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Abstract: In this paper, we generalized the results of the following chemotaxis model with the
nonlinear degenerate viscosity

Uz —)((MV)X = D(um)xxs
ve—uy =0,

by introducing the following general initial perturbation

+00
f k(Zo|Z)dx < oo,
where « is the relative entropy function defined in Eq (2.24). We further employed the relative entropy
method by choosing the specific shift function. According to the estimates with the cutoff version,
and overcoming the complexity caused by the porous media diffusion, the nonlinear orbital stability of
traveling waves was established under small amplitude and general perturbations.
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1. Introduction

We are concerned with the analysis of traveling waves for the chemotaxis system with nonlinear
diffusion with u, > 0. It follows from the general perturbations and small wave amplitude that we
employ the energy estimates with cutoff version to prove the nonlinear orbital stability. Moreover,
we need a different strategy by employing the relative entropy method to handle these general
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perturbations. We first define the PDE-ODE system of the chemotaxis model as follows:

U = D(um)xx X (u(ln C)x)x s
¢, = —uc + fc,

(1.1)

with m > 0 and initial data

{(u*,c*) as x — 400,
(u,€)(0, %) = (ug, c))(x) = ¢~ _ (1.2)
(u=,c7) as x > —oo.

System (1.1) represents the reinforced movement of cells (or bacterial) in porous media, where c,
u, and B > 0 describe the concentration of chemical signals (e.g., nutrients), the population density
of cells, and the growth rate respectively. Moreover, D > 0 represents the diffusion rate of cells and
x represents chemotactic coefficient. The chemotaxis is said to be attractive if y > 0 and repulsive if
X < 0. The logarithmic sensitivity In ¢ was derived from Weber-Fechner law [13] and has been verified
by experimental data [11].

When m = 1, the system (1.1) is identical to the chemotaxis model studied in [21] to represent the
reinforced random walks. There are other interesting analytical works of this reinforced random walks.
Othmer and Stevens [21] studied the model from random walk and presented the numerical simulations
of the formation of spikes and blowup. Moreover, the analytical results were investigated in [20] to
support some numerical results in [21]. Yang etc. [27, 28] was curious in the global existence and
blowup of classical solutions on a bounded domain with no-flux boundary conditions. Li etc. [16] was
interested in the global existence of smooth solutions to system (1.1). Zhang and Zhu [29] presented the
weakness of solutions to (1.1) with the Robin boundary condition. Other global dynamics references
were offered in [5, 14, 18, 25], including well-posedness for large time solutions in the whole space.
Besides the spike solution and blowup solution, traveling wave is another biological pattern observed
in chemotaxis [13]. The existence of traveling waves in (1.1) when m = 1 was first studied in [26]. The
stability of such a traveling front in the case of u, > 0 was obtained in [17]. When u, = 0O, the energy
estimate has the singular term 1/U, which is extremely difficult to overcome. This singular term of 1/U
was presented in [10] by considering the weighted function of the singular term to establish the energy
estimates. Recently, [15] considered the half-space case in (1.1) (when m = 1) under the nonzero flux
boundary condition. The authors in [15] showed that the system still admits traveling wave profiles on
the half-space by introducing a wave selection mechanism. For other related works on traveling waves
of chemotaxis models, we refer the wide variety of readers to these references [9,24].

Whenm # 1, system (1.1) is the chemotaxis model with diffusion in porous media. The problems of
the chemotaxis model in porous media are both important in experiments and mathematical modelings.
The experiments of bacterial chemotaxis in porous media were quantified in [19, 23], and [1, 8]
introduced the porous medium diffusion in the chemotaxis model to prevent overcrowding. Tao and
Winkler [22] established the existence of global solutions and boundedness for chemotaxis models of
self-aggregation with any porous medium diffusion. However, the existence of compactly supported
traveling waves of nonlinear diffusion was studied in [4]. The main issues of this paper are general
perturbations and nonlinear diffusion, which are used to establish the energy estimates with cutoff and
orbital stability. Due to the difficulty of logarithmic singularity, we further take the following Cole-
Hopf transformation as in [10, 17]

v =—(nc),. (1.3)
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Hence, the system of (1.1) becomes

{ut —X(l/lV)x = D(um)xx’ (14)
V, - th = 0,
with the initial conditions

(u, v)(x, 0) = (uo, vo)(x) = (u*,v*) as x — *oo. (1.5)

The stability analysis of shock waves involving the small antiderivative of perturbation (u —it, v — V)
was studied in [17] in H*(R) space. Moreover, Choi etc. [2] employed the small amplitudes and
removed both the mean-zero and small initial perturbation conditions. The technique used in the
stability of traveling waves for the chemotaxis model in [2] was the relative entropy method. This
method of relative entropy has the same role in L? space as the distance between (u,v) and (i, ¥),
then we prove that the function of relative entropy is decreasing in time for any large perturbation.
One needs to remark that the property of contraction is independent of the size of the perturbation.
However, we need assumption that the traveling wave strength |u~ — u*| is small enough.

Based on the previous works, the main novelty presented in this paper is the stability of
nonlinear diffusion case for parabolic-hyperbolic system (1.4) under general perturbations and small
wave amplitude. Unlike the previous research in [6], which considered the following small initial

perturbation
T (u(x) — i(x — xo) 0
Iw (v(x)—f/(x—xo) dx = 0 for some xg € R,
this condition is also used to investigate the stability of viscous shocks as in [7, 12]. However, we

generalize the results in [6], by removing the small initial perturbations above and instead use the
following large initial perturbation

+00
f K(Zo|Z)dx < oo,
where « is the relative entropy function which is defined in Eq (2.24). Moreover, the challenge of this
porous media case is to employ the relative entropy method in the general system form of the viscous
conservative laws of (1.4) involving nonlinear diffusion, which is presented in more detail in section
two. Therefore, the purpose of this paper is to handle these barriers and study the contraction of a
traveling wave for a system (1.4) under small amplitude and general perturbations.

2. Properties of traveling waves

i(x — wt)

We further provide smooth monotone traveling waves Z(x — @t) = (‘7 (x — @)

(u,v7)and (u*,v")in R* X R,

) of (1.4) connecting

i(—c0)=u" >0, d(+0)=u">0, P(-0)=v", PH(+0)=1v". 2.1
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We then write lim,_,.. g(x) as g(xoo) in short and assume that two states satisfy the following
Rankine-Hugoniot and Lax entropy conditions:

—ou" —u) —xyWwvt—uv) =0,
—o(v" —v) - —u) =0, (2.2)

andeither u#~ >u* and v <v" or u <u* and v <v" holds.

for some @ € R such that {

Here, the wave speed @ and v* are respectively determined by

—xv T+ Vv ) Hxdut
> >0

if uww>u">0,

wi={ (2.3)
O NWA ) i 0 < < u
and
- _ ot
promy g W) (2.4)
w

Before the existence of traveling waves is established, we first change the variables in (1.4) from
(t, x) to (¢, { = x — wt) with the wave speed @ defined in (2.7), then one has

Uy — Wty — X (uv)g = D)z, 2.5)
v, —@v, —u; = 0. '
Moreover, the traveling waves 7= (g) of (1.4) are as follows:
—wag - X (Ijt\j)[ = D(ljlm)é'é', (2 6)
—W\7§ - ljl( = O '

Without losing the generality, we consider the traveling waves (i, ) satisfying #(0) = (u™ + u™)/2.
Moreover, the existence of traveling waves (i, ¥) are stated as follows.

Lemma 1. (1) For any u*,v* and u™ > u* > 0 satisfying (2.2), system (1.4) admits a smooth traveling

wave (g) (x — @t) connecting (u™,v") and (u*,v*), with the wave speed

_ - —)2 +
o YV + A7) + xdu > 0. 2.7

2

Moreover,

. o
7<0. ¥=-"s0 ana @y =XEZOEZu) (2.8)
w Dw

(2) For any (u=,v™) € R* X R, there exists positive constant y, and C, such that for any 0 < y < y,
and any (u*,v*) € R* X R satisfying (2.1) with u* = u™ — vy, the following properties hold.
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<t X

We consider the traveling waves ( )(x — wt) connecting (u”,v") and (u*,v*) such that iw(0) =

(u +u*)/2.
Thus, one gets

2 2
_V_e_DngL < g’({) < _’y_e_%xTy\f\’ (2.9)
w 4o

where

o XV NO (2.10)

2
Moreover, we have
0< <@ -Cp<o<o, @.11)
and
1@™)" (I < %Iﬁ'@)l- (2.12)

Proof. We first show the proof of (1). It follows from the integration results of (2.6),, with respect to
£, we get

D"y = —w(i—u)—xy@v—uv")
=—w(@—u)—xa(V—-—v)—xyv (@—-u).

However, since ¥ — v~ = —’%‘_ from the integration results of (2.6), with respect to ¢,

D" = —w(it —u™) + xit (u - ) —xv (@—u)

= (—w LA —Xv_)(ﬁ —u).
@
It follows from (2.7) that @? + yv™@ = yu*, then we get

— X(ﬁ - M+)(ﬁ - M_). (213)

@y Dw

The above ODE has a smooth solution i connecting «~ to u* and it < 0.
To establish the proof of (2). It follows from (2.7) and y = u~ — u* that one has

I L VOV )2 + x4 - )
; .

By taking small enough vy, the proof of (2.11) is completed. To show (2.9), we first find an estimate
of (2.13). Since m(u~/2)" ' < m(it)""' < m(u~)"! and (")’ = mi"'it’, then we have

(@ —u) (i —ut) < < C)((ﬁ —u”)(it — u")
Dw Dw

lou (2.14)

b
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for C > 0. Moreover, ii; = —w¥,; < 0 and it(0) = (u~ + u*)/2 implies
(<0=2a0)—u" =W —u")2<i)—u" <u —u", 2.15)
(20=2u —a0)=w —u")/2<u —al)<u —u'. '

Thus, employing (2.14), (2.15) and u~ — u™ = y, we have

[<0= c2 - < -1 <-C' AW - ),
£20=-CaL@-u) < @-u) < -C' ” S (= u").
Employing the above inequalities and &#(0) = (1~ + u*)/2, we get
{<0=>ge B <(u —i) <%e_%gl

gso:%e—%g(a u)<%e s

By applying the above inequalities together with (2.14) and (2.15), we have

2
Y o < <Y
25 i) 4w '

By using (2.11), then we have the desired estimates in (2.9). Moreover, to show (2.12), we

differentiate (™)’ in (2.8) with respect to £, and one has

@™ (DI = |5

@yl < |5

<2)(_7|"’

< (Ol < 5 |~'(§)|

O

Definition 1 (Weighted function w). For a given stationary solution Z and a constant v > 0, the
weighted function w(-) can be defined as follows:

wi=1+ Z(u‘ — ™) for m> Q. (2.16)
Y
Since (u= — ™) < (u™ — 1), one has

’

w#o0) < 1+v, w(=o0)<1, w =—§(ﬁ’")’>0- (2.17)

Remark 1. It follows from (2.9), (2.12) and (2.17) that we can find the second derivative of weighted
Sfunction w

4vy 2vyy” _coud
< —= < Dw—
- leu Ol < D

|W”| — ‘K(ﬁm)//
Y

Moreover, for the first derivative of weighted function w, we have

4 Cxyldl
—(@"y

Y

|W/| = < C4—e Do-  where C = m@u™ )" > 0.
w
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2.1. Relative entropy

We first rewrite the system (2.5) into the following general system of viscous conservative laws to
employ the relative entropy method

0.Z + 0/[A(2)] = 0,(M(Z2)0;VK(Z)], (2.18)
where

7 = (l/t) A(Z) — (_X(MV) —w'u) M(Z) o (D)(mum 0)
v]’ ) —u ’ ’ >

—wV 0 0
v[? " " " (2.19)
KZ) =2 +OW). O) = log (X_) _u
2 xm m/| x
Moreover, since
Vk(Z) = (0.K(2)0,K(2)) = (L Tog (X5) ), (2.20)

then (2.5) is similar to (2.18). We notice that the entropy « for system of (2.18) is strictly convex and
the entropy function G(Z) is the flux of entropy « given as follows:

G(Z) := —% log (’%m) _ ok(Z), 2.21)

such that 0,G(Z) := ZizlﬁkK(Z)ﬁ,-Ak(Z), 1 <i < 2. In general, for a given function r, we define r(:|-) as
its relative function of two variables by

r(kll) :=r(k) — r(l) = Vr(D)(k = 1). (2.22)

Since Z; := (u’), fori = 1,2, then one has

1

A(Z\|2,) = A(Z)) - A(Zy) — VA(L)(Z, - 2)

_ (~xCun = w)(vi — vz)) (2.23)
0 :
and
K(Z\\Zy) = K(Zy) — K(Z) — VK(Zo)(Z) — Z5) = @ + O(uy lup), (2.24)
where
Oui ) = O(u;) — Ouz) — VO(u2) 1ty — uy). (2.25)

It follows from O(u) := le log ()%) - )%, and we find that

u u\" 1
Ouy|uy) = — log(—‘) — —(u1 — ).
xm u X

2
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Due to the law of logarithmic function, the above equation becomes

u u 1
O |uz) = — log(—l) — —(u; — wn). (2.26)
x \w) x

The relative flux G(:; -) for our relative entropy «(:|-) is defined as follows:

G(Z1;2y) := G(Z)) = G(Zp) = VK(Z)(A(Z)) — A(Zy))

X X (2.27)
1= _Z(VI —v2)Ou |uz) — n—1V2®(M1|M2) = (U1 —w)(vi = v2) — Wk(Z,12y).
Global existence and uniqueness of solutions to (1.4) belonging to the space
My = {(u, v) € L0, T) x R)*|lu > 0,u”! € L*((0, T) X R), u, € L*((0, T) x R)}, (2.28)

for each T > O are studied in [3].
Moreover, for any shift function X : [0,0) — R and function 2 : R* Xx R — R, we employ the
following notation

RX(1,0) := h(t, ¢ + X(1)). (2.29)
We also introduce the following function space
% = {(u, V) e (LX®)u > 0,u™" € L™(R), (1og(¥) ) € LZ(R)}. (2.30)
ul J¢

Remark 2. We suppose the solution of Z to (1.4) in My. Since (u;, i) e L*((0,T) x R) x L*(R) and
(u™', i) € L*((0,T) x R) x L™(R), one gets

(log(g) ) € I2((0,T) X R), 2.31)
e

which implies Z(t) € K for almost everywhere t € [0, T].

3. Main results

The following useful inequalities of the relative quantity O(:|-) are useful throughout this paper. The
construction of shift function X is unique and exists by Picard’s iteration.

Lemma 2. For given constants 6 € (0, %] and u~ > 0, there exists positive constants C(9), C,(6) and
C5(0), such that the following ones are true:
(1) For any uy > 0 and u, > 0 with % < u, <u”,

) u
uy — ol < Ourluy) < C1 )y —wa? if | = —1| <6, 3.1
Ci(9) up
1+ log" L) < O@ilun) < G (1 +wlog™ 22| i |4 = 1‘ > 6, 3.2)
C»(0) 12%) 17%) 17%)
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0 = 10l < Ol < Cx@ur e if | =1) > (3.3)
C3(9) )
where log" (r) is the positive part of log(r).
(2) For any uy,uy, s > 0 satisfying s < u, < uy oruy < up < s,
O(uy|s) = O(uy|s). (3.4)

Proof. We first establish the proof of (3.1) by the relative function such that

1 1
Oulun) = (1) — u)? f f @ (u + st(uy — up))rdsdt.
0 0

It follows from (2.19) that one has ®” () = ﬁ Hence,

1

@”(1/[2 + St(ul - uZ)) = X(Stul + (1 — St)l/lz).

Since Z—;— 1‘ <6< %and% < uy < u -, we have
1 uy 3 U 3u, u 3u”
= s—:>—< | SY>= = —<u < —.
2 2 2 2 4 2
Therefore, for any 0 < 5,7 < 1,
1 1

3 < O"(uy + st(u; — up)) <
)((st‘—‘ + (1 - st)u‘)

X(st% +(1 - st)%).
Hence

2 2
ci(up — up)” <O luz) < cr(uy — up)”,

where the constant ¢y, c; only depend on u™ as

= ff dsdt cz—ff dsdt.
sz*" +(l—st)u st—+(l—st) )

To establish the proof of (3.2). It follows from (2.26) that we have

O Jus) = %@ (ﬂ) O(r) := rlogr— (r— 1) for r> 0, (3.5)
12%)

Hence, according to (3.5), one has nonnegative and smooth relative function ®on (0, 00). Moreover,
®" = 1/r > 0, which means strictly convex on (0, o), and ©(r) = 0 when r = 1, which is a critical
point. We will first estimate O(y) as follows:

For constant 6 € (0, 1/2] and o = log r < 0 (monotone decreasing) for all r € (0,1 — 9],

lim ©(s) = 12 O(r) 2 O(1 - 6) > 0, forall re(0,1-4]. (3.6)
s—0+
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Moreover, for any é, since Q = log r > 0 (monotone increasing) for all r € [1 + 6, o), one has
O +6) > O(r) >0, forall re[l+6 ).

We notice that O is nonnegative from (3.5), which gives for all r € [1 + 6, 00),
1

O1+6)>0()=rlogr+1—r> C(é)(rlogr +1)>0, (3.7)
and also
C©O)(rlogr+1)>6(1+6)>0() =rlogr+1—r>0. (3.8)
Combining (3.6)—(3.8) for a constant C(6) > 0, and for all |r — 1| > ¢, one has
%(1 +rlogtr) < O) < lim O(r) =1<C©)1 +rlog' r), (3.9)

where sign + of log* r indicates that @(r) is nonnegative on (0, c0). Therefore, by combining (3.9)
together with (3.5) and % < up < u-, the proof of (3.2) is completed.
Proof of (3.3). By the similar way with the proof of (3.2). For a constant C(5) > 0, one has

1
C()
Proof of (3.4). We have that d — ®(d|r) is convex when d > 0 and zero at d = r. Moreover, d — O(d|r)
is increasing, implying that
Ouils) — Ouzls) = Ouy) — O(s) — V(s)(uy — 5) — (O(uz) — O(s) — V(s)(u2 — 5))
= 0O(uy) — O(uz) — V(s)(ur — uz) 2 0.

r =11 < @) < C©)r - 1 forany |r—1]> 6.

Hence, O(u,|s) > O(u,|s). O
For any fixed constant y > 0, we present the following continuous function @,
# if y < _72’
®, = {-Ly if Iyl <y?, (3.10)
—# if y>—y~

For almost everywhere ¢ € [0, T'], we define a shift function X(#) as the solution of nonlinear ODE

X() = ©(LEZ)QRUITUZO)| + 1),
X(0) =0,

where Z € My and the functionals of £ and 7%%? are as in (3.42).
We assume the righthand side of (3.11) by H(t, X), then there exist functions of 8,8, € L*(0,T)
such that for ¢ € [0, T'], one has
sup [H(7, x)| < Bi1(t) and sup |D.H(z, x)| < (1)
xeR xeR
By employing Z € My and the changing of variables { — { — X(¢) as in Lemma 7, we can establish
the existence of local solution, continuity and uniqueness by Picard’s iteration for shift function X
satisfying (3.11).

(3.11)
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3.1. Existence and uniqueness of shift function X

Lety > 0 and Z € My, then we can define H : [0, T] X R — R as follows:
H(t,X) = ©,(LZ)QII™Z) + ), (3.12)

where @, is defined in (3.10) and £, 7% are as in (3.42).

It follows from the existence in section two and weighted function in (2.14) and (2.15), then, ®,, w, ii
and 1/ii are bounded, and &, w’, i and ¥ are bounded and integrable. Moreover, we choose the forth
term of 7%%¢(Z) in (3.42) that

fﬂ(w(ifm) —w/)umlog(ufx) 6410g(u7x) dc. (3.13)
R XM um u u

Substituting (3.13) into (3.12) and using (3.10), one has

1 D ~m’ , X\ X\
H(t, )] < — (2f— (w(bf ) _ )u’" 1og(”7) 9, log(MT) e + 1). (3.14)
Y R X um it ‘ it
Due to the law of logarithmic function, one has
2D “\" 2D x
it 1og(”7) i 1og(”7). (3.15)
xm 7} X 17}
We further employ (3.15) into (3.14), and one has
ux 2 ur\" 2
|H(t,x)| < C fux (log T) +C fw(ux)’" J; log (T) d¢+1
R u R u
ur 2 urx\" 2
<C f 1+ u” (10g+ T) l{l(ux/ﬁ)_1|>6} +C fW(th)m 8{ IOg (T) d( +1 (316)
R u R u

2

<C + 1| for t€[0,T] and x € R.

\/ Dw(u<)y"

0;log (’L—X)m'z < C(Dwu’" 'ag log (5)m‘2+ 1) for each + € [0,T] and

0 log (%)

Due to sup,. Dw(u*)"

m 2
Dwu™ '64 log (L—‘:) ‘ e L'(0,T), one has

sup |H(z, x)| < B1(2), (3.17)

xeR

for some function 8, € L*(0, T).
By a similar way, for some function 8,(f) € L*(0, T'), we can also estimate

sup |DH(t, x)| < Bo(t), for t€[0,T]. (3.18)

xeR

Based on the results of (3.17) and (3.18), we can derive the following lemma (the so-called Cauchy-
Lipschitz theorem).
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Lemma 3. Consider p > 1, T > 0 and the function H : [0,T] X R — R holds the following estimates:
H(ta x) - H(t7y)

X=y
for some function (B,(t),B2(t)) € LY(0,T) x LF(0,T). Thus, for any x, € R, one has the shift function
X : [0,T] — R which is unique continuous and satisfies

sup |H(t, x)| < B1(¢), and  sup

xeR X,yER, x£y

< Ba(t) for t€[0,T], (3.19)

X(t) = H(t, X(¢ e t€[0,T],
(1) = H(t,X(1)) fora.e t€[0,T] (3.20)
X(O) = Xp.
Proof. Note that (3.20) is equivalent to
!
X(t) = xo + f H(r,X(r))dr fortel0,T], (3.21)
0
then, the proof is from the following Picard’s iteration
Xo(#) = Xo,
(3.22)

!
Xpe1(8) = X9 + f H(r, x,(r))dr for n > 0.
0

Moreover, 3 € L', x, : [0,T] — R is continuous, and the following one is satisfied

I, = Xollz=0.7) = sup
Xp—1€R

T
Sf sup |H(r, x,—1(r))|ds
0

Xp-1€R

T
[ #exoas
0

T
< f Bi(rdr = ||Bill 17, foreach n (using the fact, sup |H(z, x)| < B1(1)).
0

xeR

For g, € L? with p > 1 by taking z. > 0, we have ||82ll;».r) ()P < % and t, < T. Thus, for
every n > 1, one has

f LH( x,(9) = H(r x01 (r)] dr
0

1xn+1 = Xullzo0.2) = sup
XnsXn—1ER, X #Xp—1

< f C O sup H(x(P) — H( xe (P dr.
0

X Xn—1 ER X # X1

By using the fact that sup, ,cp ., [H(#, x) — H(t, y)| < SUp, ep sy [X — Y[B2(7), one has

141 — xn”L""(O,t*)

< f s ) = e (D Ba(Pdr
0

X Xn—1 ER, X # X1

< sup

XnsXn—-1 GR,Xn¢Xn_1

T
1 1-1 1-1
< lx, — xn—l”L""(O,t*)f Ba(r)P)r (2.) "7 dr = |1xy = X1l =0, B2l Lro.ry (2) 7
0

f Do) = o (D1 f Bo(rdr = 1% = Xoillimn f Ba(rydr
0 0 0

< = lx, — x-1lly .
2” n n ”L 0,t,)
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From the above calculation, one gets

1n+1 = Xnllzo0.) < 5 10 = Xn-1ll0.1,) -

By repeating the above inequality and employing 7. < T, we have

1xn+1 = Xullzo 0.y < 5 1, = Xp-tlle 0y < ) 1x—1 = Xn=2llr0.1,)
1
< 3 1, = Xn-tllz0.7) o < > llx1 = xollz=0.7) < o Bl 0.1 -

Thus, one has [|x,1 — Xullz=0.7) < zi 1B11l.1¢0.)- Finally, we can prove the existence of limit X : [0, #.] —
R of the sequence x, : [0,%.] — R}, satisfying (3.21) for every O < ¢ < ¢,, then, we are concerned with
the uniqueness of the shift function. Let ¢;(¢) and g,(¢) be two solutions satisfying (3.20) and also
k(t) = q1(t) — g»(t). We have to show that k(¢) = 0, which means that g (¢) = ¢,(¢). From (3.22) one has

kOl = lg1(D) = G2(Dll o0 =  sup f [H(r,q1(r)) — H(r, q2(r))] dr
0

91,.92€R.q1#q>

!
< f sup  |q1(r) — q2(r)| B2(r)dr (using Cauchy-Lipschitz theorem)
0

91.92€R.q1#q>

Sf sup |611(r)—Qz(i’)|drfﬁz(r)dr=fSuplk(i’)drl Ba(r)dr
0 0 0 0

q1,.92€R,q1#q2 keR

T
1 -1
< ”k“Lo"(O,t)f Ba(r)?)r () v dr = ||l =00 1B2ll oo,
0

1
< 5 Ikl 2 0,0) -
Thus, [[k|| =, = 0 is the only one solution satisfying the above inequality. O

We present a lemma of a uniform bound of w'k(Z|Z), which is useful to prove Lemma 9 where this
Lemma 9 has an important role to establish Theorem 1.

Lemma 4. Let 6y € (0,1/2), C > 0, and for any y,v > QO with v € (5617, 0p), then the following one is
satisfied:

2

a2
f W Oulii) d + f W= g < c” (3.23)
R R 2 %

where | L(Z)| < y* and Z € K.

Proof. By using w’ = —%(ﬁm)’ and V' = _%’ we rewrite £(Z) in (3.42) as

w2 . -
L@2) = _fw'(lv l +®(u|ﬁ)) dr - —~2 fww'(u _u_Y V) e, (3.24)
R 2 R w

ymigm-! it
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then, one has

f Wk(Z|Z) d¢
R

u—un v-—9v

<1£@2)+ct f ww
V JUr

d¢

S72+sz W't — d{+CZf Wl — i d§+csz'|v—v| d.
V- Hlw/m-11<1/2) V Hw/my-11>1/2) vV Jr

Applying (3.1) and (3.3) to the above inequality, we get

f W k(Z|Z) d¢

R

<y +CY f W — i de. fw’ d¢
v {Iu/m)-11<1/2) R
Y e , 4 oo
+C= fwlv—vl d¢. fw d§+C—f wlu — | d¢.
vV yJUr R V Jiw/m-1>1/2)

f wk(Z|Z) d¢
R

< 72 + Cz f wO(ulit) di + Cl fw’|v - V2 d¢
v\ Jiwm-11<1/2) Vv \Jr

,}/2

1 -
+ Céof wOuli) df < C— + = fW'K(Z|Z) de,
{I/a)-11>1/2) v 2k

Hence

then, one gets

~ ’)/2
f wWK(Z)Z) d < CX,
R 4
which implies that the proof is completed. O

We further present the lemma as follows to get the estimation of the term |u — it|1y,z)-1>s)-

Lemma 5. Let 69 € (0,1/2) be a sufficiently small constant and C > 0, then for any y,v > 0 with
N 'y < v < 6y, and for any Z € K satisfying | L(Z)| < v?, the following estimates hold:

1
lu($) — a(O)l < C(;/ + |§|) D(2), (3.25)
whenever { € R satisfies
u(f)
— -1 >0. .
(0 > (3.26)
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Proof. We sety := 1 f_ll//yy w' dl. By using 1 [ @’ df =1andw’ = v/y|(@")| together with (2.9), gives

It follows from (3.23) that

1y e
f WOl d < C—,
_ 4

1)y

which gives

Uy ./ 2
f W Oulii) dz < C(Z) .
~1/y vy 4
Since f I w d¢ = 1, there exists a point € [-1, 1] such that
—1/y vy ’ Yy
2
o) < ¢ (1) < cwr, (327)
for some constant C.
We assume small enough d, to get
C(60)* < C2/2,
where constant C, is defined in (3.2).
It follows from the lower bound of (3.1) and (3.2) that
3 N ~ N2 el L u(&o)
Ou(o)li(€o)) = min | Cy u(fo) — a(do)l”, C; {1 + u(lo) log o)
> min (Cy'|u(%o) - #(%o)P. C5').
and together with (3.27) it gives
[1(Zo) — #Zo)| < NCIOW)aZy)) < A/C1C(S).

For small enough 6y, we assume

u(&o) o (NT+6-1)(V1—=(6/2)+ 1)

o) — 1| < min 5 > . (3.28)

utéo

For any ¢ € R and ¢,

W) u)|
aQ)  \ o)
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which gives

ug) u(fo)'
7(0) u(go)

2
f R \/ f pwcter | < tog (2o | ac
4m2D
\/ mEDW(Qu(l) i d¢ (3.29)
C C
< ,/—_f 1deND(Z)
2u )
C C 1
< o VIZ = LlVD(Z) < G IZ1 + 5 VD(Z).
We then assume that L = L(6) > 0 exists, then if » > 0, ro > 0 with
0 (V1I+6-1D(V1I-(0/2)+1
|r0—1|§min{§,( * )(2 ©O/2)+ )} and r—1]>6,
one has
Ir— 1< LIVr = vl (3.30)
We consider that ¢ := |/r — /rgl. Since |r — 1| > 6, then there are two cases:
(@) Forcase 0 <r<1-6.
Sincer <1-6<1-(5/2) <rg<1+(6/2), one has
0
2 Sl =D = o= Dl =1r=rol <YINr+ Vrol <20 ro < 24 V1 +(6/2) < 4y,
which gives 1 < (8/9). Therefore,
4 2
r—1=1-r<1=12<2% (331)
52
(b) Forcase r > 1 + 6.
Since
I\/r_o—1|=|r0_1|£ lro — 1] SV1+5_1S\/;_1,
Vro+1 7 \1T=(5/2)+ 1 2 2
one has
Y=IVr— rl=1(Vr=1) = (Vro— DI < [Vr= 11— |yro— 1
N Vi-1 (3.32)

2

Therefore, one yields

1+6<r<Qy+1)7>
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which gives
0<6< @ +4y+1)—1=4y@W+1).

Let ¥y = ¢¢(9) be the positive constant satisfying 4yo(y¥o + 1) = 6.
Since 4o + 1) < 4y + 1), one has 1 < (/yr), then by (3.32), one has

el = r—1 = (Ve D(VF=1)+2) < dp@ + 1)
1/ 2 1)

4 Y oapr1+ =),

) ‘”(‘“wo) ¢( U

It follows from (3.31), (3.32) and ¢ := | \/r — +/ro| that the claims in (3.30) are completed by taking
L := (644%/5%) +4(1 + (1/y)). By considering r := (u/ii)({) and ry := (u/it)({y) and employing (3.29)
and (3.30), one has

1
() — ()l = lOILINT = \rol* < u |L|Nr = vrol* < C(; + |§|)z>(2>,

which means that the proof is established. O

Lemma 6. Under Lemma 5, one has

2
fR W (1 " [u log* Z] )1“(“/@_”25} e < C \EQ(Z), (3.33)

fW’ (1 + u10g+ g) 1{|(u/,;)_1|25} d{ <C \/%D(Z), (334)
R

f Wiy =7 (1 +ulog g) Liusiyotsg) dC < C \/2@(2). (3.35)
R

Proof. (a) Proof of (3.33). Since [(u/it) — 1| > 6, then there are two cases,
For case u satisfying (u/it) — 1 < -6, then one gets

log* ? =0,
it

and

Iu—ﬁlzﬁ—uzdﬁz(é%

) >0, O(ulit) > C, > 0.
Since C = C(8) > 0, one has

(1 +u (log+ g)z) Lwi12-6) < C VOl = i1 -1
For case u satisfying (u/i) — 1 > ¢ together with (3.2), one has

u
Oulii) > (1 fu (1og+ ;)) Liiotss = (1 +u(10g* (1 + 6))) Lw/-1s- (3.36)
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By using the inequality

1/6
(1+uflog 2)) < 1+u(2) 7 < 1+ @) oW,
u u

1 (3.37)
where 7:= sup ?;gé} < 0o,
ye[l+6,00) Y
then for some constant C = C(6) > 0, we get
u\? = -
(1 +u (10g+ 5) )1{(,4/;,)_125} < V@(ulu)lu - Mll{(u/g)_lzg}. (338)

Moreover, if u is large from (3.36)—(3.38), then the lefthand side is bounded above by C(1 + Cu’’/®)
and righthand side is bounded below by %(1 + %u” ©). We further combine those two cases to get

u\? - -
(1 +u (10g+ 5) ) 1{|(u/ﬁ)_1|2§} < \/@(Mlu)ll/l - M|1{|(u/ﬁ)—1|26}.

Therefore, one can derive

+ u 2
fw' (1 + ”(log :) )1{|<u/a>—1|z<s}
R u

< fW' VO@i)|u — it yj/m)-1125)
R

< f w N Olit)u — i1 a)-1125) + f w Ol — @lLyj0z)-115)-
=3 V5 =L 2

From (3.25) and (3.23), C = C(6) > 0 and the first term above is estimated as

f W OGN — L yusir-1o6)
a=3 V3

< sup |I/t - 17t|1{|(u/,2)_1|25} f 1 W’ \/G)(ulﬁ)
- Vv/v3, vy <3 V3

<& \/YZ)(Z) f dOulii) dZ < C \ﬁz)(Z),
Y NY R %

f w A Oit)|u — |1 ywa)-120)
L2

1/2 172
< CD(Z) ( f w' O (ulir) d{) ( f W'l d(J
R [V

3 1/2
< CD2Z) %(fu \/_W,|§|2d‘:) .
0L
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Note that

[ witdcsew [ et a
[TV [ RvEl
<c e e de.
Ve Jizg Ay

By taking small enough &, such that for any y/v < &, |{]* < /¥ for > /v/y and
f e—C|{||§|2 d§ < f e—%\{l dé‘ — Ce_%\/g < CZ’
Ki=3 /7 ICRVE y

then the second term becomes

f W, \/@(ulﬁ)lu - ﬁ|1{|(u/[,)_1|25} < C \/EZ)(Z)
[CEAVE v

Thus, (3.33) is completed.
(b) Proof of (3.34). To establish (3.34), we apply the similar steps in (3.33) by using the following
inequality

u 1 u\?
1 +—<—(1 +—),
% 7 logl+ o)\ 8 7

for |(u/it) — 1| > 9, then (3.34) is completed.
(c) Proof of (3.35). It follows from (3.33) and by using the following inequality that

u 1 u\?
1 +—g—(l *-),
8 7 loal+o)\ 8 7

then for some constant C > O, one can derive
1+ul =L < O(ulit V4 - & |
ulog — {(u/i)—1206} (ulu) |Lt l/tl {(u/it)—1>6}-

For large u, the righthand side of the above inequality is bounded below by é(l + %uS/ 4, then one
has

fW/|Lt — ﬁl (1 + M10g+ z) 1{(,4/,;)_125} d(
R u

- 1/4 -
< f wlu — @l®lit)*|u — 1156 AL
<t 2

~ ~\1/4 ~
+ f w|u — | (ulit) / [u — @t|1ym)-155) L.
[

Y
Y
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Using the same steps as in (3.33),

~ ~\1/4 ~
f 1 w|u — |©(ulit) / lu — uu{(u/ﬁ)—lzé} d¢
k<3 vF

<ct \/YZ)(Z) f Wit — ElOuli)'? dg
Y \NY R
1 y 1/2 1/2
<C- \/jZ)(Z) ( f Wi — i d{) ( f W' O (ulii) d{)
Y \NY R R
<C \/EZ)(Z).
y

Since |u — #1|®@(ulit)'/* < Ck(Z|Z)*'*, the second term becomes

- 1/4 ~
f 1 wlu = @O ulit) " lu — i1 z)-126) AL
K25 V5

3/4 1/4
< CD2Z) ( f wK(Z|Z) dg“) ( f wet dg]
R =55

2034 1\ 1/4 >
sC@(Z)(%) (7) —C \/;Z)(Z).

which completes the proof of (3.35). O

Theorem 1 (Main results). Let (u=,v") € R* X R, 8y € (0, 1/2) and C > 0, then the following satisfies:

Let y,v > 0 where (y,v) € (0,u™) X (5617, 0o), and for any (u*,v*) € R* X R satisfying (2.4) with
lu™—u*| =y, for some constants w-,w* with [w* —w~| = v, w : R = R" is a smooth monotone function
and the limit of weighted function lim,_,.., w(x) = 1 + w*, then one has

Let7 := (

i

v) be traveling waves of (1.4) with the boundary conditions defined in (2.1) and the wave

u(x, )

speed @ defined in (2.3). For fixed T > 0, we consider that Z(x,t) := (v(x )

) is the solution of (1.4)

uo(x)

in the space My with the initial values Zy(x) := (v (x)
0

), satisfying

+00
f K(Zo|Z)dx < oo.

(o8]

Moreover, there exists shift function X : [0, 00) — R with X € Wllo’c1 and X(0) = 0, such that

f ) w(x — @wk(Z(t, x — X()|Z(x — wt))dx

(%)

2

dxdu

+ Do f f ) w(x — au(u, x — X(w))™
0 J-o

ax (log u(,u,x B X(ﬂ))m)

ii(x — wu)" (3.39)

< f OOW(X)K(Zo(X)IZ(X))dx,

for the monotone function w defined in (2.16),
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and

+00

) 1
|X() —w| < 77(]‘(t)+cf

—00

k(Zo|Z)dx + 1) fora.e. te€][0,T],
(3.40)

Jor some f(1) > 0 where ||fllp107) < C; ‘[:0 k(Zy|Z)d x.
Remark 3. From (3.40), we can estimate it as follows:
1X(0)] < c( fR K(Zo|Z)dx + 1)(r+ 1),
forany 0 <t <T and C > 0 is dependent of u=,v~,vy, and v. Particularly, the C > 0 is independent of
T.

3.2. Proof of main results

In general, Theorem 1 can be proved through Lemmas 7 and 8, and also the construction of the shift
function X, in which the uniqueness and existence of this shift function are proved through Picard’s
iteration, which is extended up to time 7.

Lemma 7. Let 7 := (z) be the traveling waves in (2.6) and the weighted function w : R — R* defined

in (2.16). For any solution Z := (z) e Mz of (2.5), for some T > 0 and for any absolutely continuous

shift X : [0, T] — R. For almost everywhere O <t < T, one has

% f w(OKZ (t, OIZ(O)d¢ = X0 LZ) + TUZX) — 18°°Z%), (3.41)
R
where

L(2) = - f w k(Z|Z)d¢ + f wo,VK(Z)Z - Z)d¢,
R R
(@)

ﬁm

VA VARERS f nli [le(a(ulﬁ) + (w' -w )(u - ﬁ)] (v —)d¢
R

m

+f£(w(bi) —w’)umlog(g)m{)(log(g)md‘{,
R XM um u i u

2
J8004(Z) ::wfw' v =7l d§+wfw’®(u|ﬁ)d{+waum
R 2 R R

—f&w'\7®(u|ﬁ)d{+wa(ﬂ~m) O(ulin)dl (3.42)
rRM R u

2

dc.

vl

Proof. We first change the variables { — { — X () such that
fR w(OKZX (1, OIZ())dE = fR w X (O, OIZH(0))dE.
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By using the identity in (2.27), we get

d -
7 wX(OK(Z@, OIZ)d¢
rJr

= X(—fw"XK(le_X)d{ + fw_xé?gVK(Z_X)(Z - Z_X)d{)
R R
+ Il + 12 + 13,
where
I =— | w¥0,G(Z;Z7%)de,

12:—

13:f
R

w X0, Vi(Z)AZIZ™)d¢,

S5

X(VK(Z) = VK(Z )0 (M(2)0,VK(Z))dL

=

w XV AVA(ZNZ — 270 (M(Z7)0,VK(Z7)).

2]

By using (2.23), (2.26) and (2.27), we have

I = - f W) ¥ = 5O ™) - f W) X5 Xeua™)
R m R m
- f ) X — i) — 59 (M0 (Z N,
R
~—X\ymy’
L=~ f o ) (u—a ) -v1)de,
R

X m u \"? (@
L= _V[RDW Xu™ 0, log (ﬁTX) dg + fRDW XWG)(”W "¢

+fR£(W‘X((ﬁ_—)W—(W_X),)umlog(ﬁ%)maélozg(ﬁ%)mdg'

xm (@xy"

Combining all the results and changing again the variable { — ¢ + X(), the desired solution of
Lemma 7 is established. O

Lemma 8. Let 7 := (

<t X

) be the traveling waves defined in (2.6) and the weighted functionw : R — R*

stated in (2.16). Let constant 6 > 0, such that for any Z = (z) € K, one gets

I"UZ) = 1°°Z) = BAZ) - G5(2), (3.43)
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where
g(n) = ﬁ o +(1+ 22 w-m).

By(Z) = — fR % [)(@(ulﬁ) + (1 + %%) (u — a)] O = )y 1psidl

’ D ! m m
—f)iw \7®(u|ﬁ)d{—f id (1+Z~K)umlog(§) Bglog(g) dc
rRM R XM v um u u

(3.44)
" W - w ’
Sy fDW —Ouln)d{ + fW ()P L uj)-11<64L
vV JUrR u 2 R
w ’ ~ ¢ |V - i7|2
Gs(Z) = — fW v =¥ + @) Lyw/m-11<0d¢ + wa Lywa-1>6dd
2 Jr R 2
m|2
+w f W Ouli)dL + f Dwu 0, 1og(¥) dc.
R R u
Proof. By using w’ = —%(ﬁ’")', it follows from (3.42) that we have
w’ . w - -
Tz = — f W [)(@(ulu) n (1 i Z$) (- u)] O = D) Lyy-ticodE
R M Vil
Ji
w N w - -
- f 2 Loy + (14 222 ) = )| 0= - 1m0
R M yu
’ D ! m m
- f)iw vO(ulin)dl — f id (1 + Zﬁ)um log (?) 0;log (?) ac
rRM R XM v u™ u u
_Y f pw' L ewi)de,
v R M"’l
v = 2 = 2
~182) = ~w f w Lywiy-10d¢ —w f w Lywm-10d
R 2 R 2
J>
u\"?
—w f WOuli)dl — f Dwu™ |3, log (—) dc.
R R u
By using ax? + x = a/(x + 2%)2 — f—i and x := v — ¥, we have
w , w , N
Ji+Jy= > fW o) L ujy-11<60dL — 5 fW v =7 + @) Lyu/m-1126/dL
R R
Thus, the desired solution is established. m]

Lemma 9. There exists 69 € (0,1/2) and 6 € (0,1/2) such that if positive constant y and v satisfy

N ly <v < 8, then for any traveling wave Z := (g) in (2.6) and for any Z € K satisfying | L(Z)| < y?,

one has
1
R(Z) = —)7IL(Z)I2 + Bs5(Z) + 50%|Ba(z)| -Gs(Z)-(1-0)D(Z) <0.

where the functional L is defined in (3.42) and Bs and Gs are defined in (3.44).
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Proof. We separate for all the terms in R(Z) and estimate them as shown
(a) For term of |B5(Z)|. From (3.44), we calculate for each part in B; that

B5(Z) =8B +8B,+ 83 + By,

where

B =~ fR % [X®(u|ﬁ) + (1 + %%) (- ﬁ)] v = W ywi-1>6dL,

P
Il

- f Xsewmds - L f Dw”ﬁﬁm(a(um)dg,

rRM V IR

w ,
B; = 5 fW o) yu/m)-11<5)dL s
R

D ’ m m
B, = _f w (1 + Zi)um log (g) (%log (g) de.
R XM v u™ u u

We further estimate for all parts of By, B,, B; and By,

W/
|Bl|sf X
R m

< CfW'®(M|L7)(V — D) wji)-11>0)
R

WI
jl; E(u — W)V = M yusa)-116)

< wa’ (1 + u10g+ %) (V - \7)1“(“/,2)_”25} (fI'OI'Il (32))
R
<C \/%Z)(Z) (from (3.35)),
~ ’}/2
|B,| < Cf@(ulft) < wa%(ZlZ) <C+—,
R R 14

2
Lyw/a-11<0)

1
851 = S’ | — [0t + (1 + 22 ) - )
2 wm Vv im
<C f W 1Ol yjjzy-1i<o)* + CfW'KM — )L ju/m-1i<o)
R R

<C f w(|lu — @if* + O(ulit)®) (from (3.1))
R

2
< wa’@(ulﬁ) < wa K(Z|Z) < C— (from Lemma 4),

|B4|<Cw/ log +C\/fwum
<C\/f1+1/t lOg —) ll(u/u) 1|>5}+C\/fWum

< CH fC \/gi)(Z) + CD(Z) (from (3.34))

<2CD(Z).

0¢ log d{

2

d¢

6§log(u)
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Since, all the terms in B(Z) are negative, then
Y Y
Bs(Z) + 50;|85(Z)| < 50;|B(3(Z)|-

(b) For term of |Gs(Z)|.
By using the similar way with the previous one

Gs(Z) =G+ Gr+ Gz + Ga,

where

w ’ ~
G =3 fw v =7 + o) L m-1125/dL.
R
G = wwa 5 L1042

Gz = wfw O(ulit)dl,

Gy = f Dwu™
R

which gives the following estimates

2
d¢ := D(Z),

0;log u)

G < wallv -9+ wa’|‘p(u)|21{|(u/ﬁ)l|§6}
R R
2

<C f Wy =9 + C)L (from the estimate of Bs)
R 4
oY '
< wa’x(ZlZ) +C—<2C—,
R \4 \4
G < CfW'(h’ -9+ wa'@(u|ﬁ)1{|(u/u)—1|>5}
R R
< wa'(w -9+ wa’ (1 +ulog? ?)
R R u
< wa'(lv - \7|2 + Oulin)) + wa’ (1 + ulog+ g) 1{|(u/g)_1|>5}
R R u
Y y
<C—+C \/jZ)(Z) (from (3.23) and (3.34)),
v %

~ ’)/2
Gs < wfw%(ZlZ) <C—,
R 24
Gs = D(2).
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Finally, we combine all the estimates of (a) and (b) and one has

1
R(Z) = —Vlli(z)l2 +B5(2) + 50%|B<5(Z)| - Gs(2) - (1-0)D2)

<5, [2cY 420 VDEZ Y
< 8 - VDZ) +C Lo@)

y
¥ y
_ (4C7 + D@+ C \/;Z)(Z)) —(1-6)DZ)
2
< (502 - 1) (2C7— +2CD@Z) +C \/EZ)(Z)) ~2-6)D2).
4 Vv V4
Since (6, &) € (0,1/2) and 6, < v < 6,
(502 - 1) <0,
%4

which indicates that R(Z) < 0, then Lemma 9 is completed.

O

Proof of Theorem 1. We are concerned with Theorem 1 through Lemmas 7 and 8, (3.41) and (3.11). It

is enough for the righthand side in (3.41) that for a.e. ¢ € [0, T'] we have
O (LEZNQITNZO + 1) LEZ) + 1725 - 15°U(Z¥) < 0.
For every Z € K we define
F(Z) = O(LEZ)QIINZ)| + DLEZ) + T"U(Z) - 18)(Z) < 0.

From (3.10), one can provide two cases:
(i). For |£] > v?,

bad
O,(LEZ)NQI™Z) + DLZ) = —Wﬁ < =21,

(ii). For |£] < ¥?,

o, L@ D) + £z = - BN D o L
v vt
Note that for all Z € K satisfying |£] > y?,
F(Z) < -211"Z)| + I(2Z) — 15°U(Z) = —|T"*(Z)| - T***(Z) < 0.
By using (3.43), for any 6 > 0 and any Z € K satisfying |£| < v?, one has

F(Z) < —%L(Z)z + I(Z) - 1%°(Z) = —%L(Z)z + Bs5(Z) - G5(2).
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For any Z € K satisfying |£| < y?, we apply Lemma 9 into the above inequality and one has
F(Z) < =602 1B5] - 0uD(2) < 0.

Therefore, by employing ¥ (Z) for |.£] < y* and |£] > v* and Z = ZX and ¢, < % into (3.41), for
a.e. 0 <t < T one has

% f wk(ZX|12)d{ + 60D(Z) = F(Z%) + 6oD(Z%)
R

y (3.45)
< —|If’“d(zx)|1{| Lz} ~ 60;|85(ZX)|1{| Lz} <0,
and by the initial data [ k(Zo|Z)d{ < oo, then we have
!
f wk(ZX|Z)d¢ + 6 f D(ZX) < f wik(Zo\Z)d(, (3.46)
R 0 R
where D(Z%) is defined by
MX m|2
DZ) := wa(uX)’” d;log (3) dc.
R

From ZX(t,0) := Z(t,{ + X (1)) = Z(t, x — wt + X(1)), we redefine X(¢) by wt — X(f) to get the desired
solution of (3.39), such that

ZX(t,0) = Z(t,x — wt + wt — X)) = Z(t, x — X(1)). (3.47)
For the estimate |X|, we first observe the shift function X in (3.10) and (3.11) such that

1
1X| < ?(2II bad| 4 1). (3.48)

From (3.43) together with the definitions of 74°°¢ and G, we have

|Ibad(ZX)| — |]bad(ZX)|1{|L(ZX)IZ)’2} + |_Z-bad(ZX)|1{|£(ZX)|§yz}
_ |Ibad(ZX)|1{|L(ZX)|272} + |78 Z%) + Bs(Z¥) - g&(zx)ll{IL(ZX)ISyZ}
< T ZOM grysey + IBAZON rznyer)

+C f w1V =5 + O i) + e — @)L 7)) 4L -
R
Since (3.1) implies that

Owit) < Cylu* —i)* < Cy(6u™)?, whenever |(u*/it) — 1] <6,

by using (3.1) and Remark 1 where w’ < C%e*% < Cdp < w, one has

|79 (7%)| < |1*”fwl(zx)|1{| 2oy} IBo @O zmyepry + C f wk(ZX|2)d¢ . (3.49)

R
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Moreover, we substitute (3.49) into (3.48) to get

) 2 C - 1
Xl < = (|Ib“d(zx)|1 (o) + 1B Z0I1 L(Zx)lsyz}) + = f wk(Zo|Z)dl + =,

Y Yo Jr Y

where
" (\bad X X 2v >
(lI (Z )|1{|.£(ZX)|272} + |B§(Z )|1{|.£(ZX)\S’)’2}) < 6_ K(Z()lZ)dé/.

0 0Y Jr

We further apply (3.47) again to get (3.40). Finally, Eq (3.39) is established. O

4. Conclusions

This paper provided the orbital stability with the cutoff version, because of the effect of the following
large initial perturbations

+00
f k(Zo|Z)dx < oo,

o0

where « is the relative entropy function, which is defined in Eq (2.24). The difference with the previous
study is the following small initial perturbations

f ® (u(x) —i(x — xo)) dx = (8) for some x, € R.

o \V(X) = ¥(x = xo)

Moreover, the large initial perturbations can be handled by introducing the appropriate relative
entropy method for nonlinear degenerate viscosity, where this relative entropy method has the same
role in L? (as in the small initial perturbations) to provide the distance between (u, v) and (i, 7).
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