3 + y2

3Y2
3

+ 2y2
1y2Y3y4 + 4y1y2y3Y3y4 + y2

1y2
2y2

4
− 4y3

1y2
4 − 6y2

1y2Y3y4 − 2y1y2
2Y2

3
− y2

1y4
2 + 2y3

1y2
2 + 6y2

1y2
2y3

− y4
1 − 8y3

1y3 − 6y2
1y2

3,

N5 = −2y2
1y3Y2

3 − 2y1y2
3Y2

3
− 2y2

1y2y3Y3y4 + y4
1y2

4 + 2y3
1y2Y3y4

+ y2
1y2

2Y2
3 − 2y3

1y2
2y3 + 2y4

1y3 + 4y3
1y2

3,

N6 = y2
1y2

3Y2
3 − y4

1y2
3.

(5.20)

Let
Π3 (ετ) = ετ12

− N1ε
τ10
− N2ε

τ8
− N3ε

τ6
− N4ε

τ4
− N5ε

τ2
− N6. (5.21)
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We can make the following assumptions:

(A8) |y1y3Y3| >
∣∣∣y2

1y3

∣∣∣ .
If (A8) holds, then Π3 (0) = −N6 < 0, since limετ→∞Π3 (ετ) = +∞ > 0, then Eq (5.19) has at least
one pair of positive real roots, and Eq (5.6) has at least one pair of pure roots. So we can assume that
Eq (5.19) has 12 positive real roots (say ετj, j = 1, 2, 3, ..., 12).

By Eq (5.11), one gets

δ(m)
j =

1
ετj

arccos

Y1(ε j)Y3Y4(ετj) − Y1(ετj)Y2(ετj)Y5(ετj)

Y1(ετj)
(
Y2

2 (ετj) + Y1(ετj)Y4(ετj)
) + 2mπ


 , (5.22)

where j = 1, 2, 3, · · · , 12; m = 0, 1, 2, · · · .
Let δ? = min{ j=1,2,3,··· ,12;m=0,1,2,··· .}{δ

(m)
j }, and assume that when δ = δ?, Eq (5.6) has at least one pair

of pure of real roots ±iετ0.
Next the following assumption is needed:

(A9) F1RF2R + F1IF2I > 0,

where 
F1R = e3 + e6 − 2ετ0 sin ετ0δ? − (e1 + e5) cos ετ0δ?,
F1I = 2ετ0 cos ετ0δ? − (e1 + e5) sin ετ0δ?,
F2R =

[
ετ3

0 + (e1e5 + e2e4 + e3e6)ετ0
]

sin ετ0δ? − (e1 + e5)ετ0 cos ετ0δ?,
F2I =

[
−ετ3

0 + (e3e6 − e1e5 − e2e4)ετ0
]

cos ετ0δ? − (e1 + e5)ετ0 sin ετ0δ?.

(5.23)

Lemma 5.1. Suppose that λ(θ) = ξ1(θ) + iξ2(θ) is the root of Eq (5.6) at δ = δ?, such that ξ1(δ?) = 0,
ξ2(δ?) = ετ0 , then Re

(
dλ
dδ

) ∣∣∣∣
δ=δ?,ε=ε

τ
0

> 0.

Proof. By Eq (5.6), one gets

(e3 + e6)
dλ
dδ

+ (2λ − e1 − e5)eλδ
dλ
dδ

+
[
λ2 + (−e1 − e5)λ + e2e4 + e1e5

]
×eλδ

(
λ + δ

dλ
dδ

)
− e3e6e−λδ

(
λ + δ

dλ
dδ

)
= 0, (5.24)

which implies (
dλ
dδ

)−1

=
F1(λ)
F2(λ)

−
δ

λ
, (5.25)

where  F1(λ) = e3 + e6 + (2λ − e1 − e5)eλδ,
F2(λ) = −

[
λ2 + (−e1 − e5)λ + e2e4 + e1e5

]
λeλδ + e3e6λe−λδ.

(5.26)

Hence

Re
(dλ

dδ

)−1
δ=δ?,ε=ε

τ
0

= Re
[
F1(λ)
F2(λ)

]
δ=δ?,ε=ε

τ
0

=
F1RF2R + F1IF2I

F 2
2R + F 2

2I

. (5.27)
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By (A9), we have

Re
(dλ

dδ

)−1
δ=δ?,ε=ε

τ
0

> 0, (5.28)

which ends the proof.

Depending on the discussion above, the following results is obtained:

Theorem 5.1. Suppose that (A7)–(A9) are fulfilled, then the equilibrium point E(u1?, u2?) of
model (5.1) is locally asymptotically stable if δ ∈ [0, δ?) and model (5.1) generates a cluster of Hopf
bifurcations near the equilibrium point E(u1?, u2?) when δ = δ?.

Remark 5.1. In model (1.3), there is only one delay. If there are two different delays in model (1.3),
we can deal with the effect of two delays on the stability and bifurcation. We leave it for future work.

6. Control of bifurcation for model (1.3) using extended delayed feedback controller

In this section, we are to study the Hopf bifurcation issue of system (1.3) by using a reasonable
extended delayed feedback controller consisting of parameter perturbation with delay. By virtue of the
idea in [23–25], we formulate the following controlled predator-prey model:

du1

dt
= u1[h1 − a1u1(t − δ)] −

d1u1u2

1 + bu1
+ k1[u1(t − δ) − u1(t)],

du2

dt
= u2[h2 − a2u2(t − δ)] +

dd1u1u2

1 + bu1
+ k2[u2(t − δ) − u2(t)].

(6.1)

System (6.1) owns the same equilibrium point E(u1?, u2?) as that of system (1.3). Let{
u1? = u1(t) − ū1(t),
u2? = u2(t) − ū2(t).

(6.2)

The linear system of system (6.1) around E(u1?, u2?) takes the following expression:
dū1

dt
= τ1ū1 − τ2ū2 + τ3ū1(t − δ),

dū2

dt
= τ4ū1 + τ5ū2 + τ6ū2(t − δ),

(6.3)

where 

τ1 = h1 − k1 − a1u1? −
d1u2?

1 + bu1?
+

bd1u1?u2?

(1 + bu1?)2 ,

τ2 =
d1u1?

1 + bu1?
,

τ3 = k1 − a1u1?,

τ4 =
dd1u2?

1 + bu1?
−

bdd1u1?u2?

(1 + bu1?)2 ,

τ5 = h2 − a2u2? +
dd1u1?

1 + bu1?
− k2,

τ6 = k2 − a2u2?.

(6.4)
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The characteristic equation of system (6.3) owns the following expression:

det
[
λ − τ1 + τ3e−λδ τ2

−τ4 λ − τ5 − τ6e−λδ

]
= 0, (6.5)

which leads to:

λ2 + (−τ1 − τ5)λ + (−τ3λ − τ6λ + τ1τ6 + τ3τ5)e−λδ + τ3τ6e−2λδ + τ1τ5 + τ2τ4 = 0, (6.6)

that is
(τ3 + τ6)λ − (τ1τ6 + τ3τ5) +

[
λ2 + (−τ1 − τ5)λ + τ1τ5 + τ2τ4

]
eλδ − τ3τ6e−λδ = 0. (6.7)

If δ = 0, then Eq (6.7) reads as:

λ2 − (τ1 + τ3 + τ5 + τ6)λ + τ1τ6 + τ3τ5 + τ1τ5 + τ2τ4 + τ3τ6 = 0. (6.8)

If

(A10)
{
−(τ1 + τ3 + τ5 + τ6) > 0,
τ1τ6 + τ3τ5 + τ1τ5 + τ2τ4 + τ3τ6 > 0,

(6.9)

is fulfilled, then the two roots λ1, λ2 of Eq (6.7) have negative real parts. Thus the equilibrium point
E(u1?, u2?) of system (6.1) with δ = 0 is locally asymptotically stable.

Suppose that λ = iεµ is the root of Eq (6.7), then Eq (6.7) becomes:

(τ3 + τ6)iεµ − (τ1τ6 + τ3τ5) −
[
εµ2 + (−τ1 − τ5)iεµ + τ1τ5 + τ2τ4

]
eiεµδ − τ3τ6e−iεµδ = 0. (6.10)

By (6.10), we have
(
εµ2
− τ1τ5 − τ2τ4 − τ3τ6

)
cos εµδ − εµ (τ1 + τ5) sin εµδ = τ1τ6 + τ3τ5,

εµ (τ1 + τ5) cos εµδ +
(
εµ2
− τ1τ5 − τ2τ4 + τ3τ6

)
sin εµδ = − (τ3 + τ6) εβ,

(6.11)

which means {
T1 cos εµδ − T2 sin εµδ = T3,

T2 cos εµδ + T4 sin εµδ = T5,
(6.12)

where 

T1 = −εµ2
− τ1τ5 − τ2τ4 − τ3τ6,

T2 = (τ1 + τ5)εµ,
T3 = τ3τ5 + τ1τ6,

T4 = −εµ2
− τ1τ5 − τ2τ4 + τ3τ6,

T5 = −(τ3 + τ6)εµ.

(6.13)

So, we can get 
cos εµδ =

T1T3T4 + T1T2T5

T1(T 2
2 + T1T4)

,

sin εµδ =
T 2

1 T5 − T1T2T3

T1(T 2
2 + T1T4)

.
(6.14)
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Because of cos2 εµδ + sin2 εµδ = 1,[
T1T3T4 + T1T2T5

T1(T 2
2 + T1T4)

]2

+

[
T 2

1 T5 − T1T2T3

T1(T 2
2 + T1T4)

]2

= 1. (6.15)

It follows from (6.15) that

T 2
1 T 2

2 T 2
5 + 2T 2

1 T2T3T4T5 + T 2
1 T 2

3 T 2
4 + T 2

1 T 2
2 T 2

3 − 2T 3
1 T2T3T5

+T 4
1 T 2

5 − T 2
1 T 4

2 − 2T 3
1 T 2

2 T4 − T 4
1 T 2

4 = 0. (6.16)

By (6.13), one gets 
T1 = −εµ2 + x1,

T2 = x2ε
µ,

T4 = −εµ2 + x3,

T5 = x4ε
µ,

(6.17)

where 
x1 = −τ1τ5 − τ2τ4 − τ3τ6,

x2 = τ1 + τ5,

x3 = −τ1τ5 − τ2τ4 + τ3τ6,

x4 = −(τ3 + τ6).

(6.18)

Using (6.16) and (6.17), we know

− εµ12 + X1ε
µ10 + X2ε

µ8 + X3ε
µ6 + X4ε

µ4 + X5ε
µ2 + X6 = 0, (6.19)

therefore, the results can be obtained as follows:

εµ12
− X1ε

µ10
− X2ε

µ8
− X3ε

µ6
− X4ε

µ4
− X5ε

µ2
− X6 = 0, (6.20)

where 

X1 = x2
4 − 2x2

2 − 2x3 + 4x1,

X2 = T 2
3 + 2x2T3x4 + x2

2x2
4 + 4x1x2

4 − 2x2T3x4

− x4
2 − 6x1x2

2 − 2x2
2T3 − 6x2

1 − 8x1x3 − x2
3,

X3 = 2x1T 2
3 + 2x3T 2

3 + 4x1x2T3x4 + 2x2x3T3x4

+ 2x1x2
2x2

4 + 6x2
1x2

4 − 6x1x2T3x4 + x2
2T 2

3
− 2x1x4

2 − 6x2
1x2

2 − 6x1x2
2x3 − 4x3

1 − 12x2
1x3 − 4x1x2

3,

X4 = x2
1T 2

3 + 4x1x3T 2
3 + x2

3T 2
3 + 2x2

1x2T3x4

+ 4x1x2x3T3x4 + x2
1x2

2x2
4 + 4x3

1x2
4 − 6x2

1x2T3x4

+ 2x1x2
2T 2

3 − x2
1x4

2 − 2x3
1x2

2 − 6x2
1x2

2x3

− x4
1 − 8x3

1x3 − 6x2
1x2

3,

X5 = x2
1x3T 2

3 + 2x1x2
3T 2

3 + 2x2
1x2x3T3x4

+ x4
1x2

4 − 2x3
1x2T3x4 + x2

1x2
2T 2

3
− 2x3

1x2
2x3 − 2x4

1x3 − 4x3
1x2

3,

X6 = x2
1x2

3T 2
3 − x4

1x2
3.

(6.21)
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Let
Π4 (εµ) = εµ12

− X1ε
µ10
− X2ε

µ8
− X3ε

µ6
− X4ε

µ4
− X5ε

µ2
− X6. (6.22)

We can make the following assumption:

(A11) |x1x3T3| >
∣∣∣x2

1x3

∣∣∣ .
If (A11) holds, then Π4 (0) = −X6 < 0. Notice that limεµ→∞Π4 (εµ) = +∞ > 0, then Eq (6.20) has at
least one pair of positive real roots, and Eq (6.7) has at least one pair of purely real roots. So we can
assume that Eq (6.20) has 12 positive real roots (say εµj , j = 1, 2, 3, · · · , 12).

By Eq (6.14), one gets

δ(θ)
j =

1
ε
µ
j

arccos

X1(εµj )X3X4(εµj ) − X1(εµj )X2(εµj )X5(εµj )

X1(εµj )
(
X2

2(εµj ) + X1(εµj )X4(εµj )
) + 2θπ


 , (6.23)

where j = 1, 2, 3, · · · , 12; θ = 0, 1, 2, · · · .
Let δ0∗ = min{ j=1,2,3,··· ,12;θ=0,1,2,··· }{δ

(θ)
j }, and assume that when δ = δ0∗, Eq (6.7) has at least one pair

of pure real roots ±εµ0.
Next the following assumption is needed:

(A12) M1RM2R + M1I M2I > 0,

where 
M1R = τ3 + τ6 + 2εµ0 sin εµ0δ0∗ + (τ1 + τ5) cos εµ0δ0∗,

M1I = −2εµ0 cos εµ0δ0∗ + (τ1 + τ5) sin εµ0δ0∗,

M2R =
[
ε
µ3
0 − (τ1τ5 + τ2τ4 + τ3τ6)εµ0

]
sin εµ0δ0∗ + (τ1 + τ5)εµ0 cos εµ0δ0∗,

M2I =
[
−ε

µ3
0 + (τ1τ5 + τ2τ4 − τ3τ6)εµ0

]
cos εµ0δ0∗ + (τ1 + τ5)εµ0 sin εµ0δ0∗.

(6.24)

Lemma 6.1. Suppose that λ(θ) = ξ̄1(θ) + iξ̄2(θ) is the root of Eq (6.7) at δ = δ0∗ such that ξ̄1(δ0∗) = 0,
ξ̄2(δ0∗) = ε

µ
0, then Re

(
dλ
dδ

) ∣∣∣∣
δ=δ0∗,ε=ε

µ
0

> 0.

Proof. By Eq (6.7), one gets

(τ3 + τ6)
dλ
dδ
− (2λ − τ1 − τ5)eλδ

dλ
dδ
−

[
λ2 + (−τ1 − τ5)λ + τ2τ4 + τ1τ5

]
×eλδ

(
λ + δ

dλ
dδ

)
− eτ3τ6e−λδ

(
λ + δ

dλ
dδ

)
= 0, (6.25)

which implies (
dλ
dδ

)−1

=
M1(λ)
M2(λ)

−
δ

λ
, (6.26)

where  M1(λ) = τ3 + τ6 − (2λ − τ1 − τ5)eλδ,
M2(λ) =

[
λ2 + (−τ1 − τ5)λ + τ2τ4 + τ1τ5

]
λeλδ − τ3τ6λe−λδ.

(6.27)

Hence

Re
(dλ

dδ

)−1
δ=δ0∗,ε=ε

µ
0

= Re
[
F1(λ)
F2(λ)

]
δ=δ0∗,ε=ε

µ
0

=
M1RM2R +M1IM2I

M2
2R +M2

2I

. (6.28)

AIMS Mathematics Volume 9, Issue 1, 1622–1651.



1642

By (A12), we have

Re
(dλ

dδ

)−1
δ=δ0∗,ε=ε

µ
0

> 0, (6.29)

which completes the proof.
Depending on the study above, the following conclusion is acquired:

Theorem 6.1. Suppose that (A10)–(A12) hold, then the equilibrium point E(u1?, u2?) of model (6.1) is
locally asymptotically stable if δ ∈ [0, δ0∗) and model (6.1) generates a cluster of Hopf bifurcations at
the equilibrium point E(u1?, u2?) when δ = δ0∗.

Remark 6.1. In this paper, some mathematical formulas and assumptions are very complicated (for
example, (A6), (A12), etc.), but we can check their correctness using computerized calculations.
Remark 6.2. The control methods in this paper can be applied to control the bifurcation or chaos of
fractional-order dynamical system.

7. Simulation outcomes

In this section, to verify the obtained key outcomes of this paper, we give some computer
simulations.
Example 7.1. Consider the following predator-prey system incorporating delay:

du1(t)
dt

= u1(t)(h1 − a1u1(t)) −
d1u1(t)u2(t)
1 + bu1(t)

,

du2(t)
dt

= u2(t)[h2 − a2u2(t − δ)] +
dd1u1(t)u2(t)

1 + bu1(t)
,

(7.1)

where h1 = 0.5, h2 = 0.5, a1 = 2, a2 = 2, d1 = 0.4, b = 0.1, d = 0.45. Clearly, model (7.1) admits a
unique positive equilibrium point E(0.1975, 0.2674). One can easily derive that the conditions (A1)–
(A3) of Theorem 3.1 hold. Making use of computer software, one can obtain that δ0 ≈ 2.9. To verify
the correctness of the gained outcomes of Theorem 3.1, we choose two nonidentical values of delay.
One is δ = 2.8 and the other is δ = 2.97. If δ = 2.8 < δ0 ≈ 2.9, we gain computer simulation diagrams
that are given in Figure 1. From Figure 1, we can easily understand that u1 → 0.1975, u2 → 0.2674
when t → +∞. Namely, unique positive equilibrium point E(0.1975, 0.2674) of model (7.1) maintains
locally asymptotically stable status. If δ = 2.97 > δ0 ≈ 2.9, we gain computer simulation diagrams that
are given in Figure 2. From Figure 2, we are able to see that u1 is to keep a periodic quavering level
around the value 0.1975, u2 is to keep a periodic quavering level around the value 0.2674. In other
words, a cluster of periodic solutions (namely, Hopf bifurcations) arise near the positive equilibrium
point E(0.1975, 0.2674).
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Figure 1. Computer experiment results of model (7.1) including the delay δ = 2.8 < δ0 =

2.9. The positive equilibrium point E(0.1975, 0.2674) keeps locally asymptotically stable
status.

Figure 2. Computer experiment results of model (7.1) including the delay δ = 2.97 > δ0 =

2.9.A cluster of periodic solutions (i.e., Hopf bifurcations) arise near the positive equilibrium
point E(0.1975, 0.2674).
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Example 7.2. Consider the following controlled predator-prey system incorporating delay:
du1(t)

dt
= α1u1(t)(h1 − a1u1(t)) −

d1u1(t)u2(t)
1 + bu1(t)

+ k[u1(t − δ) − u1(t)],

du2(t)
dt

= u2(t)[h2 − a2u2(t − δ)] +
dd1u1(t)u2(t)

1 + bu1(t)
,

(7.2)

where h1 = 0.5, h2 = 0.5, a1 = 2, a2 = 2, d1 = 0.4, b = 0.1, d = 0.45. Let α1 = 0.6, k = 0.5. Clearly,
model (7.2) admits a unique positive equilibrium point E(0.1975, 0.2674). One can easily derive that
the conditions (A5)–(A7) of Theorem 4.1 hold. Making use of computer software, one can obtain
that δ? ≈ 2.85. To verify the correctness of the gained outcomes of Theorem 4.1, we choose two
nonidentical values of delay. One is δ = 2.83 and the other is δ = 3.0. If δ = 2.83 < δ∗ ≈ 2.85,
we gain computer simulation diagrams that are given in Figure 3. From Figure 3, we can easily
understand that u1 → 0.1975, u2 → 0.2674 when t → +∞. Namely, unique positive equilibrium point
E(0.1975, 0.2674) of model (7.2) maintains locally asymptotically stable status. If δ = 3.0 > δ∗ ≈ 2.85,
we gain computer simulation diagrams that are given in Figure 4. From Figure 4, we are able to see that
u1 is to keep a periodic quavering level around the value 0.1975, u2 is to keep a periodic quavering level
around the value 0.2674. In other words, a cluster of periodic solutions (namely, Hopf bifurcations)
arise near the positive equilibrium point E(0.1975, 0.2674).

Figure 3. Computer experiment results of model (7.2) including the delay δ = 2.83 < δ∗ =

2.85. The positive equilibrium point E(0.1975, 0.2674) keeps locally asymptotically stable
status.
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Figure 4. Computer experiment results of model (7.2) including the delay δ = 3.0 >

δ∗ = 2.85. A cluster of periodic solutions (i.e., Hopf bifurcations) arise near the positive
equilibrium point E(0.1975, 0.2674).

Example 7.3. Consider the following predator-prey system incorporating delay:


du1(t)

dt
= u1(t)(h1 − a1u1(t − θ)) −

d1u1(t)u2(t)
1 + bu1(t)

,

du2(t)
dt

= u2(t)[h2 − a2u2(t − θ)] +
dd1u1(t)u2(t)

1 + bu1(t)
,

(7.3)

where h1 = 0.5, h2 = 0.5, a1 = 2, a2 = 2, d1 = 0.4, b = 0.1, d = 0.45. Clearly, model (7.3) admits
a unique positive equilibrium point E(0.1975, 0.2674). One can easily derive that the conditions (A8)–
(A10) of Theorem 5.1 hold. Making use of computer software, one can obtain that δ? ≈ 2.8. To verify
the correctness of the gained outcomes of Theorem 5.1, we choose two nonidentical values of delay.
One is δ = 2.7 and the other is δ = 2.88. If δ = 2.7 < δ? ≈ 2.8, we gain computer simulation diagrams
that are given in Figure 5. From Figure 5, we can easily understand that u1 → 0.1975, u2 → 0.2674
when t → +∞. Namely, unique positive equilibrium point E(0.1975, 0.2674) of model (7.3) maintains
locally asymptotically stable status. If δ = 2.88 > δ? ≈ 2.8, we gain computer simulation diagrams
that are given in Figure 6. From Figure 6, we are able to see that u1 is to keep a periodic quavering
level around the value 0.1975, u2 is to keep a periodic quavering level around the value 0.2674. In other
words, a cluster of periodic solutions (namely, Hopf bifurcations) arise near the positive equilibrium
point E(0.1975, 0.2674).

AIMS Mathematics Volume 9, Issue 1, 1622–1651.
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Figure 5. Computer experiment results of model (7.3) including the delay δ = 2.7 < δ? =

2.8. The positive equilibrium point E(0.1975, 0.2674) keeps locally asymptotically stable
status.

Figure 6. Computer experiment results of model (7.3) including the delay δ = 2.7 > δ? =

2.8.A cluster of periodic solutions (i.e., Hopf bifurcations) arise near the positive equilibrium
point E(0.1975, 0.2674).
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Example 7.4. Consider the following controlled predator-prey system incorporating delay:


du1(t)

dt
= u1(t)(h1 − a1u1(t − δ)) −

d1u1(t)u2(t)
1 + bu1(t)

+ k1[u1(t − δ) − u1(t)],

du2(t)
dt

= u2(t)[h2 − a2u2(t − δ)] +
dd1u1(t)u2(t)

1 + bu1(t)
+ k2[u2(t − δ) − u2(t)],

(7.4)

where h1 = 0.5, h2 = 0.5, a1 = 2, a2 = 2, d1 = 0.4, b = 0.1, d = 0.45. Let k1 = 0.3, k2 = 0.1.
Clearly, model (7.4) admits a unique positive equilibrium point E(0.1975, 0.2674). One can easily
derive that the conditions (A8)–(A10) of Theorem 6.1 hold. Making use of computer software, one can
obtain that δ0∗ ≈ 4.1. To verify the correctness of the gained outcomes of Theorem 6.1, we choose
two nonidentical values of delay. One is δ = 3.8 and the other is δ = 4.4. If δ = 3.8 < δ0∗ ≈ 4.1,
we gain computer simulation diagrams that are given in Figure 7. From Figure 7, we can easily
understand that u1 → 0.1975, u2 → 0.2674 when t → +∞. Namely, unique positive equilibrium point
E(0.1975, 0.2674) of model (7.4) maintains locally asymptotically stable status. If δ = 4.4 > δ0∗ ≈ 4.1,
we gain computer simulation diagrams that are given in Figure 8. From Figure 8, we are able to see that
u1 is to keep a periodic quavering level around the value 0.1975, u2 is to keep a periodic quavering level
around the value 0.2674. In other words, a cluster of periodic solutions (namely, Hopf bifurcations)
arise near the positive equilibrium point E(0.1975, 0.2674).

Figure 7. Computer experiment results of model (7.4) including the delay δ = 3.8 < δ0∗ =

4.1. The positive equilibrium point E(0.1975, 0.2674) keeps locally asymptotically stable
status.
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Figure 8. Computer experiment results of model (7.4) including the delay δ = 4.4 > δ0∗ =

4.1. A cluster of periodic solutions (i.e., Hopf bifurcations) arise near positive equilibrium
point E(0.1975, 0.2674).

Remark 7.1. Based on the computer simulation figures in Examples 7.1 and 7.2, one can easily know
that the bifurcation values of model (7.1) and model (7.2) are δ0 ≈ 2.9 and δ∗ ≈ 2.85, which implies that
we can reduce the domain of stability and shorten the time of emergence of bifurcation of model (7.1)
via the designed hybrid controller. Based on the computer simulation figures in Examples 7.3 and 7.4,
one can easily know that the bifurcation values of model (7.3) and model (7.3) are δ? ≈ 2.8 and
δ0∗ ≈ 4.1, which implies that we can enlarge the domain of stability and delay the time of emergence
of bifurcation of model (7.3) via the designed extended delayed feedback controller.

8. Conclusions

Nowadays, the investigation of predator-prey models has attracted much interest from mathematical
and biological circles. From a mathematical point of view, revealing the effect of time delay on the
many dynamical peculiarities of predator-prey models is a very significant topic. In this article, two
new delayed predator-prey models are formulated. The non-negativeness, existence and uniqueness,
and boundedness of solution of the established delayed predator-prey models are detailedly analyzed.
By regarding the delay as the parameter of bifurcation, we gain two delay-independent criteria to
guarantee the emergence of bifurcation and stability of the established two delayed predator-prey
models. Making use of two different controllers, we have availably adjusted the region of stability and
the time of onset of the bifurcation phenomenon of the two delayed predator-prey models. The fruits of
this article have immense theoretical significance in taking control of the balance of the concentrations
of predator and prey. Furthermore, the exploration idea can be applied to explore the control problem
of bifurcation in many other differential models. In the near future, we will adopt other controllers
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to deal with the bifurcation control of these two delayed predator-prey models. Recently, there have
many studies on Hopf bifurcation of fractional-order dynamical models [26–31]. We will also focus
on Hopf bifurcation of fractional-order predator-prey models in the near future.
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