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Abstract: Special vector fields, such as conformal vector fields and Killing vector fields, are
commonly used in studying the geometry of a Riemannian manifold. Though there are Riemannian
manifolds, which do not admit certain conformal vector fields or certain Killing vector fields,
respectively. Closed vector fields exist in abundance on each Riemannian manifold. In this paper,
we used closed vector fields to study the geometry of the Riemannian manifold. In the first result, we
showed that a compact Riemannian manifold (Mn, g) admits a closed vector field ω with divω non-
constant and an eigenvector of the rough Laplace operator, the integral of the Ricci curvature Ric(ω,ω)
has a suitable lower bound that is necessarily isometric to S n(c) and that the converse holds. In the
other result, we found a characterization of an Euclidean space using a closed vector field ω with
non-constant length that annihilates the rough Laplace operator and squared length of its covariant
derivative that has a suitable upper bound. Finally, we used the closed vector field provided by
the gradient of the non-trivial solution of the Fischer-Marsden equation on a complete and simply
connected Riemannian manifold (M, g) and showed that it is necessary and sufficient for (M, g) to be
isometric to a sphere and that the squared length of the covariant derivative of this closed vector field
has a suitable upper bound.
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1. Introduction

In classical differential geometry, in order to study the geometry of an n-dimensional Riemannian
manifold (Mn, g) the main used tools were curvature, Ricci curvature, scalar curvature and also the
extrinsic tools obtained through the isometric immersion of (Mn, g) into some known Riemannian

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024074


1510

manifold, such as second fundamental form and the fundamental equations of submanifolds [2].
Apart from these tools, the trend of using special vector fields on a Riemannian manifold (Mn, g) such
as a conformal vector field, a Killing vector field, a Jacobi-type vector field and a Torse-forming
vector field facilitated the study of the geometry of the host manifolds on which these vector fields are
defined [3–11, 13–15]. A conformal field ω on (Mn, g) gives rise to a smooth function λ : Mn → R
called the conformal factor, such that the Lie derivative £ωg of the metric satisfies

£ωg = 2λg,

and this conformal factor plays an important role in shaping the geometry of the host manifold [3–9,
11,13–15]. Similarly, a Killing field u on (Mn, g) is the one whose local one-parameter groups of local
transformations consists of local isometries of (Mn, g) or, equivalently, the Lie derivative £ug satisfies

£ug = 0,

and a Killing vector field restricts topology as well as the geometry of the host manifold [10]. The
next important special field on a Riemannian manifold (Mn, g) is the torse-forming vector field ξ that
satisfies

DXξ = λX + α (X) ξ,

where DX is the covariant derivative with respect to smooth vector field X, α is a one-form and λ is a
smooth function on (Mn, g) [18]. Torse-forming vector fields are neither conformal nor Killing and they
influence geometry of the host manifolds as well as have physical applications [2,18]. Given a Killing
vector field u of constant length on (Mn, g), it follows that its integral curves are geodesics. However,
if we remove the restriction on u of being a constant length, then the integral curves of the Killing
vector field u are not unnecessarily geodesics. This leads to the definition of a geodesic vector field on
a Riemannian manifold (Mn, g) [7]. Geodesic vector fields, which are non-Killing, are in abundance
owing to the presence of non-Sasakian structures such as the Kenmotsu structure or a trans-Sasakian
structure, as well as Eikonal equations on complete manifolds [7, 19].

All vector fields mentioned earlier put severe restrictions on the host manifolds and, therefore,
there are Riemannian manifolds in which some of them do not exist. For instance, on a compact even
dimensional Riemannian manifold of positive curvature, a unit Killing vector field does not exist.
Similarly, a non-trivial closed conformal vector field on a compact Riemannian manifold of
non-positive Ricci curvature does not exist. However, there is a very large class of some special vector
field that exists on each Riemannian manifold (Mn, g) and these are closed vector fields. For instance,
each non-constant smooth function σ : Mn → R provides the gradient ∇σ on (Mn, g), which is a
closed vector field. Apart from gradients, there are non-gradient closed vector fields on (Mn, g). We
shall abbreviate a closed vector field u on a Riemannian manifold (Mn, g) as CLVF u. Geometry of
semi-Riemannian manifolds admitting a CLVF have been studied in [21–23]. Among these, Hicks
in [22] has studied the submanifolds of a semi-Riemannian manifold determined by a CLVF and
obtained many interesting results, where as in [21, 23], authors have studied closed conformal vector
fields on a Riemannian manifold. Note that closed vector fields are related to foliations with
singularities in this sense, if ξ is a CLVF on a Riemannian manifold (M, g), then on the open
subset U =

{
p ∈ M : ξp , 0

}
, the orthogonal distribution is integrable and defines a codimension-one

foliation. Here, in this paper, we are interested in closed vector fields on a Riemannian
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manifold (Mn, g), which are eigenvectors of rough Laplace operator ⊡. Given (Mn, g), we denote by
Γ (T Mn) the space of smooth sections of the tangent bundle T Mn, and the rough Laplace operator ⊡ :
Γ (T Mn)→ Γ (T Mn) is defined by

⊡X =
n∑

i=1

(
DEi DEi X − DDEI Ei X

)
, X ∈ Γ (T Mn) ,

where {Ei}
n
1 is a local frame on (Mn, g). A vector field ξ ∈ Γ (T Mn) is said to be an eigenvector of the

operator ⊡ if ⊡ξ = aξ for a constant a. For example, consider the Sasakian structure (ϕ, ξ, η, g) on the
unit sphere S 2n+1 [10]. We have

DXξ = ϕX, (DXϕ) (Y) = η (Y) X − g (X,Y) ξ, X,Y ∈ Γ
(
TS 2n+1

)
,

then, it follows that

⊡ξ =
2n+1∑
i=1

(
DEi DEiξ − DDEI Eiξ

)
=

2n+1∑
i=1

(
DEiϕ

)
(Ei) = ξ − (2n + 1) ξ = −2nξ;

that is, the vector field ξ is an eigenvector of the operator ⊡ on the sphere S 2n+1. Note that the unit
vector field ξ is a non-trivial Killing vector field and, therefore, it is not closed.

We shall show that there are abundantly many closed vector fields on the n-sphere S n(c) of constant
curvature c, which are eigenvectors of the rough Laplace operator ⊡. To realize it, we treat S n(c) as
surface in the Euclidean space Rn+1 with unit normal ζ and shape operator B = −

√
cI. Denoting the

Euclidean metric on Rn+1 by g and that induced on S n(c) by g and corresponding covariant derivative
operators by DX and DX, X ∈ Γ (TS n(c)) respectively, we have the fundamental equations for the
surface S n

DXY = DXY −
√

cg (X,Y) ζ, DXζ =
√

cX, X,Y ∈ Γ (TS n(c)) . (1.1)

Now, choosing a non-zero constant vector a ∈Γ
(
TRn+1

)
and denoting its tangential component to

S n(c) by ω, we ascertain that a = ω + ρζ, where ρ = g (a, ζ) is a smooth function defined on S n(c).
Differentiating the equation a = ω + ρζ while using Eq (1.1), we arrive at

DXω = −
√

cρX, ∇ρ =
√

cω, (1.2)

where ∇ρ is the gradient of ρ. Thus, it follows that ω is a CLVF on S n(c). Using a local frame {Ei}
n
1

and Eq (1.2), we conclude that
⊡ω = −cω; (1.3)

that is, ω is a CLVF that is an eigenvector of the rough Laplace operator ⊡. Note that each constant
vector a on the Euclidean space Rn gives a CLVFω on the n-sphere S n(c) that satisfies ⊡ω = −cω. This
raises a question: Under what condition is an n-dimensional compact Riemannian manifold (Mn, g)
admitting a CLVF ω that satisfies ⊡ω = −cω for a positive constant c that is isometric to n-sphere
S n(c)? We answer this question by proving the following using the bound on the integral of the Ricci
curvature Ric (ω,ω) in the direction of a CLVF ω that satisfies ⊡ω = −cω for a positive constant c on
a compact (Mn, g):
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Theorem 1. An n-dimensional compact Riemannian manifold (Mn, g) admits a CLVF ω with non-
constant divω, satisfying

(i)
∫

Mn

Ric (ω,ω) ≥ n−1
n

∫
Mn

(divω)2 (ii) ⊡ω = −cω,

for a positive constant c if, and only if, (Mn, g) is isometric to n-sphere S n(c).

Similarly, for the Euclidean space Rn, we prove the following:

Theorem 2. An n-dimensional complete and connected Riemannian manifold (Mn, g) admits a non-
parallel CLVF ω with non-constant length satisfying

(i) ∥Dω∥2 ≤ 1
n (divω)2 (ii) ⊡ω = 0,

if, and only if, (Mn, g) is isometric to the Euclidean space Rn.

Naturally, each smooth function σ : Mn → R on a Riemannian manifold (Mn, g) gives a CLVF
ω = ∇σ the gradient of σ. However, there are many closed fields on a Riemannian manifold (Mn, g),
which are not gradient fields. For instance, a (Mn, g) with de-Rham cohomology group H1(Mn,R) , 0
has many closed fields that are not gradient. For example, take the warped product Mn = S 1 ×ρ S n−1(c)
for smooth function ρ defined on the unit one-sphere S 1 with metric g = dθ2 + ρ2g, where θ is the
coordinate function on S 1 and g is the canonical metric on the sphere S n−1(c); then the vector field
u = ρ ∂

∂θ
defined on (Mn, g) has covariant derivative [16]

DXu = ρ
′

X, X ∈ Γ(T Mn).

Consequently, we see that u is a CLVF and it is not a gradient field. Moreover, the Ricci curvature
Ric (u,u) of the compact Riemannian manifold (Mn, g) and divu is given by [16]

Ric (u,u) = −
n − 1

2

(
ρ2

)′′
, divu = nρ

′

.

Finally, in this paper we consider the differential equation introduced by Fischer and Marsden on a
Riemannian manifold (Mn, g), namely [12],

(∆σ) g + σRic = Hes(σ),

which we shall refer to as an F-M equation (here and hereafter F-M means Fischer and Marsden),
where ∆ is the Laplace operator on (Mn, g), Hes (σ) is the Hessian operator of the function σ defined
by

Hes(σ) (X,Y) = g (DX∇σ,Y) , X,Y ∈ Γ (T Mn) (1.4)

and use the non-trivial solution σ of the F-M equation to get a CLVF ξ = ∇σ to study the geometry of
the host Riemannian manifold (Mn, g). It is known that if the Riemannian manifold (Mn, g) admits a
non-trivial solution of the F-M equation, then scalar curvature τ is a constant [12]. It is worth
mentioning that a Fischer-Marsden conjectured in [12] that a compact (Mn, g) admitting a non-trivial
solution of the F-M equation must be an Einstein space, which is known as a Fischer-Marsden
conjecture. However, this conjecture is not true, as in [1], authors have shown that the product
Riemannian manifold Mn = S m × Nn−m, where S m is the unit sphere and Nn−m is a compact Einstein
space of constant scalar curvature τ , m(m − 1), admits a non-trivial solution of the F-M equation
and, thus, provides a counter example to the Fischer-Marsden conjecture. Using a non-trivial solution
of the F-M equation on a complete and simply connected (Mn, g), we prove the following:
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Theorem 3. A non-trivial solution σ of the F-M equation on an n-dimensional complete and simply
connected Riemannian manifold (Mn, g) of positive scalar curvature τ with CLVF ω = ∇σ satisfies

∥Dω∥2 ≤
1

n(n − 1)2τ
2σ2,

if, and only if, (Mn, g) is isometric to n-sphere S n(c).

2. Preliminaries

Let ω be a CLVF on an n-dimensional Riemannian manifold (Mn, g). We denote by α smooth one-
form dual to ω; that is, α (X) = g (ω, X), X ∈ Γ(T Mn). As ω is a CLVF, we have dα = 0 and we define
a symmetric operator B : Γ(T Mn)→ Γ(T Mn) by

1
2

(£ωg) (X,Y) = g (BX,Y) , X,Y ∈ Γ (T Mn) , (2.1)

then

2g (DXω,Y) = g (DXω,Y) + g (DYω, X) + g (DXω,Y) − g (DYω, X)

= (£ωg) (X,Y) = 2g (BX,Y) , X,Y ∈ Γ (T Mn) .

Thus, for the CLVF ω defined on (Mn, g), we have

DXω = BX, X ∈ Γ (T Mn) , (2.2)

where B is a symmetric operator satisfying Eq (2.1). Using the expression

R (X,Y) Z = DXDYZ − DY DXZ − D[X,Y]Z

for the curvature tensor of (Mn, g) and Eq (2.2), we have

R (X,Y)ω = (DX B) (Y) − (DY B) (X) , X,Y ∈ Γ (T Mn) . (2.3)

Using a local orthonormal frame {Ei}
n
1 on (Mn, g) and the expression of the Ricci tensor

Ric (X.Y) =
n∑

i=1

g (R (Ei, X) Y, Ei)

and Eq (2.3), we conclude

Ric (Y,ω) =
n∑

i=1

g
((

DEi B
)

(Y) , Ei
)
−

n∑
i=1

g ((DY B) (Ei) , Ei) .

Now, letting the trace TrB = h and employing the symmetry of the operator B in the above equation
yields

Ric (Y,ω) = g

Y, n∑
i=1

(
DEi B

)
(Ei)

 − Y (h) . (2.4)
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The symmetric operator Q corresponding to the Ricci tensor is called the Ricci operator of (Mn, g)
given by

g (QX,Y) = Ric (X,Y) , X,Y ∈ Γ (T Mn)

and, consequently, by virtue of Eq (2.4), we get the following

Q (ω) =
n∑

i=1

(
DEi B

)
(Ei) − ∇h,

where ∇h is the gradient of h = TrB.
Note that for a frame {Ei}

n
1 on (Mn, g), we have the squared length of operator B given by

∥B∥2 =
n∑

i=1

g (BEi, BEi) ,

and we get ∥∥∥∥∥B −
h
n

I
∥∥∥∥∥2

=

n∑
i=1

g
(
BEi −

h
n

Ei, BEi −
h
n

Ei

)
= ∥B∥2 +

h2

n
− 2

h
n

n∑
i=1

g (BEi, Ei) ;

that is, ∥∥∥∥∥B −
h
n

I
∥∥∥∥∥2

= ∥B∥2 −
h2

n
. (2.5)

3. Proof of Theorem-1

Suppose the compact Riemannian manifold (Mn, g) admits a CLVF ω with non-constant divω and
satisfies ∫

Mn

Ric (ω,ω) ≥
n − 1

n

∫
Mn

(divω)2 (3.1)

and
⊡ω = −cω, (3.2)

where c is a positive constant. Note that owing to Eq (2.2), we have divω = h = TrB and, therefore,
by the above assumption the smooth function h is non-constant. In view of Eq (2.2), we have

BX −
h
n

X = DXω −
h
n

X, X ∈ Γ (T Mn)

and, with a frame {Ei}
n
1 on (Mn, g) by the above equation, we have∥∥∥∥∥B −

h
n

I
∥∥∥∥∥2

=

n∑
i=1

g
(
BEi −

h
n

Ei, BEi −
h
n

Ei

)
=

n∑
i=1

g
(
DEiω −

h
n

Ei,DEiω −
h
n

Ei

)
= ∥Dω∥2 +

h2

n
− 2

h
n

n∑
i=1

g
(
DEiω, Ei

)
= ∥Dω∥2 +

h2

n
− 2

h
n

divω,
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that is, ∥∥∥∥∥B −
h
n

I
∥∥∥∥∥2

= ∥Dω∥2 −
h2

n
. (3.3)

Also, by Eq (2.1), we get
1
4
|£ωg|2 = ∥B∥2 . (3.4)

On compact (Mn, g), we have the following integral formula [20]∫
M

{
Ric (ω,ω) +

1
2
|£ωg|2 − ∥Dω∥2 − (divω)2

}
= 0.

In view of the above formula, on integrating Eq (3.3) and by using (3.4) and divω = h, we arrive at∫
M

∥∥∥∥∥B −
h
n

I
∥∥∥∥∥2

=

∫
M

{
Ric (ω,ω) + 2 ∥B∥2 − h2 −

h2

n

}
;

that is, ∫
M

∥∥∥∥∥B −
h
n

I
∥∥∥∥∥2

=

∫
M

{
Ric (ω,ω) + 2

(
∥B∥2 −

1
n

h2
)
−

(
n − 1

n

)
h2

}
.

Now, using Eq (2.5) with the above equation, we get∫
M

∥∥∥∥∥B −
h
n

I
∥∥∥∥∥2

=

(
n − 1

n

) ∫
M

(divω)2
−

∫
M

Ric (ω,ω)

and combining it with Eq (3.1), we conclude∥∥∥∥∥B −
h
n

I
∥∥∥∥∥2

= 0.

Thus, we have B = h
n I, and Eq (2.2) takes the form

DXω =
h
n

X, (3.5)

which together with a frame {Ei}
n
1 on (Mn, g) implies

DEi DEiω =
1
n

Ei(h)Ei +
h
n

DEi Ei,

and we conclude

⊡ω =
n∑

i=1

(
DEi DEiω − DDEI EIω

)
=

1
n
∇h.

On combining the above equation with Eq (3.2), we conclude

−cω =
1
n
∇h.
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Thus, we have

−cDXω =
1
n

DX∇h

and utilizing Eq (3.5), we have

DX∇h = −chX, X ∈ Γ (T Mn) ,

where c is a positive constant and h is a non-constant function. Hence, by the above equation, we
conclude that (Mn, g) is isometric to the n-sphere S n(c) [14, 15].

Conversely, suppose that the compact (Mn, g) is isometric to the n-sphere S n(c), then we know that
S n(c) admits a CLVF ω that satisfies Eqs (1.2) and (1.3); that is,

DXω = −
√

cρX, ∇ρ =
√

cω, ⊡ ω = −cω. (3.6)

First, we claim that divω is non-constant. Note that by Eq (3.6), we have divω = −n
√

cρ, and if divω
were a constant, by Stokes’ Theorem on compact S n(c), it will imply ρ = 0. Now, ρ = 0 in Eq (1.2)
will imply ω = 0 and in sequel it will imply the constant vector a = 0, which is a contradiction as
a is a non-zero constant vector on the Euclidean space Rn+1. Thus, divω is non-constant. Now, it
remains to show that the inequality (3.1) holds. The Ricci curvature Ric (ω,ω) of the sphere S n(c) is
Ric (ω,ω) = (n − 1)c ∥ω∥2, which on using Eq (3.6) implies∫

S n(c)

Ric (ω,ω) = (n − 1)
∫

S n(c)

∥∇ρ∥2 . (3.7)

Also, Eq (3.6) implies divω = −n
√

cρ; that is,

(divω)2 = n2cρ2.

Using divω = −n
√

cρ with the equation ∇ρ =
√

cω of Eq (3.6), we get the Laplacian ∆ρ = div (∇ρ) =
√

c
(
−n
√

cρ
)
= −ncρ; that is, ρ∆ρ = −ncρ2. Integrating this last equation by parts, we conclude∫

S n(c)

∥∇ρ∥2 = nc
∫

S n(c)

ρ2,

and substituting in the above equation divω = −n
√

cρ, we get∫
S n(c)

∥∇ρ∥2 =
1
n

∫
S n(c)

(divω)2 .

Combining it with Eq (3.7), we conclude∫
S n(c)

Ric (ω,ω) =
(n − 1)

n

∫
S n(c)

(divω)2 .

This completes the proof.
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4. Proof of Theorem-2

Suppose an n-dimensional complete and connected Riemannian manifold (Mn, g) admits a non-
parallel CLVF ω with a non-constant length satisfying

∥Dω∥2 ≤
1
n

(divω)2 (4.1)

and
⊡ω = 0. (4.2)

Using Eq (2.2), we have

BX −
h
n

X = DXω −
h
n

X, X ∈ Γ (T Mn) ,

which with a frame {Ei}
n
1 on (Mn, g) and divω = h gives∥∥∥∥∥B −

h
n

I
∥∥∥∥∥2

=

n∑
i=1

g
(
BEi −

h
n

Ei, BEi −
h
n

Ei

)
=

n∑
i=1

g
(
DEiω −

h
n

Ei,DEiω −
h
n

Ei

)
= ∥Dω∥2 +

h2

n
− 2

h
n

n∑
i=1

g
(
DEiω, Ei

)
= ∥Dω∥2 +

1
n

(divω)2
− 2

h
n

divω;

that is, ∥∥∥∥∥B −
h
n

I
∥∥∥∥∥2

= ∥Dω∥2 −
1
n

(divω)2 .

Using inequality (4.1) in the above equation, it confirms that B = h
n I and Eq (2.2) now takes the form

DXω =
h
n

X, X ∈ Γ (T Mn) . (4.3)

Taking a frame {Ei}
n
1 on (Mn, g) and using Eq (4.3), we have

⊡ω =
n∑

i=1

(
DEi DEiω − DDEI EIω

)
=

1
n
∇h,

and combining it with Eq (4.2), it confirms that the function h is a constant. Moreover, as ω is non-
parallel, Eq (4.3) implies that the constant h , 0. Since, ω has a non-constant length, we have a
non-constant function σ defined by

σ =
1
2

g (ω,ω)

and utilizing Eq (4.3), we get the gradient ∇σ of σ given by

∇σ =
h
n
ω.

Thus, again using Eq (4.3), we have

DX∇σ =
h2

n2 X.
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Consequently, the above equation together with Eq (1.4) implies

Hes (σ) = cg, c =
h2

n2 , (4.4)

where σ is a non-constant function and c is a non-zero constant. Hence, Eq (4.4) confirms that (Mn, g)
is isometric to the Euclidean space Rn [17].

Conversely, suppose that (Mn, g) is isometric to the Euclidean space Rn. We consider the vector
field ω ∈ Γ (TRn) defined by

ω =
n∑

i=1

zi ∂

∂zi ,

where z1, ..., zn are Euclidean coordinate functions on Rn. Let DX be the covariant derivative operator
on Rn with respect to the Euclidean connection, then we get

DXω = X, X ∈ Γ (TRn) . (4.5)

Equation (4.5) implies thatω is a CLVF and it has a non-constant length. Also, Eq (4.5) gives divω = n
and

∥Dω∥2 = n.

Thus, we conclude

∥Dω∥2 =
1
n

(divω)2 ;

that is, the equality in (4.1) holds. Finally, we use Eq (4.5) to compute ⊡ωwith a frame {Ei}
n
1 on (Mn, g)

and get

⊡ω =
n∑

i=1

(
DEi DEiω − DDEI EIω

)
=

n∑
i=1

(
DEi Ei − DEi Ei

)
= 0,

which is Eq (4.2), and this completes the proof.

5. Proof of Theorem-3

Suppose σ is a non-trivial solution of F-M equation on an n -dimensional complete and simply
connected Riemannian manifold (Mn, g) of positive scalar curvature τ and the CLVF ω = ∇σ satisfies

∥Dω∥2 ≤
1

n(n − 1)2τ
2σ2. (5.1)

Since σ is a solution of the F-M equation, we have

(∆σ) g + σRic = Hes(σ), (5.2)

and taking trace in the above equation implies

∆σ = −
τ

n − 1
σ, (5.3)
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where τ is the scalar curvature of (Mn, g), which is a constant [12]. By hypothesis, we see that τ is a
positive constant. Using Eqs (5.2) and ω = ∇σ, we have

DXω = (∆σ) X + σQX, X ∈ Γ (T Mn) . (5.4)

Using Eq (5.3) in the above equation, we have

divω = −
τ

n − 1
σ. (5.5)

Combining the above Eq (5.5) with Eq (5.3), we have

σ
(
QX −

τ

n
X
)
= DXω +

τ

n(n − 1)
σX.

Choosing a frame {Ei}
n
1 on (Mn, g) with the above equation, we compute

σ2
∥∥∥∥∥Q −

τ

n
I
∥∥∥∥∥2

=

n∑
i=1

g
(
DEiω +

τ

n(n − 1)
σEi,DEiω +

τ

n(n − 1)
σEi

)
= ∥Dω∥2 +

1
n(n − 1)2τ

2σ2 + 2
τ

n(n − 1)
σdivω,

which in view of Eq (5.3), yields

σ2
∥∥∥∥∥Q −

τ

n
I
∥∥∥∥∥2

= ∥Dω∥2 −
1

n(n − 1)2τ
2σ2.

Using inequality (5.1) in the above equation arrives at

σ2
∥∥∥∥∥Q −

τ

n
I
∥∥∥∥∥2

= 0.

However, as σ is a non-trivial solution of the F-M equation on connected Mn, the above equation yields

Q =
τ

n
I.

Thus, Eqs (5.3) and (5.4) in view of the above equation imply

DXω =
(
−
τ

n − 1
σ
)

X +
τ

n
σX = −

τ

n(n − 1)
σX, X ∈ Γ (T Mn) ;

that is, on taking the constant τ = n(n − 1)c as τ > 0 and c > 0, we have

DX∇σ = −cσX, X ∈ Γ (T Mn) ,

where σ being a non-trivial solution of the F-M equation is a non-constant function. Hence, by the
above equation, we see that the complete simply connected (Mn, g) is isometric to S n(c) [14, 15].

Conversely, suppose (Mn, g) is isometric to S n(c), then certainly the scalar curvature is τ > 0 and
there is a non-constant function ρ defined on S n(c) that satisfies Eq (1.2). It follows that ∆ρ = −ncρ
and

Hes(ρ)(X,Y) = g (DX∇ρ,Y) = g
(√

cDXω,Y
)
=
√

cg
(
−
√

cρX,Y
)

;
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that is,
Hes(ρ)(X,Y) = −cg (X,Y) , X,Y ∈ Γ (T Mn) . (5.6)

Also, using the expression for the Ricci tensor of S n(c), Ric (X,Y) = (n − 1)cg (X,Y) and ∆ρ = −ncρ,
we get

(∆ρ) g + ρRic = −ncρg + (n − 1)cρg = −cg

and combining it with Eq (5.6), we conclude

(∆ρ) g + ρRic = Hes(ρ).

Hence, S n(c) admits the solution ρ of the F-M equation. As seen in the proof of Theorem-1, ρ is a
non-constant function, and we conclude the function ρ as a non-trivial solution of the F-M equation.
Finally, Eq (1.2) for u = ∇ρ implies that

DXu =
√

c
(
−
√

cρX
)
= −cρX;

that is,
DXu = −cρX, X ∈ Γ (T Mn) .

Thus,
∥Du∥2 = nc2ρ2,

and using the expression for the scalar curvature τ = n(n − 1)c, we get

∥Du∥2 =
1

n(n − 1)2τ
2ρ2,

which is the condition required in the statement. This completes the proof.

6. Conclusions

We have seen Theorems 1 and 2, we used a CLVF ω, which need not be exact, to find
characterizations of a sphere S n(c) and the Euclidean space Rn, respectively, where as in Theorem 3,
we used a CLVF ω that is exact namely, ω = ∇σ such that σ is a non-trivial solution of the F-M
equation to find yet another characterization of the sphere S n(c). Note, that in Theorem 1, we required
a CLVF ω on a compact Riemannian manifold (Mn, g) to satisfy two conditions∫

Mn

Ric (ω,ω) ≥
n − 1

n

∫
Mn

(divω)2 , ⊡ω = −cω (6.1)

for a positive constant c, in order that (Mn, g) is isometric to the sphere S n(c). A natural question arises,
if we ask a CLVF ω in Theorem 1 to be exact, that is, ω = ∇σ for some smooth function σ with ω , 0
or, equivalently, σ a non-constant function, can we relax conditions in Eq (6.1) in order to reach the
same conclusion? Natural substitute in this situation to condition ⊡ω = −cω could be ∆σ = −ncσ.
Precisely, can we prove the following?

AIMS Mathematics Volume 9, Issue 1, 1509–1522.
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An n-dimensional compact Riemannian manifold (Mn, g) admits a non-zero CLVF ω with ω = ∇σ
satisfying ∫

Mn

Ric (ω,ω) ≥
n − 1

n

∫
Mn

(divω)2 , ∆σ = −ncσ

for a positive constant c, if and only if (Mn, g) is isometric to S n(c). This will be an interesting question
for future study.
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