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Abstract: With the widespread application of smart devices, the security of internet of things (IoT)
systems faces entirely new challenges. The IoT data stream operates in a non-stationary, dynamic
environment, making it prone to concept drift. This paper focused on addressing the issue of concept
drift in data streams, with a key emphasis on introducing an innovative drift detection method-ensemble
multiple non-parametric concept localization detectors, abbreviated as EMNCD. EMNCD employs
an ensemble of non-parametric statistical methods, including the Kolmogorov-Smirnov, Wilcoxon
rank sum and Mann-Kendall tests. By comparing sample distributions within a sliding window,
EMNCD accurately detects concept drift, achieving precise localization of drift points, and enhancing
overall detection reliability. Experimental results demonstrated the superior performance of EMNCD
compared to classical methods on artificial datasets. Simultaneously, to enhance the robustness of
data stream processing, we presented an online anomaly detection method based on the isolation
forest (iForest). Additionally, we proposedwhale optimization algorithm (WOA)-extreme gradient
boosting (XGBoost), a drift adaptation model employing XGBoost as a base classifier. This model
dynamically updates using drift points detected by EMNCD and fine-tunes parameters through the
WOA. Real-world applications on the edge-industrial IoTset (IIoTset) intrusion dataset explore the
impact of concept drift on intrusion detection, where IIoT is a subclass of IoT. In summary, this paper
focused on EMNCD, introducing innovative approaches for drift detection, anomaly detection, and
drift adaptation. The research provided practical and viable solutions to address concept drift in data
streams, enhancing security in IoT systems.
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1. Introduction

The IoT connects devices and communication networks globally, allowing things to interconnect
and cooperate with each other, greatly facilitating our daily lives. The most common IoT applications
are in smart homes [1], smart cities [2, 3], intelligent transportation [4], security monitoring [5, 6], and
more. It is expected that by 2025, the global annual increase of IoT devices will reach trillions [7, 8].
However, while cyberspace brings prosperity and convenience, it also presents various security risks
and challenges.

The IoT system can be divided into three layers: perception, transportation, and application. At
perception layer, the devices are deployed in the external zone, while the IoT application layer spans a
multitude of devices, making the IoT system highly vulnerable to attacks [9]. Therefore, network
security on the IoT has significant research significance. Traditional network security mechanisms
often focus on static environments, effectively detecting specific network attacks such as wormhole
attacks [10, 11]. However, in the complex and destructive attack types present in the real IoT
environment, such models struggle to adapt to environmental changes and their effectiveness is
weakened.

Intrusion detection system (IDS) is an effective technique to identify attacks. IDS detects various
network attacks by monitoring network traffic or system running status [9]. The IoT IDS architecture
is shown in Figure 1.

Figure 1. The architecture of IDS for IoT.

In [12], the authors introduced an intelligent IDS based on deep learning algorithms. By
integrating recursive neural networks and gated recurrent units, the system comprehensively detects
attacks across different layers, offering robust support for the overall security of the IoT system. An
IDS based on transformer neural networks (TNN) was proposed in [13]. By leveraging the parallel
processing capabilities of TNN, this approach accelerates the learning process, enhancing the
effectiveness of detecting network attacks. Experimental results indicate that TNN-IDS outperforms
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other machine learning and deep learning-based IDS in detecting malicious activities. In [14], the
authors aim to enhance performance and reduce computational power by leveraging deep
convolutional neural networks and feature engineering. Through extensive experiments on the IoT
network intrusion dataset 2020 (IoTID20), the model demonstrates outstanding performance across
multiple evaluation metrics, providing new insights into the field of intrusion detection in IoT
networks.

The above studies have introduced new possibilities to the field of IDS by incorporating deep
learning and novel neural network architectures. These innovative approaches not only provide us
with more accurate intrusion detection tools but also enable us to better adapt to the complexity of the
IoT environment. However, in this rapidly evolving field, the data streams [15] in the IoT operate
non-stationarily, exhibiting dynamism in a constantly changing environment. This poses new
challenges for data processing and analysis. In this context, concept drift [16] emerges as a significant
concern within the IoT domain, as the continuous shifts in data distribution can impact the stability
and accuracy of models. Researchers typically classify concept drift into four types based on the
duration of the change in data distribution: sudden drift (changes in distribution over a short period),
gradual drift (distribution changes over an extended period, with new concepts replacing old ones),
incremental drift (gradual transformation of old concepts into new ones, with many intermediate
concepts appearing during the transition), and recurring drift (a repeat of a concept over time).

We can break down the concept drift detection framework into four key stages: data retrieval, data
modeling, test statistic computation, and hypothesis testing [16]. The selection of crucial features and
the configuration of statistical metrics and hypothesis testing methods during the test statistic
computation and hypothesis testing stages significantly impact the accuracy of drift detection.
Regarding the choice of statistical metrics, various drift detection methods have been proposed from
different perspectives, including those based on means value [17], density [18], information
entropy [19], and more. These existing methods lay the foundation for addressing concept drift
challenges in the field of the IoT [20, 21]. Utilizing methods such as mean, density, and information
entropy for concept drift detection offers significant intuitive and interpretive advantages, assisting
researchers in quantitatively analyzing concept drift phenomena. These methods rely on the overall
distribution characteristics of the data, enabling them to be highly sensitive in certain scenarios and
effectively capturing pronounced changes in distribution. However, despite their numerous strengths,
these methods also come with certain limitations. For instance, they often depend on specific data
distribution assumptions, like normality, which might limit their accuracy in complex data
distributions. Furthermore, they are susceptible to the influence of outliers and noise, potentially
leading to false positive or false negative concept drift reports. Of special note is the challenge that
these methods might face in capturing complex concept drift patterns, especially in the presence of
nonlinear or higher-order shifts. It is precisely this realization that drives us to acknowledge the
necessity of exploring more robust methodologies to comprehensively address these issues.

In this context, our research uses an ensemble learning approach to improve the accuracy and
robustness of concept drift localization. This method overcomes the limitations of a single method by
integrating the results of multiple detectors and taking full advantage of the complementarity between
different methods. This paper presents a concept drift localization method based on multiple
nonparametric statistical analysis. The advantage of this approach is that it does not require
assumptions about a particular distribution of data, especially when dealing with complex and
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changing IoT environments. Beyond the concept drift method, we introduce an online data anomaly
detection technique based on iForest to enhance the robustness of data stream processing.
Additionally, we present a drift adaptation method specifically tailored to confront the challenges of
concept drift in IoT data streams, thereby furnishing practical and viable solutions to bolster the
security of IoT systems.

The main contributions of this paper are as follows:

(1) We propose an ensemble concept drift localization algorithm that integrates multiple
nonparametric statistical methods that are well-suited for practical applications.

(2) We design an online outlier detection method for data streams that considers both global and local
outliers.

(3) We propose a drift adaptive framework based on a WOA to optimize hyperparameters that can
effectively address the problem of network attack detection in IoT systems and consider the effects
of concept drift on network attack identification.

(4) The proposed model improves the effectiveness and efficiency of the IDS and protects the IoT
system from network attacks.

2. Related works

The rapid development of the IoT has led to an increase in network threats, which can have a
negative impact on the operation of IoT systems. IDSs are effective means of protecting IoT systems,
and researchers have conducted extensive research on them. For example, federated learning intrusion
detection systems (FLIDS), a distributed IDS for IoT that uses federated learning and reinforcement
mechanisms for privacy protection, have been proposed in [22] and verified on the
NF-UNSW-NB15-v2 dataset to confirm its effectiveness. Similarly, in [23], a machine learning-based
model was developed to identify common types of attacks on the network, and in [24] an intelligent
two-layer IDS for IoT was proposed. Additionally, the data sampling technique with a two-stage
convolutional neural network (DS-2CNN) model was proposed in [25] to accurately identify IoT
devices with only a small number of samples, and a communication mechanism based on blockchain
was proposed in [26] to monitor the evaluation trust of each smart device in real time to ensure IoT
system security. While most of the methods for IoT network attack detection focus on applications,
algorithms, feature selection, and other aspects, some scholars have begun to consider solving the
concept drift problem in the IoT scenario in recent years due to the special characteristics of network
data streams.

Reference [20] discusses the impact of concept drift on Botnet cyber-attack detection. The author
proposes a dynamic residual projection method (DRPM) for network attack detection. The method
first determines whether there is a drift in the data stream, and once the drift is detected, CNN and long
short-term memory (LSTM) are used to learn the features of new concepts. The validation dataset is
cyber-attack detection on a realistic botnet dataset in IoT (Bot-IoT) combined with the concept drift
analysis method; the network attack detection performance is significantly improved. In [27], the
principal component analysis (PCA) method is used to detect concept drift in IoT intrusion detection
data streams and an outlier detection technology for data streams is proposed. The main contribution
of this paper is to solve the drift problem in network data streams. The author proposes an online deep
neural network method based on hedge weighting mechanism, which enables the model to learn and

AIMS Mathematics Volume 9, Issue 1, 1535–1561.



1539

adapt stably when new intrusion data arrives; thus, effectively reducing the false positive and missing
positive of the model. An adaptive light gradient boosting machine (light GBM) model for IoT data
analysis is proposed in [21], which can detect IoT attacks with high accuracy and adapt to concept
drift. Clearly, for the phenomenon of concept drift in IoT security problems, an effective solution is
to detect the localization of concept drift and update the current model according to the data stream of
drift.

Methods based on error rate and data distribution are two important algorithms in drift detection.
The drift detection method (DDM) algorithm [17] takes the sample mean and standard deviation as
detection statistics and detects drift through the change of statistics. The Page-Hinckley [28]
algorithm is a simple and effective concept drift detection method, which is suitable for batch
processing data streams. As the data stream is processed, each sample is gradually added to the
sliding window and updates the cumulative sum. The algorithm determines concept drift by manually
setting a threshold. At each time step, it compares the cumulative sum between the latest window and
the previous window. If the threshold is exceeded, concept drift is considered to occur. Alippi
et al. [29] proposed a concept drift detection called hierarchical change-detection tests (HCDTs),
which includes a detection layer and a verification layer. The detection layer has two design strategies
for rapidly detecting data changes. The first strategy involves using the maximum likelihood method
to calculate the probability density function of the corresponding distribution of samples and
comparing the differences. The second strategy is to directly test whether the two data distributions
are consistent using hypothesis testing methods, such as the Kolmogorov-Smirnov test. When the
detection layer identifies a change, it immediately activates the verification layer to recheck the data
distribution change. This hierarchical drift test effectively reduces false positives.

A statistical test of equal proportions detection method (STEPD) [30] compares the classification
error rate of local samples included in the latest time window and all samples included in the
whole-time window, and detects the concept drift by judging whether the prediction error has changed
significantly through the chi-square test. From the perspective of the source of concept drift, the drift
detection algorithm based on data distribution uses the window mechanism to calculate the distance
between window samples to measure the difference between the new and old data distributions. [31]
proposed a Wilcoxon rank sum statistical test for concept drift detection (WSTD) algorithm, which
used the Wilcoxon rank sum test to judge the difference between two window distributions so as to
detect concept drift. [32] proposed a PCA-based change detection (PCA-CD) framework, which first
projected data into a low-dimensional space, then detected changes in data distribution by estimating
the density and divergence between Windows. The algorithm is friendly to high-dimensional data
streams and reduces the computational cost.

When the drift is detected, it needs to be properly processed so that the model can adapt to the new
data stream later. [33] proposed a forgetting parameters extreme learning machine (FP-ELM) online
incremental learning algorithm. FP-ELM will set forgetting parameters for the old concept training
data according to the performance of the initial model, so as to adapt to the possible changes after
the arrival of the new data stream. [34] investigates an ensemble learning approach that uses transfer
learning to retrain the model to adapt to the current concept for newly arriving data streams. In this
paper, an adaptive framework for IoT data streams is designed to address the impact of concept drift
on cyberattack detection in IoT. In real life, because the acquisition of class labels of data streams is
difficult and expensive, detection algorithms using class labels cannot be widely used. The proposed
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concept drift detection method no longer relies on labels and only utilizes data features for detection.

3. Concept drift localization

In this section, we will develop a drift localization algorithm using ensemble learning for multiple
nonparametric statistical methods, which can accurately identify the location of drifts in a data
stream. We will first review the fundamental concepts of nonparametric methods and then introduce
the framework of our proposed drift localization technique, providing corresponding theoretical
support. Finally, we will study an online outlier detection method for data streams, which can monitor
abnormal situations in real time and provide timely alerts for anomalous data. Figure 2 illustrates the
overall architecture of the research presented in this paper.

Figure 2. The architecture of IDS for IoT.

3.1. EMNCD

Based on the definition of drift, we consider that concept drift occurs when the distribution of the
latter two concepts changes over time. However, in practical applications, the theoretical distribution
of data streams is often unknown. In statistics, when the data cannot be assumed to meet the known
distribution, nonparametric statistics can be used to solve problems, such as assuming the population
has a certain distribution or whether the distribution of the population is the same.

The Kolmogorov-Smirnov test (K-S test) [35,36], Wilcoxon rank sum test (Wilcoxon test) [31], and
Mann-Kendall test (M-K test) [37] are non-parametric tests used to compare the cumulative distribution
functions of two independent samples.

Given two samples {X1, ..., Xm} and {Y1, ...,Yn}, where Fm(x) and Gn(x) are empirical distribution
functions derived from two samples, ∀x ∈ R,

Fm(x) =
1
m
{the number in {X1, . . . , Xm} that is less than x} ,

Gn(x) =
1
n
{the number in {Y1, . . . ,Yn} that is less than x} .

The test statistic is defined as

Dm,n = sup
−∞<x<+∞

|Fm(x) −Gn(x)| . (3.1)

The K-S test reflects the difference between two samples through the degree of convergence of Dm,n.
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The basic idea of the Wilcoxon rank sum test method is: m + n observations are mixed in order and
T represents the rank sum of {X1, ..., Xm} in the joint sample {X1, ..., Xm}; {Y1, ...,Yn}; that is,

T =
m∑

i=1

Ri, i = 1 · · ·m. (3.2)

If the statistic T does not fall into the rejection domain, the two samples are considered consistent.
The M-K test is to compare each number of data points (Xi,Y j) for a sequence containing n data

points, and the M-K statistic S is defined as the sum of the number of increasing differences minus the
number of decreasing differences:

S =
n−1∑
i=1

n∑
j=i+1

sgn
(
X j − Xi

)
, (3.3)

sgn(θ) =


1, if θ > 0,
0, if θ = 0,
−1, if θ < 0.

(3.4)

The significance level of statistic S is used to determine whether the trend of the data is caused by
random or statistically significant.

Non-parametric testing techniques require no assumptions about population parameters and are
applicable to various data types. The aforementioned methods can be employed to compare the data
distribution between the current time t and the previous time t − 1 in data streams. In this study, we
introduce the EMNCD method. This approach integrates the K-S test, Wilcoxon test and M-K test,
three non-parametric statistical methods to examine whether changes occur in data distribution. By
configuring significance levels and sample sizes to determine critical values, these techniques assess
the degree of association or disparity between the two datasets. We recommend utilizing these methods
for executing drift localization. The detailed procedure is shown in Algorithm 1.

The algorithm is designed to detect drift in an online data stream S . It first sets the size of the
sliding window and the sliding step size, which are used to divide the data stream into two windows
WS 1 and WS 2. The window WS 1 contains the initial window size data samples, then the window
WS 1 is slid backward step by step to obtain the current window WS 2. The algorithm then compares
the degree of difference between the two datasets within the two windows using three non-parametric
statistical methods to detect the occurrence of drift. If the p values of the test result are less than the
threshold, the threshold is significance level, meaning that the difference between the two datasets is
significant, thus, it is considered that there is drift, and the algorithm outputs the window and sample
position where the drift occurs. If there is no significant difference, then no drift warning is given. The
algorithm repeats these steps until all samples in the data stream have been tested.
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Algorithm 1. EMNCD.
Input: Data stream S ; n; window size; step; threshold

Output: concept

1: Initialize concept = []
2: for i in 1 : int((n − window size)/step) do
3: WS 1=S [(i − 1) ∗ step : (i − 1) ∗ step + window size, :]
4: WS 2=S [i ∗ step : i ∗ step + window size, :]
5: for i in 1 : int((window size)/step) do
6: Perform K-S test for (WS 1[:,j],WS 2[:,j]), obtain p value ks p

7: Perform Wilcoxon test for (WS 1[:,j],WS 2[:,j]), obtain p value wilcoxon p

8: Perform M-K test for (WS 1[:,j],WS 2[:,j]), obtain p value mk p

9: Ensemble the three p values:
10: ensemble result = ensemble (ks p, wilcoxon p, mk p)
11: if ensemble result < threshold then
12: concept[i,1] = i

13: concept[i,2] = (i − 1) ∗ step

14: end if
15: end for
16: end for

3.2. Detection of outliers in data streams

Outliers [38] refer to observation values that significantly deviate from the majority of samples in
the dataset where they are located. In data preprocessing, how to deal with outliers depends on the
situation. Some outliers may affect the efficiency of modeling and even lead to the deviation of
results, while some outliers may contain useful information. Most traditional outlier detection
techniques are analyzed on offline datasets, including statistics-based methods, distance-based
methods, and density-based methods. However, for dynamically changing data streams, the direct use
of these methods cannot obtain the desired effect. [39] proposed a powerful dimensionality reduction
approach to visualize IoT network traffic. This method has been proven effective in detecting
anomalies in IoT traffic data, bringing valuable insights into the domain of anomaly detection within
the IoT.

iForest algorithm [40, 41] is a fast and efficient unsupervised anomaly detection method. It is
particularly suitable for detecting anomalies in continuous structured data due to its low
computational cost. The time complexity of constructing isolation trees is approximately
O(N · log(N)) and the space complexity is O(N), where N is the number of samples. iForest is utilized
for detecting anomalies in a dataset X, involving training and testing stages. During training, isolation
trees are constructed for the samples, forming isolation forests. The path length of each sample is
recorded. In the testing stage, iForest determines if a sample is abnormal based on its path length.

The anomaly score s(x, n) for an instance x is calculated using the formula:

s(x, n) = 2−E(h(x))/c(n), (3.5)
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where E (h (x)) is the average of h (x) from a collection of isolation trees.

c(n) = 2H(n − 1) − (2(n − 1)/n),

where H(i) is the harmonic number and it can be estimated by ln(i)+0.5772156649. The anomaly score
signifies the likelihood of an instance being an outlier, with values closer to one indicating anomalies.

The iForest algorithm is suitable for detecting anomalies in continuous structured data. Due to
the characteristics of large data volume, fast dynamic change speed, and strong continuity of data
streams, real-time monitoring is required to ensure the accuracy and precision of outlier detection for
data streams [42]. Therefore, this paper proposes an online outlier detection method based on iForest.
Compared with other anomaly detection algorithms, iForest does not need to calculate density, such as
the local outlier factor (LOF) algorithm or distance (such as k-nearest neighbor algorithm), but to divide
features and preferentially find outliers. Therefore, the calculation cost of the iForest algorithm is lower
and the speed is faster. At the same time, the iForest algorithm can quantify the anomaly degree of each
sample, while the outlier detection method based on clustering can only judge whether it is an anomaly,
such as density-based spatial clustering of applications with noise (DBSCAN). By using the historical
concept data, the global outlier value of the data stream can be determined. Combined with sliding
window technology, the anomaly degree of the current concept data can be calculated simultaneously
to identify the local outlier value of the current concept.

Algorithm 2 describes the proposed online outlier detection process for data streams.

Algorithm 2. Online anomaly detection with iForest.
Input: Historical data Data1; current window data Data2; time window w

Output: Local outliers; local outliers of current window
1: Initialize global outliers = []
2: Initialize local outliers = []
3: Use iForest to calculate anomaly scores of all samples in Data1

4: for each data point x do
5: compute the anomaly score D1x = s(x,len(Data1))
6: compute the anomaly score D2x = s(x,len(Data2))
7: if D1x ≈ 1 then
8: Add x to global outliers

9: end if
10: end for
11: Calculate anomaly scores D2x of all samples in Data2

12: Detect local outliers in Data2

13: if drift is detected according to Algorithm 1 then then
14: update Data2 according to drift position
15: recalculate anomaly scores of updated Data2

16: end if
17: Return local outliers of Data2

You need to specify the time window w, all the historical data and the data in the current time
window w. The isolated forest algorithm was used to calculate the anomaly score of each sample in all
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historical data, and if the anomaly score was equal to one, it was marked as a global outlier. Similarly,
the abnormal scores of samples in the current time window were calculated to detect whether there
were local outliers. If a drift is detected according to Algorithm 1, the current window is updated with
the sample according to the drift position, and the sample anomaly score is recalculated.

4. Concept drift detection and adaptation

In a data stream with concept drift, where the concepts in the data stream change over time, the
initial training model becomes unsuitable for the new data stream. Continuing to use the original
model will result in poor or even completely invalid classification performance. Concept drift is the
root cause of significant degradation of classification performance, and adaptive learning is a suitable
solution. In this paper, we propose an online update prediction model to adapt to potential concept
drift and deal with the changing data stream. The proposed method uses XGBoost, a popular gradient
boosting algorithm, and employs WOA optimization to adapt the model to the changing data stream.

4.1. XGBoost analysis based on WOA

The aim of this study is to develop a drift adaptive framework that can handle situations where the
classification performance of a data stream deteriorates. The first step is to train an initial XGBoost
model using the historical data and apply it to the incoming data stream. If the accuracy of the model
changes significantly, the occurrence of drift in the data stream is suspected and Algorithm 1 is used to
detect it. To adapt to the current concept of new data, the WOA is used to tune the hyperparameters in
the XGBoost model to create an optimized classification model. The proposed framework can adapt to
the continuously changing data stream and maintain good classification performance.

4.2. Optimized XGBoost

XGBoost [43, 44] is a machine learning algorithm that combines decision trees to improve
classification and regression performance. It is an enhancement of the boosting algorithm and uses the
gradient descent algorithm to minimize the loss when adding a new model. The objective function of
XGBoost is defined as follows:

Ob j(t) =

n∑
i=1

l
(
yi, ŷ

(t)
i

)
+

t∑
i=1

Ω ( fi) =
n∑

i=1

l
(
yi, ŷ

(t−1)
i + ft (xi)

)
+ Ω ( ft) + c. (4.1)

The original objective function can be approximated by Taylor formula expansion:

Ob j(t) ≃

n∑
i=1

[
l
(
yi, ŷ

(t−1)
i

)
+ gi ft (xi) +

1
2

hi f 2
t (xi)

]
+ Ω ( ft) + e, (4.2)

where l is the loss function, that is, the training error is calculated. Ω( ft) is a regularized term, which
is used to define the complexity. The smaller the regularized value, the lower the complexity and the
stronger the generalization ability. c is the constant term.

The XGBoost algorithm stands out for its efficiency in both training and prediction phases. During
training, its time complexity is O (num boost rounds · N · d · log(N) + num leaves), where N is the
number of samples, d is the maximum tree depth and num boost rounds is the boosting round count.
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In the prediction phase, the time complexity is O (num samples · num trees · d + num leaves), with
num trees representing the total number of trees. These complexities, influenced by parameters like
boosting rounds, tree depth and regularization terms, underscore XGBoost effectiveness in handling
large-scale and dynamic IoT datasets.

The choice of XGBoost as the core model for IoT intrusion detection is supported by multiple
factors. First, the XGBoost model adds L1 and L2 regularization functions to improve the fault
tolerance and prevent overfitting of the model. Second, all central processing unit (CPU) cores of the
system are used during model training and all trees are built in parallel rather than in sequence.
Finally, the XGBoost algorithm has built-in rules for handling missing data, making it friendly to
missing network traffic values. The XGBoost algorithm has fast execution speed and high model
prediction performance, making it suitable for online data streams that focus on computing time and
memory resources.

When classifying data streams, the parameters of the classifier affect the accuracy, scalability and
speed of the model. In order to build an effective model with high prediction performance, this paper
uses the WOA [44–46] to tune the hyperparameters of the XGBoost model. WOA is an evolutionary
algorithm based on the behavior of whale groups in nature to solve optimization problems. It simulates
the migration and predation behavior of whales, and searches for the optimal solution by constantly
searching and updating the candidate solutions in the solution space. Compared with the traditional
optimization algorithm, WOA has stronger global search ability and is not easy to fall into the local
optimal solution.

The WOA was used to tune the main hyperparameters of the XGBoost model, including the
maximum depth of a tree (max depth), the learning rate (learning rate), the minimum samples from
leaf nodes (min child weight), the maximum incremental step size (max delta step), etc. By
determining the optimal values of these hyperparameters, the optimized XGBoost model is obtained
for IoT data analysis.

4.3. WOA-XGBoost

This section discusses the selection of a method for model retraining and proposes an adaptive
XGBoost model framework. When a specific drift position in the data stream is detected, the provided
hyperparameter values are used to train the XGBoost model online, thereby improving the
classification performance of samples that contain new concepts. The overall framework of the
proposed adaptive XGBoost model is shown in Algorithm 3. For the incoming initial sample S i and
the subsequent sample S i+1 in the sliding window, the XGBoost model is built, respectively. Next,
Algorithm 1 is used for drift detection, and the learner is retrained on the samples with drift. The
WOA algorithm is used to optimize the model parameters, thereby obtaining the optimal adaptive
classifier.

The rationale behind this approach lies in the observation that when employing the initial classifier
to train each concept, a significant decline in model performance, such as a notable decrease in
accuracy, is detected for subsequent concepts. Therefore, a proactive decision is made to promptly
update the classifier for the subsequent concepts, aiming to enhance overall model performance. In
summary, the proposed adaptive XGBoost method has the following advantages:

(1) The method explicitly performs drift detection and updates the model based on the performance
of the basic learner, thereby effectively improving the prediction performance of the final model.
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(2) The proposed algorithm can adapt to concept drift quickly and requires less time compared to
incremental update methods.

(3) The sliding window technology is used to discard old concept data and collect new concept data,
taking into account the dynamic variability of data streams.

(4) The WOA algorithm is used to automatically tune the hyperparameters of the model to fit the
specific dataset, thereby improving its generalization and adaptive ability.

Algorithm 3. WOA-XGBoost drift detection and adaptation.
Input: Data stream S ; window size w; step s

Input: Classifier: XGBoost trained on offline dataset
Output: the updated XGBoost model
Output: the detected optimal hyperparameter values

1: for DataStream S do
2: Obtain each sample S i in S using sliding window with size w and step s

3: Construct XGBoost on S i

4: Run Algorithm 1 to detect drift points on S i

5: if Drift detected in S i then
6: Update XGBoost model by retraining on drift samples in S i

7: Search optimal hyperparameter values by WOA configuration
8: end if
9: end for

5. Experimental evaluation

In order to verify the concept drift in network intrusion detection, we applied the sea, stagger, and
rotating hyperplane datasets, which is to evaluate the algorithm performance.

5.1. Concept drift detection on artificial datasets

We perform the EMNCD method on sea, stagger and rotating hyperplane. In these experiments, the
metrics are TP, FP, FN, and Delay. We list their meanings in Table 1. Delay can be obtained by the
following formula (5.1).

Delay =
∑

delay at each drift
total number of drift

(5.1)

Table 1. Evaluation metrics.

Real drift points Real stationary points

Detected drift points TP (True positive) FP (False positive)
Detected stationary points FN (False negative) TN (True negative)

The sea dataset [47] was proposed by Street and Kim in 2001. It consists of 60,000 samples with
three features and two classes. The dataset contains three drift points, where concept drift occurs once
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every 15,000 samples, resulting in a total of four different concepts. Additionally, there is 10% noise
added to the sea dataset to test its anti-noise ability.

The stagger dataset [48] is similar to the sea dataset with two classes. It contains 100,000 samples
with three features. The stagger dataset has three concepts and two drift points, occurring every 33,333
data points.

The rotating hyperplane dataset [49,50] is generated by hyperplane generator with a change of 0.001
probability. It includes two classes and consists of 200,000 samples with 10 features. The dataset
experiences fluctuations every 5,000 data points, resulting in 39 drift points and covering 40 different
concepts. Additionally, there is 5% noise added to the rotating hyperplane dataset.

These datasets are commonly used in the field of concept drift detection and evaluation of drift
detection algorithms. Researchers often use them to test the performance and robustness of their
algorithms in the presence of concept drift and noise. Figure 3 demonstrates the performance of our
proposed algorithm on synthetic datasets with various window and step size configurations.

Figure 3. The TP, FP, and FN values of different windows and step over sea, stagger, and
rotating hyperplane datasets.

Figures 4–6 shows the comparison of the results of the above three datasets on five drift detection
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algorithms. Among them, the EMNCD algorithm has the best detection effect on the sea dataset,
accurately detecting three drift points and no FPs. For stagger and rotating hyperplane datasets,
EMNCD has some false alarms and missed alarms.

Figure 4. Evaluation metrics on the sea dataset.

Figure 5. Evaluation metrics on the stagger dataset.

Figure 6. Evaluation metrics on the rotating hyperplane dataset.
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5.2. Edge-IIoTset dataset and its concept drift detection

Edge-IIoTset is a comprehensive realistic IoT and industrial IoT application security dataset that
includes more than 10 IoT devices representing key IoT characteristics and heterogeneous network
traffic [51]. The dataset was collected from seven testbeds, including the cloud computing layer,
network function virtualization layer, blockchain network layer, and others. Each layer uses
technologies that meet the key requirements of IoT and industrial IoT applications and are suitable for
machine learning-based IDS.

The dataset contains 14 types of attack traffic and 10 types of normal traffic. Table 2 shows the
distribution of each type of scenario.

Table 2. Edge-IIoTset dataset summary.

Scenarios Type of traffic Sample size type of traffic Sample size

Attack traffic

Backdoor attack 24862 Password attack 1048575
DDoS HTTP flood attack 229022 Port scanning attack 22564
DDoS ICMP flood attack 1048575 Ransomware attack 10925
DDoS TCP SYN flood attack 1048575 SQL injection attack 51203
DDoS UDP flood attack 1048575 Uploading attack 37634
MITM attack 1229 Vulnerability scanner attack 145869
OS fingerprinting attack 1001 XSS attack 15915

Normal traffic

Distance 1048575 phValue 746908
Flame sensor 1048575 Soil moisture 1048575
Heart rate 165319 Sound sensor 1048575
IR receiver 1048575 Temperature and humidity 1048575
Modbus 159502 Water level 1048575

To study the impact of concept drift on network data streams, we preprocessed the IoT data to ensure
the existence of concept drift. In this paper, we used a simplified edge-IIoTset dataset consisting of
300,000 samples. We randomly selected 100,000 normal traffic and 200,000 attack traffic, and designed
five concepts based on the distribution of different network data stream characteristics. These concepts
are represented by concept sequences C1–C5, each containing 60,000 sample data. The entire dataset
contains four drift points, as shown in Table 3.

In scenarios represented by C1, C3, and C5, a balanced occurrence of both normal traffic and various
attacks are simulated. C2 depicts a situation where a specific type of attack exhibits high frequency
during a particular time period of the day, while the remaining time experiences normal network traffic.
C4 illustrates a condition where the majority of network traffic remains normal throughout the day,
interspersed with occasional attacks. Specifically, in C2 and C4, intentional variation in the number of
records for different categories simulates an imbalanced distribution, mirroring the uneven prevalence
of distinct attack types in real-world environments.

AIMS Mathematics Volume 9, Issue 1, 1535–1561.



1550

Table 3. The designed concepts of edge-IIoTset.

Concept Sample size Type of traffic Number of record

C1 60000
Backdoor 20000
DDoS 20000
Normal 20000

C2 60000

MITM 1000
OS fingerprinting 1000
DDoS 38000
Normal 20000

C3 60000
Password 20000
Port scanning 20000
Normal 20000

C4 60000

Ransomware 10000
SQL injection 20000
XSS 10000
Normal 20000

C5 60000
Uploading 20000
Vulnerability scanner 20000
Normal 20000

In this paper, concept drift is simulated by changing the distribution of network data streams through
sample ordering. The samples within each concept were randomly ordered to provide more reliable
results. The true drift points in the edge-IIoTset dataset were identified as 60001, 120001, 180001, and
240001, as shown in Table 2.

After the true drift points are identified and the adaptive XGBoost algorithm is used for drift
adaptation, in the experiments, the data was split into 70% training set and 30% test set for model
training and testing. However, real network data streams are more complex and may have different
concepts and imbalanced class distributions. Using only the overall classification accuracy as the
main evaluation metric can lead to unreliable results, as the algorithm may predict the minority class
as the majority class, resulting in a high accuracy that does not reflect the true performance of the
model. To avoid such errors, four evaluation metrics were used for comparative analysis: accuracy, F1
score, recall and precision. Accuracy represents the ratio of correctly predicted samples to the total
samples, indicating the overall performance of the classification method. Recall represents the ratio of
correctly predicted positive samples to all positive samples, indicating the ability of the model to
identify positive samples. Precision represents the ratio of correctly predicted positive samples to the
total predicted positive samples, indicating the accuracy of the model in predicting positive samples.
F1 score integrates the results of precision and recall and is the harmonic average of these two
metrics. Its value ranges from zero to one, where one represents the best performance of the model
and zero represents that the model is not applicable.
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5.3. Experimental results and discussion

In order to compare the performance of the ensemble algorithm with three non-parametric
detection methods in IoT attack detection, we conducted experiments on the edge-IIoTset dataset.
The ensemble algorithm and non-parametric statistical method are applied to edge-IIoTset; we
recorded the performance results of various algorithms in different environments, and analyzed their
performance. These comparisons can provide a practical basis for selecting the best method for IoT
attack detection.

In order to further improve the model performance, we apply the WOA optimization algorithm to
the XGBoost algorithm. By optimizing hyperparameters, the adaptive performance of the XGBoost
model is enhanced so that it can better cope with the influence of concept drift on network intrusion
detection. By comparing the classification model without concept drift analysis, we can quantify the
improvement of the WOA-XGBoost method in the detection accuracy of network attacks. The initial
hyperparameter search range and detected hyperparameters of XGBoost and EMNCD models on the
edge-IIoTset dataset are shown in Table 4.

Table 4. Hyperparameter configuration of XGBoost and EMNCD.

Model Hyperparameter Search range Optimal value

XGBoost

max depth [3,50] 37
learning rate (0,1] 0.807
min child weight [0,7] 0
max delta step [1,10] 3.025
subsample [0.6,1] 0.722
colsample bytree [0.6,1] 0.873
colsample bylevel [0.6,1] 0.965
reg alpha [0,1] 0.749
reg lambda [0,1] 0.768

EMNCD
window size [500,2500] 1500
step [300,2000] 1200
threshold [0.001,0.3] 0.015

Through the two-part experiments, we can comprehensively evaluate the performance of different
methods in IoT attack detection, and provide strong support for the reliability of the research and the
feasibility of practical application.

5.3.1. Experimental analysis of concept drift detection

To validate the effectiveness of ensemble learning algorithms in concept drift detection, this study
compared the performance of individual non-parametric statistical methods on the edge-IIoTset dataset
with different window and step size configurations, as shown in Figures 7–10. It is evident that the
ensemble algorithm can detect drift points more accurately with minimal FPs and FNs, and even no
FPs or FNs. Additionally, the ensemble algorithm exhibits lower delay compared to the average delay
of all other algorithms.
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Figure 7. Comparison of the edge-IIoTset dataset on a single non-parametric algorithm and
ensemble algorithm with window=800, step=600.

Figure 8. Comparison of the edge-IIoTset dataset on a single non-parametric algorithm and
ensemble algorithm with window=1000, step=800.

Figure 9. Comparison of the edge-IIoTset dataset on a single non-parametric algorithm and
ensemble algorithm with window=1500, step=1100.
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Figure 10. Comparison of the edge-IIoTset dataset on a single non-parametric algorithm and
ensemble algorithm with window=1500, step=1200.

Furthermore, in Figure 11, we conducted a comparative analysis between our proposed EMNCD
algorithm and four other typical drift detection algorithms. The results demonstrate the superior
detection performance of our proposed algorithm.

Figure 11. Evaluation metrics on the edge-IIoTset dataset.

In conclusion, ensemble learning algorithms exhibit remarkable effectiveness in concept drift
detection, significantly improving the accuracy and reliability of drift point detection. The
performance of our proposed EMNCD algorithm outperforms other typical drift detection algorithms,
highlighting its advantages in handling concept drift issues. These findings provide valuable reference
for concept drift detection research and practical applications.

5.3.2. Experimental analysis of concept drift adaptation

Tables 5–8 present the results of each performance index of the model with and without adaptive
analysis of concept drift. The results indicate that if the classifier is not updated in the data stream
and the initial model is used, the classification performance of the model will be significantly reduced
for the later data. For example, the accuracy of the first concept model is 93.61% and the F1 score is
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95.36%, while the accuracy of the second concept drops to 56.80% and the F1 score drops to 68.60%.
On the contrary, if the location of drift can be accurately found, and the concept data after drift can
be adapted timely, the average accuracy of the model can be increased to 93.93%, and the average F1
score can be increased to 95.66%.

Table 5. Accuracy on edge-IIoTset by WOA-XGBoost.

WOA-XGBoost accuracy C1 C2 C3 C4 C5 Average

w=800, s=600 93.27% 92.88% 92.56% 92.52% 92.72% 92.79%
w=1000, s=800 93.60% 92.80% 91.12% 92.63% — 92.54%
w=1500, s=1100 93.38% 92.62% 92.02% 92.43% — 92.61%
w=1500, s=1200 93.32% 95.48% 92.11% 92.53% — 93.36%
exactly concepts 93.61% 98.00% 92.64% 92.58% 92.84% 93.93%
without concept drift analysis 93.61% 56.80% 57.10% 56.60% 57.30% 64.28%

Table 6. F1 on edge-IIoTset by WOA-XGBoost.

WOA-XGBoost F1 C1 C2 C3 C4 C5 Average

w=800, s=600 95.13% 94.82% 94.64% 94.66% 94.85% 94.82%
w=1000, s=800 95.36% 94.87% 93.57% 94.74% — 94.64%
w=1500, s=1100 95.21% 94.76% 94.35% 94.61% — 94.73%
w=1500, s=1200 95.18% 96.60% 94.38% 94.67% — 95.21%
exactly concepts 95.36% 98.53% 94.77% 94.73% 94.91% 95.66%
without concept drift analysis 95.36% 68.60% 68.90% 68.50% 69.00% 74.07%

Table 7. Recall on edge-IIoTset by WOA-XGBoost.

WOA-XGBoost recall C1 C2 C3 C4 C5 Average

w=800, s=600 98.57% 97.60% 99.72% 99.66% 99.85% 99.08%
w=1000, s=800 99.02% 100.00% 99.80% 99.66% — 99.62%
w=1500, s=1100 98.66% 100.00% 99.71% 99.66% — 99.51%
w=1500, s=1200 98.48% 96.15% 99.75% 99.65% — 98.51%
exactly concepts 98.69% 100.00% 100.00% 100.00% 99.95% 99.73%
without concept drift analysis 98.69% 71.30% 71.30% 70.90% 71.40% 76.72%

Table 8. Precision on edge-IIoTset by WOA-XGBoost.

WOA-XGBoost precision C1 C2 C3 C4 C5 Average

w=800, s=600 91.92% 92.20% 90.05% 90.14% 90.32% 90.93%
w=1000, s=800 91.96% 90.25% 88.08% 90.28% — 90.14%
w=1500, s=1100 92.00% 90.03% 89.53% 90.05% — 90.04%
w=1500, s=1200 92.09% 97.07% 89.56% 90.15% — 92.22%
exactly concepts 92.25% 97.11% 90.07% 89.99% 90.35% 91.95%
without concept drift analysis 92.25% 66.00% 66.70% 66.30% 66.80% 71.61%
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Additionally, in the drift detection algorithm stage, FP and FN will always occur. FP indicating
the number of drift points wrongly detected by the algorithm, and FN indicating the number of drift
points not detected. As shown in Table 5, when the window size w=800 and the step size s=600, the
algorithm successfully detected four drift points, but there was also one FP. At this time, most of the
index values of the model exceeded the exact concepts, such that the model accuracy reached 92.79%.
Based on the above performance results, we also found that under the condition of selection window
size w=1500 and step size s=1200, WOA-XGBoost showed the best performance in accuracy, F1 and
precision, except recall. Although the model performance is affected by the detection window and step
size, the ability to detect network attacks is significantly improved after the concept drift analysis of
network data streams.

Figure 12 shows the performance of concepts under different windows and step sizes on edge-
IIoTset. It can be found that when the window and step size are larger, the performance gap between
each concept is smaller and even the equivalence phenomenon occurs. In the real world of the IoT,
the network data stream is generally very complex and there are many different concepts. Therefore,
choosing the appropriate window and step size is very important to solve the network attack detection
in the IoT.

Figure 12. Performance by WOA-XGBoost on edge-IIoTset for different windows and step
sizes.
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The results presented in Figure 13 further support the effectiveness of the WOA-XGBoost algorithm
in handling the impact of concept drift on data stream classification. By experimenting with different
window sizes and step sizes, the average accuracy, F1 value, recall, and precision for each concept were
calculated and compared. It is evident from the figure that in the absence of concept drift analysis, the
accuracy index is the most affected among the four indexes, and the average accuracy for later concepts
drops below 60%. However, when compared to the model without concept drift analysis, the WOA-
XGBoost algorithm significantly improves each index, with only a small difference from the model
performance of exact concepts. In fact, the performance of the model for the third to fifth concept
surpasses that of the model for exact concepts. These results provide further evidence of the efficacy
of the proposed approach in handling concept drift in data streams.

Figure 13. The effect of classification under each concept on edge-IIoTset.

6. Conclusions and discussion

With the proliferation of IoT devices in our daily lives, the data they generate has become a prime
target for network attacks. These attacks are continuously evolving, necessitating the consideration of
risks associated with potential network security threats. Moreover, the majority of IoT data is
characterized by its instability and dynamism, making network intrusion detection even more
challenging. This paper is dedicated to addressing the issue of concept drift within IoT data streams
and proposes a series of innovative methods to tackle this challenge.
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We introduced the EMNCD method, which combines various nonparametric statistical techniques
to effectively detect changes in data distribution. Simultaneously, in response to the characteristics
of IoT data streams, we designed an online outlier detection method based on iForest to enhance the
robustness of data stream processing. Furthermore, we introduced the drift adaptation framework
WOA-XGBoost to achieve adaptive model updates and parameter optimization. Through experiments
on network intrusion datasets, we delved into the impact of concept drift on network intrusion detection
and validated the effectiveness of the proposed methods.

In the experiments comparing single nonparametric algorithms with ensemble algorithms, we
observed that the EMNCD method demonstrates more pronounced superiority under varying data
distribution changes. This method excels in accurately pinpointing drift points, enhancing the
precision and reliability of drift detection. In the analysis of concept drift adaptation experiments, we
validated the efficacy of the WOA-XGBoost method in adaptive model updates and parameter
adjustments. Comparing WOA-XGBoost with a classification model without concept drift analysis,
we observed an approximate 30% increase in accuracy in network attack detection. This method
effectively addresses the challenge of concept drift in IoT data streams, leading to substantial
improvements in model performance and achieving enhanced network intrusion detection results.

Looking forward, future directions for our research involve a more nuanced exploration of novel
statistical methods to further refine concept drift detection models. Additionally, a crucial aspect we
aim to address is the issue of imbalanced data in intrusion detection. Developing strategies to handle
imbalanced datasets will be a key focus, ensuring that our IDS remains effective across diverse
scenarios. Striking a meaningful balance between model performance and efficiency will continue to
guide our efforts in advancing the field of IoT security.

In conclusion, this paper not only provided valuable insights into data stream analysis and network
intrusion detection within the context of IoT but also set the stage for future research directions,
emphasizing the need to address imbalanced data for more robust IDS.
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