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Abstract: In this paper, we introduced a family of distributions with a very flexible shape
named generalized scale mixtures of generalized asymmetric normal distributions (GSMAGN). We
investigated the main properties of the new family including moments, skewness, kurtosis coeflicients
and order statistics. A variant of the expectation maximization (EM)-type algorithm was established by
combining the proflie likihood approach (PLA) with the classical expectation conditional maximization
(ECM) algorithm for parameter estimation of this model. This approach with analytical expressions
in the E-step and tractable M-step can greatly improve the computational speed and efficiency of the
algorithm. The performance of the proposed algorithm was assessed by some simulation studies. The
feasibility of the proposed methodology was illustrated through two real datasets.
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1. Introduction

In the wake of the swift progression of technology over recent decades, a noteworthy proliferation
of diverse data types has ensued. A salient feature inherent in many of these datasets is their proclivity
toward heavy tails and marked skewness, thereby rendering conventional univariate distributions
inadequately applicable. Consequently, considerable scholarly focus has been directed toward the
formulation of robust distributions adept at effectively modeling such intricately structured data.

Andrews and Mallows (1974) [1] and West (1987) [2] proposed a scale mixtures of normal (SMN)
distributions with the following stochastic representation

Y=p+U?Z (1.1)
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where u € R is the location parameter, Z ~ N(0, 0%), and U is a positive random variable independent
with Z. The SMN distributions provide great flexibility in modeling not only asymmetric but also
heavy-tailed datasets. Although SMN distributions are attractive, when facing asymmetric population
with strong skewness and heavy-tailed behavior simultaneously in practice, SMN distribution appears
overwhelming. To cope with this problem, Branco and Dey (2001) [3] constructed the scale mixtures of
skew-normal (SMSN) distribution by replacing the normal distribution of Eq (1.1) to the skew-normal
distribution. This class of distributions not only contains the entire family of SMN distributions, but
also accounts for asymmetry and heavy tails simultaneously. Ferreira, Lachos, and Bolfarine (2020) [4]
pointed out that scale mixtures of the skew normal distribution can offer much-needed flexibility by
combining both skewness and heavy tails. Basso (2010) [5] developed an EM-type algorithm to obtain
the maximum likelihood estimation for the SMSN family and derived the observed information matrix.
Kim and Genton (2011) [6] obtained the characteristic functions for the SMSN family by means of the
simple stochastic representation. Lin et al. contributed a great deal of important work for scale mixture
models based on the skew-normal distribution, which has been found to be effective in the treatment
of heavy-tailed data involving asymmetric behaviors [7-9]. Mahdavi et al. [10] obtained the maximum
likelihood estimation for scale-shape mixtures of flexible generalized skew normal distributions via
EM-type algorithms.

The utilization of the skew normal distribution in the aforementioned study is rooted in the seminal
work of Azzalini (1985) [11]. However, it is essential to recognize the limitations of this distribution
when confronted with highly skewed and leptokurtic data, as its ability to accurately fit such data
may be constrained by the range of the skewness and kurtosis coefficients. To explore more recent
advancements in the field of skew normal distribution, we recommend consulting the works of [12-16].
Acknowledging these limitations, it becomes imperative to develop alternative forms of skew normal
distributions that can accommodate a broader spectrum of diverse data. One approach in this direction
was introduced by Fernandez and Steel (1988) [17], who incorporated a skew parameter into a
symmetric distribution. This innovation enabled the regulation of the probability density functions
in both the positive and negative orthants, offering enhanced flexibility. Another notable contribution
is the work of Zhu (2009) [18], who proposed the asymmetric exponential power distribution by
introducing a skew parameter into the exponential power distribution. Zhu further demonstrated
the consistency, asymptotic normality, and efficiency of the maximum likelihood estimation for this
distribution. These advancements signify important strides in the development of alternative skew
normal distributions that can better accommodate complex data patterns.

In this work, we have introduced an asymmetric generalized normal (AGN) distribution by
incorporating a skew parameter into the generalized normal (GN) distribution [19]. This extension
provides a flexible framework for modeling various types of data exhibiting asymmetric behavior and
heavy-tailed characteristics. However, in many practical scenarios, the observed data often exhibits
strongly heavy tails and significant skewness. To address this challenge, we turn our attention to the
family of generalized scale mixtures of the asymmetric generalized normal (GSMAGN) distributions.
This family represents a generalization of traditional scale mixtures, wherein we replace the power —%
of the scale factor in Eq (1.1) with any power — é, with 8 > 0. By employing this generalization, we
gain greater flexibility in capturing the complexities present in the data and better accommodate the
wide range of tail and skewness behaviors encountered in practical applications.

The rest of this paper will be organized as follows. In section two, some definitions and essential
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properties of the GSMAGN family are summarized. In section three, the explicit expression for
moments of order statistics from the GSMAGN family are obtained under independent identically
distributed (IID) cases. In section four, an efficient and tractable EM-type algorithm to obtain the
maximum likelihood estimation of parameters is established. In section five, the consistency properties
of the estimates and the estimation of standard errors are demonstrated. In section six, a simulation
study is implemented to assess the performance of the proposed algorithm. In section seven, two
real dataset analyses are presented to demonstrate the feasibility of the proposed model. Finally,
conclusions are noted in section eight.

2. The generalized scale mixtures of asymmetric generalized normal distributions

2.1. Definition and properties
Definition 2.1. Let the random variable X with the following probability density function (pdf) be

: = B _ L st X = MY
fAGN(x,u,a,K,ﬁ)—zl/ﬁ(HKz)r(l/ﬂ)gexp{ it RS NG

where I'(-) denotes the gamma function, u € R is a location parameter, o > 0 is a scale parameter,
k > 0 is the skewness parameter and B > 0 is a shape parameter. We say that the random variable
X follows an AGN distribution, denoted by X ~ AGN(u, o, k,[3). In particular, if k = 1, the AGN
distribution becomes a GN distribution [19] denoted by GN(u, o, 5).

Definition 2.2. A random variable Y is in the GSMAGN family if its stochastic representation is given
by

Y = u + o[k(U)]'*X, (2.2)

where X ~ AGN(0, 1, k,8), u is the location parameter, k(-) is a weight function, and U is a random
variable.

IfU=u,thenY | U = u ~ AGN(u, [k(U)]"Po, k, B) and the pdf of Y is given by

Josmaon (s i, 0, K, @, B) = f fAcN(y;/J, [k(u)]" o, K,,B)dH (u; @), (2.3)
0

where H(-; @) is the cumulative distribution function (CDF) of U indexed by parameter @. To imbue
the proposed distributions that have some compelling mathematical properties to facilitate statistical
inference, usually the weight function will be chosen for k(u) = i

Proposition 2.1. If Y ~ GS MAGN(u, o, k, @, 8), then the stochastic representation of Y can be written
as follows

Y = u+oUFIQZ)5, (2.4)

where U ~ H(-; @), Z ~ Gamma(1/B, 1), I is a discrete random variable with probability mass function
fi= %12 L=y + 1:71{1:1 iy and U, 1, Z are independent of each other.
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Proposition 2.2. If Y ~ GSMAGN(u, o, k, a, 3), then

SO\ et TG+ DB 1 (L .
E(Y)—;(i)v,u 25 1) 1+K2[/<i+( 1)« ]E(Uﬁ), me N*.

In particular, the expectation and variance of the random variable Y are respectively given by

T2 1 1 1
uy =E(Y) =pu+ a2ﬂ% T KZ(; - K3)E(U_ﬁ),
oo 146 TGUB) 2 (=KD TQ/B). 1 T
Var(l¥) =o Zﬁ{KZ(l roraptV 2 [F(l/,B)E(U ﬁ)] }
Proof. See Appendix Part 1. O

2.2. Examples of the GSMAGN distributions

(1) AGN distribution
In this case U = 1, the CDF of Y is

atal Al e

2\ ko
Faon(ysp, ok, @, B) = 5 p
K, 1 (1 I(K(y—,u))ﬁ) .
50 A ’ 1 = M
1+ a+)\g2\" o y=H

where y(a; x) = ﬁ fox 1%~ 'e~'dt denotes the lower incomplete gamma function.

(i1) Asymmetric generalized ¢ distribution (AGT)
In this case we consider U ~ Gamma(a, 8) (o = («, ) for H(u; @)) and the pdf of Y is given by

) _ B—(a+1/p)
1 2k [1 + g(Kagn(y—,l) |y lul) ] , Y€ R,
Q/B)" 7 (1 +k)B(a, 1/Bot 2 o

and the CDF of Y can be represented as

fAGT(y;ﬂ’ 0, K, a’ﬁ) =

2

K 1
— 1 —I(—, :h )], if ,
(1+K2)[ 57 1) ify<pu
FAGT(y;/’ta 0, K, a’ﬁ) = K2 1 1
+ I{=,a;h ), if y>pu,
1+ 1+ (ﬁ“ 20)) ity = p
where v g v
hy(y) = B —y ’ ho(y) = By —p _
2kP0P + B(u — y)P 207 + BrP(y — P
B(:, ) denotes the beta function, I(a, b; x) = B(:Lb) fox #“~1(1 — 1)*~'dt denotes the incomplete beta

function, and @, 8 > 0 are two shape parameters, then we say that the random variable Y follows
AGT distribution, denoted by Y ~ AGT (u, o, «, @, ).
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Corollary 2.1. If Y ~ AGT (u, o, k, , B8), then

SO (M 2V D@ =BG+ /Bl 1 L
E(Y)_;(i)” (,8) T(@I(1/p) ol 0| e m

In particular, the expectation and variance of Y are respectively given by

2 ),z I(a - 1/BT2/B)

uy =E(Y) = u + 0(

B C@ra/p -’

s e e
Proposition 2.3. If Y ~ AGT(uo.ka.f), then UY = y ~ Gamma(a ;
sz )

Proof. See Appendix Part 1. L

(ii1) Asymmetric generalized slash distribution (AGSL)
In this case, we have U ~ Beta(a, 1) and the pdf of Y is given by

: _ KaBL@+1/B) (1 Ganyp Iy = PP
JacsL Ot 0k . B) =577 +K2)F(1/ﬁ)a[2(K Bn ) ]

1 1/ . — ul\?
X y[a + = _(Kslgn(y—,u) b=u ,ul) ], y€R.
B 2 o

All parameters play the same role as in AGT distribution, then we say that the random variable Y
follows an AGSL distribution, denoted by Y ~ AGS L(u, 0, k, @, 5).

Proposition 2.4. If Y ~ AGS L(u, 0, k, @, 8), then the pdf of U | Y =y is given by
L[ sign(y—p) b—#
[E(Kﬂgn() M)%

. — B
e+ 1pya+ 4 y(wmomiza ]| -

)ﬂ](w+1/ﬁ)

Proof. See Appendix Part 1. O

(iv) Contaminated asymmetric generalized normal distribution (CAGN)

In this case, U i1s a discrete random variable taking one of two states with the following probability
mass function

h(u,a') = (l’l(u:,l) +(1- a)l(uzl) , O<a<l, 0<AaA<1, ie, a=(aA). (25)
It follows immediately that the pdf of the random variable Y is given by

feacnOi ok, 4, @, B) = afaon (Vi i, APk, B) + (1 — @) fagn(vi i, 7, K, B),
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and the CDF of Y is
K K> 1 1
- —h 1- —h if
1+ ) (1+K2)[0/}’(ﬁ, 1()’))+( a/)y(ﬁ, Q(y))], ify <u,
FeagnQs i, o, k, A, @, B) = P : | ;
—h 1- —h if
(1+K2) + (1+K2)[a"}’(ﬁ, 1(}’))+( a’)‘)/(ﬁ, 2(}1))], 1 y>lu,
where
Al — ul\? 1/ .. —ul\B
hi(y) = _(Ks1gn(y—,u)M) > h(y) = _(ngn(y—#)M) .
2 o 2 o

Proposition 2.5. If Y ~ CAGN(u, 0, k, 4, a,f), the pdf of U | Y =y for 0 < A < 1 is given by

. /l_l/ﬁ 1— .
P(U:/ll Y:y) :a,fAGN(yaﬂ, O-’K’ﬁ) , P(U: 1 | Y:y) — ( a)fAGN(y,,U,O"K’,B) ‘
feaen i, ok, A, @, B) Jeaon s p, ok, A, @, B)
Proof. See Appendix Part 1. O

Figure 1 illustrates the pdf of the GSMAGN family under three distinct scenarios, providing
valuable insights into the impact of the shape parameters (@ and ) on the pdf’s shape. The chosen
values of @ and S exert a decisive influence on the characteristics of the density. When a and 8
assume smaller values (Figure la and lc), the resulting densities exhibit longer tails and greater
leptokurtosis. Conversely, larger values of @ and S (Figure 1b) lead to contrasting effects. Notably,
the shape parameter S has a predominant impact on the distribution’s shape, while the parameter
governs the behavior of the tail. Moreover, all three subfigures demonstrate that the AGSL distribution
possesses thicker tails compared to the other three distributions. Consequently, the AGSL distribution
exhibits a favorable advantage in modeling observations characterized by skewness and heavy tails.

/,/\\ £ /

S

(1) PDF of GSMAGN family for (b) PDF of GSMAGN family for (c) PDF of GSMAGN family for

different values of « with fixed 4 =  different values of o with fixed 4 =  different values of § with fixed u =
l,oc=1,k=05y=06a=15B= Il,c=1Lk=1y=06,a=25B8= 1loc=1«k=15y=06,04=05,8=
0.8. 1.5. 1.5.

Figure 1. PDF of GSMAGN family for different parameter values.

3. Order statistics

In the following, we provide the moments of order statistics generating from GS MAGN(0, 1, k, @, 8)
distribution under IID case.
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3.1. Order statistics of AGN

Proposition 3.1. Let X,,X,,---,X, be a random sample of size n from AGN(O,1,«,3), and
Xins Xouns -+ Xy are corresponding order statistics. The my, moments of the largest order statistic
is given by

n—-1 oo m X
n—1 25 . . o m+i+1
E(X7,) = (= )rmntm . 2nmiml=m b(?)r( N )
=112 JZ;( i )(1 T e I T
where
—1/ ] 1, i =0,
j = (1—) bﬁ-s) = be_l)bj—h, bi-l) = b, bi-o) = J , j=0,1,---.
J'(G+)) — 0, j>O0,
Proof. See Appendix Part 2. m|

The Lauricella function of type A (see, for example, Exton(1978) [20]) is defined as

[ee) 00 m m

(n) . . aml+"'+mn(b1)m1 NN (bn)mn X 1., X
FA (a’bl""’Cl""’cn’xl""’x”):Z"'Z ' 3
m1=0 m,=0 (Cl)ml T (Cﬂ)mn my:---ny.

where () = f(f +1)---(f + k — 1) denotes the ascending factorial.
We also acquire the moments of the largest order statistic by means of the Lauricella function of
type A.

Proposition 3.2. If X ~ AGN(0, 1,«,8), and X.,, Xo.n, - -+ , Xp:n are the order statistics, then the my,
moments of the largest order statistic is given by

m < n-1 IB’F(%M)Z% i+m , 2n+m 2(n—i—1)—-m
F) znz(;( i )(1 T DK :

(,.)(m +i+1 1 11

A —’ _’ tee o _; - +
BB BB

Proof. See Appendix Part 2. O

1,...’1_,_1;_1,...,_1).
B

3.2. Order statistics of AGT

Proposition 3.3. If X ~ AGT(0,1,«,a,pB), é is an integer, and X, X2, , Xpn are the order
statistics, then the my,, moments of the largest order statistic X, is given by

m

2/B)*

E(X7,) =

(_1)mK2n+m (1/8-1)(n-1) . .
[Ba. 1/B)] & T,(1/B,n - 1)XB(T,an+v— E)

“ N n-1 1 g m+ 1 1 m
- _ T,(1 ) X B j - —
+;< >( ; )Km[B(a’l/ﬁ)]J Z; (1B, j) % (ﬁ La(j+1)+v ﬂ)

b

where T,(1/8,0) = 1, T,(1/8,1) = C,, v = 0,1,--- ,(1/B), and C, = (—1)V(1/€—1)$. Forn > 2,
T,(4n=1)= 3 CTi(4n=2),v =01, ,(1/B)n - 1).
(3n=1)= 2 CTvi(fon=2)v (1/B)(n = 1)
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Proof. See Appendix Part 2. O

The formula for computing the m-th moments of the order statistics given in Proposition 3.3 is only
applicable to the case that 1/4 is an integer. We derive a general representation of the m-th moments
of order statistics without restrictions on f3.

Introduced by Exton (1978) [20], the generalized Kampe de Feriet function is defined by

. < < mi+--+m, b m; " bn my
FEB (@)t (01 003 2 @i ity o) = 3 e S e O 2 (B)
m,=0

— ((C))m1+~~-+m,, ((dl))ml e ((dn))m,,

m;=0
x’lnl ...x:ln"
X—,
my!---m,!

where a = (ai,ax,---,a4), b = (bi1,bir, -+ ,bip), ¢ = (c1,-++,cc), di = (di1,--- ,dip), for
i=1,2,--- ,nand () = ((fi, oo s o)k = e (e, (e = fifi+ D)oo+ (fi + k= 1).

By using the the generalized Kampe de Feriet function, we derive the following proposition:

Proposition 3.4. If 1/B is a real non-integer, the m-th moments of order statistics X,., from
AGT (0, 1, k, a, B) can be computed by the following convergent expression

n—1
B0 = [winn = 10+ 3 (" st G 2110
=0

where
(1" 2B B an = 5) m 1 1
Jmn = 1,) = m((om S LR RO SRR !
(a/n+é) @ D (@t 11, ,1).
Proof. See Appendix Part 2. O

3.3. Order statistics of CAGN

The relationship between order statistics from CAGN distribution and AGN distribution can be
stated as follows

Proposition 3.5. If Y ~ CAGN(0, 1,«,4,a,B), X ~ AGN(0, 1, k, a, 8), then we have

E(Y,.,) = P(U = DE(X,,,) + P(U = DA FE(X,.,) = [ + 275 (1 = @)]E(X,.).

Proof. See Appendix Part 2. O
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4. Parameter estimation via the EM-type algorithm

In this section, an EM-type algorithm to determine the MLEs for the parameters of the
GS MAGN (u, o, k, @, ) family is established.

Originally proposed by Dempster et al. (1977) [21], the EM algorithm has garnered significant
attention as a powerful tool for handling estimation challenges in situations involving incomplete data.
This algorithm offers numerous exceptional advantages. For a more comprehensive understanding
of this subject, we highly recommend referring to the monograph by Lange (2013) [22]. A notable
extension of the EM algorithm is the ECM algorithm introduced by Meng and Rubin (1993) [23]. The
ECM algorithm not only preserves the desirable property of monotonic convergence exhibited by the
Q-function in the classical EM algorithm but also facilitates faster convergence rates.

Invoking Proposition 2.1, the hierarchical representation for the GSMAGN model can be described
as

Yi|Uj=u;~ AGN(/J, u;l/ﬁm K,,B), Uj~ H(uj; ).

Let Y = (y1,...,y,)! denote the observed data, U = (uy,...,u,)" on behalf of the corresponding
latent variable. Combining Y, U together we obtain the complete data denoted by W = (Y, U). Let
O = (u, o, k, )" represent the vector of parameters, then the complete log-likelihood function can be
expressed as follows

InL(@ | W) =n| Ink — In(1 + &) +Ing—-1/)In2-InT'(1/B) —Ino

n

1 1 . R N
+ = Z Inu; - 5 (KSIgn(yj_“)M) uj+ Z In A(uj; ).
B j=1 j=1

= 7

4.1)

Prior to outlining the precise steps of the estimation algorithm, it is imperative to highlight a crucial
aspect. We adopt the assumption that the shape parameter S remains constant, and the optimal value
for this parameter can be determined through the PLA. By integrating the ECM algorithm with the
PLA, the computational speed and overall efficiency of the algorithm are significantly enhanced.
Consequently, under this assumption, the parameter vector 6; is transformed into 6, = (w;, 0, @;)
throughout the subsequent sections of this paper.

It is well known that the EM framework is an iterative algorithm consisting of two steps, namely,
the expectation step (E-step) and the maximization step (M-step).

E-step: Given the observed data set Y and parameter estimation values @" of the A-th iteration,
the aim of this step involves calculation of several necessary conditional expectations. The so-called
Q-function is expressed by

Q616" =E[InL(O | W) | ¥,6"]
:n[an —~In(1+&)+mmB-(1/8In2-InIr'(1/8) —Ino

4.2)
1 - 2 1 < sion(y i— |y—#|ﬁ 2 = ~
# 5 2 AR O =3 3 (e S 4, 60+ 3B 6
j=1 Jj=1

J=1

AIMS Mathematics Volume 9, Issue 1, 1291-1322.



1300

where

A(Y,0") = E[U; | ¥, 0™], A,;(Y,60") = E[In U, | Y, 6], and B;(Y, ") = E[Inh(U; @) | ¥, &"1.
For different members of the GSMAGN family, the crucial conditional expectations are calculated

as follows

e For AGT
@" +1/B)
1/ + ¢

Axi(7,6) = @+ 1/8) = n (178 + "),

Ai(Y,0") =

A 1 A A
B,(Y,60™) = ~[aInB + InT(a)] - Al O") + (@ = DA (Y,60"),

EXC

NAY:1
. ~ )] . . .
where ¢ = %(K“gn@f‘”(h)) b ') , and ¢(-) is the Digamma function.

J
e For AGSL
e Y@P 1B+ 1,E@" + 1/B)
Ay(Y, o) = - h)\ Ath 5
Y@ + 1/;8)e)
f@‘yl) t(&(h)-'—]/ﬂ_l)e_[ ln " dt
Ar(Y,0") = { . oo~ In é(.h)}
@ + 1/pyy@® + 1687
B,(Y,0") = Ina — (@ — DA (Y,0") .
e For CAGN
1 - a® 4+ gWAM]+B exp ((1_3(’”)65’1))
A (Y, 0") =
1 A
1 — G + GWAM exp ((1—21( ) 6;h))
~ A () Q(h) /B ;l(h)
A (Y, 0) = @ [A]7 In

e N AD—1y i\
AW[ADYIE 4 (1 — a(h))exp(m ) ”cﬁ’”)

&(h)fAGN(yﬁ,a(h), (AW 1BsM ) .
feaon(yj; AW, M, A0, &™), B)

(1 = &™) fagn(y;: 27, 6™, B)
feaon (s i@, 5® A0 6", B) .

In(1 — @)

Bi(Y,60™) =Ina

In the EM algorithm, the M-step needs to maximize the conditional expectation obtained by the
E-step and the suggested framework can be briefly described as follows

(1) According to the theory of robust statistics [24], 4”*" can be updated through the following
expression
& Wiy,
o 30 AL >
2 wi(Y, M)

j=1
where w (Y, @) = S0Py — A, (Y, 0),
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(2) Update 6" by the following equation

™=

1 n
A B 2\ A
6 = (S| D w0y, - a0 (4.4)
=1

where @) = (D, G0 b))

(3) Update &1 by the following equation

" (ly; = ABDIPAL (Y, BB 1728+
Skl - } : 4.5)

P {
2y = AP DIHEA (Y, ©+M))
such that @™ = (gD 0+ 0 ¢"Yy and [x]* = max{x,0}, [x]” = [-x]*.

(4) Regarding a"*V

e For AGT: Update @"*! as the root of

1< )
[ pl@)+Inf | == > Ay(¥,6™") =0, (4.6)
n ‘=
where @***(h) — (la(h+1)’ é\_(h+1)’ k(h+1), @(h)).
e For AGSL: Update ¢V by
g = - c (4.7)

;:1 AZ](Ya @***(h)) )

e For CAGN: Update &"*D by

n a® [Q(h)] 1/

ath =

(4.8)

1 GW[AD]UE 4 (1 — &™) exp (@(h;_n @Eh))

Remark 4.1. For AGN, an interative procedure presented below to update B™V is also
recommended

7
P =B

A wxx(h) 2 2 soxsk(f) Y \ —
0 _ 9001670 F0E 18 )

B o

where

A***(h)
0OIE™Y 1L 2 D) iy L)

2 2 ***(h) ,
POOIO (1,202, 2008 2WD) (i 2t
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For a prescribed value € > 0, if the value of the actual log-likelihood function L(Y | @) of two
successive iterations statifies [L(Y | @®D)/L(Y | @) — 1| < &, then the iterative process is broken up.
In our study, the tolerance ¢ is set equal to 107,

It is well known that the starting value plays a decisive role in the implementation of the EM-type
algorithm. As a result, the following steps are recommended to find reasonable starting value.

Notes on implementation

e Random sample generation: From the stochastic representation in Proposition 2.1, the following
procedures are recommended to generate random samples from GSMAGN.
Step 1: Generate U ~ H(u; @) and set Z ~ Gamma(1/4,1).
Step 2: Generate W ~ U(0,1). If W < —L set I = 1; else set I = —«.

1+2° K’

Step 3: SetY =u+ O'U_fl?I(ZZ)é and return Y.

e Initialization: The initial value for 49, © and X can be computed by

Zr%: (y —ﬂ(o))z Zn: I a0 (y)
A0 = mode(Y), & = \/ AL R
n izt Loy sp0n ()

(1) For AGT and AGSL: Compute the initial guess @* through the following equation

n
&0 = argmax Y In f(y;: 10,50k, . ).

a ]=1

(2) For CAGN: The initial value for @ and A are uniformly generated in (0, 1).

Choosing the value of 5

Step 1: Run the AGN model and obtain an estimate 3 that can be referenced, then consider grids of
values {B(l), ces B(R)} that contain f (the initial value for 8 can be obtained from the moment
estimator).

Step 2: Substitute each S, into the Q-function to acquire simultaneous estimation for the unknown
parameters denoted by @l(.q) via the ECM algorithm. After that, calculate the value of the
corresponding log-likelihood function through Eq (4.1).

Step 3: Repeat Step 2 and then interpolate on 3 values and derive 8 which maximizes the trace of the
value of the log-likelihood function.

5. Consistency properties

5.1. Existence and consistency of the MLE

Lemma 5.1. If X ~ dPy(x) = f(x;0)du(x),0 = (6,,---,65),x = (x1,---,x,) are a n identically
distributed f(x;0) random variable, then parameter space © is an open set in R°. Assume that

(1) If 6, # 6y, then Py, # Pe..
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(2) ForNx in the range of X, f(x,0) > 0, and has a continuous first partial derivative with respect to
6.

(3) For Y6, € O, there exists a neighborhood Uy, C ® and a positive function G(x) if 6,6 in Uy, we
have | Inf(x;6) — Inf(x;0) |< G(x) || § — 0|, and Eg,[G(X)] < oo.

For 6y € ©, when n — oo, there exists a solution 0 to likelihood equation (a.s.)

OlnL(x;0) i olnf(x;; 0)
0 00

i=1
and the solution @ is strongly consistent.

Theorem 5.1. If Y ~ GSMAGN(u, o, k,a,8), Yy = (1,2, ..., Vn) is random sample from population
Y, where § € © = {w,ok,,B) : u € R,o € R,k € R",a € R*,B € R*}, the maximum likelihood
estimator 0 of 0 satisfies

Pg(’}i_)rg@ =0)=1,Y0 € 0.

Proof. See Appendix Part 3. O

5.2. Estimation of standard errors

The observed information matrix of the GSMAGN distribution is computed by
I/(® | y) = -0°L(O | y))/0050" .
It is well known that, under some regularity conditions, the covariance matrix of the maximum

likelihood estimators @ can approximated by the inverse of Iy(®|y). We evaluate

n

ICIMEDIE (5.1)

i=1

OL(®ly:)
00

Following the results of Basso [5], the individual score can be described as §; = lo=g, Where

Si = (84> S5 8«» $¢). The elements in §; are given by

s :Du(f(yi;®)) N :Da(f(yi;®)) N :Dk(f(yi;Q)) : :Dv(f(yi;®))
O fose) T fos0) 7 fes®) T fs®)

D,(f(yi;;®)) denotes the derivation of the density function with respect to u, and D,(f(y;; ®)),
D.(f(y;;®)) and D,(f(y;; ®)) are defined by analogy. Let

M = f ubt exp{ - —(Ks‘g“(y"_’“‘)M) u}dH(u; ).
0 2 (o8

After some algebraic computation, let A; = k€0~ Y and we obtain

ﬁ . ion(yi— _ Mi,l
Sip = ;Slgn(ﬂ — YK OriAp IM_-O’
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1 M,
Sio = == + AP,
’ o 20 M

1—K2 ﬂ M']

ik = = — ~—sign(y; — WAL ——.

S S a2 AT

D,(f(y:; ®)) depends on each particular case mentioned in section 2. The components of the score
vector are given in Appendix Part 3.

6. Simulation study

In this section, we conduct Monte Carlo simulations and the performance of the proposed algorithm
is assessed via Bias and mean squared error (MSE) under different censoring schemes and parameter
values. These two measures will be computed with 1500 replications at the same time and they are
defned as follows:

1500 1500

. 1 ~ 1 ~
Bias(6) = 55 D> @-6), MSE®)= 500 CEDS
j=1 j=1

Without losing the generality, we consider sample sizes n = 50, 100, 300, 500, 800, 1000, and change
the values of the shape parameter 5. To be more specific, in order to study the influence of sample
variability on the estimation effects of proposed method, we consider the cases where § = 1.5
and B = 2.5, and for each case of 5, the remaining parameter (u, o, k, @) is taken to be equal to
(10, 2.5, 1.5, 3.5).

Figures 2 and 3 exhibit the Bias and MSE plots for the parameter estimates of the AGN, AGT,
AGSL, and CAGN distributions across varying sample sizes. Based on the observations drawn from
these two pictures, the following findings can be elucidated:

(1) It is evident that both the Bias and MSE of the parameters for the different sub-models (AGN,
AGT, AGSL, CAGN) diminish and converge to zero as the sample sizes increase. This convergence
implies that the estimates obtained through the proposed EM-type algorithm adhere to the desirable
asymptotic properties, signifying consistency.

(2) Notably, when employing the proposed EM-type algorithm, the parameters x and scale
demonstrate relatively minor Bias across all sample sizes. Additionally, the MSE of the x parameter
exhibits significant sensitivity to changes in sample size.

(3) Furthermore, Figures 2 and 3 reveal that the estimated performance of the EM algorithm for the
AGT and AGSL distributions closely approximates that of these two distributions.

(4) Conversely, the results indicate that the estimation method faces the challenge of dependency
on distribution complexity. Comparing the maximum likelihood estimates of the four distributions
within the GSMAGN family, it becomes evident that the EM-type algorithm effectively estimates the
parameters of the AGN distribution. However, for the CAGN distribution, which possesses a relatively
larger number of parameters, the Bias and MSE of o and g are relatively substantial, resulting in less
stable estimates.

Through a comparative analysis of Figures 2 and 3, it becomes apparent that as the value of
increases, the Bias and MSE of the parameter estimates decrease for all four distributions overall. This
observation indicates that the EM-type algorithm for maximum likelihood estimation is more suitable
for distributions with lower leptokurtosis.
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Figure 2. Bias and MSE of (u, o, k, 8, @)(u = 10,00 = 2.5,k = 1.5, = 1.5,a = 3.5).
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(a) Bias of u (b) MSE of u (c) Bias of o
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E
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]
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Figure 3. Bias and MSE of (u, o, k, 8, @)(u = 10,0 = 2.5,k = 1.5, = 2.5,a = 3.5).

7. Application

In order to facilitate the empirical investigation, datasets encompassing the S&P 500 Composite
Index (S&P 500) and the Shanghai Stock Exchange Composite Index (SSEC) indices, spanning from
January 2, 1998 to June 18, 2023 were diligently compiled. These datasets were acquired from the
esteemed source, https://finance.yahoo.com. A total of 6,408 samples were drawn from the S&P
500 and SSEC indices at corresponding time points to enable a comprehensive comparative analysis.
Within the scope of this study, the return (R;) in period 7 is defined as R, = 100(In P; — In P,_;), where
P, (fort =1,2,...,N) represents the level of the S&P 500 and SSEC indices at time ¢.

As elucidated by Wen et al. (2022) [25], notwithstanding divergent summary statistics between
the S&P 500 and SSEC indices, both datasets deviate from the assumptions associated with a
normal distribution. Furthermore, both sets of data exhibit characteristics such as heavy-tailedness,
leptokurtosis, and left-skewness.

To assess the adequacy of the proposed GSMAGN family, fitting procedures were conducted for
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the AGN, AGT, AGSL, and CAGN distributions using the S&P 500 and SSEC datasets separately.
The estimation of distribution parameters was executed using the EM-type algorithm, as expounded in
section four. To evaluate the goodness of fit for the four distributions and various metrics, including
observed log-likelihood (1), Akaike information criterion (AIC), Bayesian information criterion (BIC),
and the Efficient determination criterion (EDC), were employed. The fitting results were consolidated
and presented in Tables 1 (for the S&P 500 dataset) and 2 (for the SSEC dataset). The ultimate values
of the shape parameter 8 of the GSMAGN family were determined by the trace of the PLA, as presented
in Figures 4 and 5.

Upon scrutinizing Table 1, with a focus on the AIC and BIC criteria, it is discerned that the
AGSL distribution consistently outperforms the other three distributions in fitting the S&P 500 dataset.
Subsequently, the AGT distribution emerges as the next best-fitting alternative, indicating its substantial
advantage when fitting data characterized by skewness and leptokurtic behavior. Turning attention to
Table 2, considering the AIC, BIC, EDC, and log-likelihood values, it is deduced that the GSMAGN
family surpasses the alternative models in terms of goodness of fit for the SSEC dataset.

To visually illustrate the fitting results, Figure 6 depicts histograms of the datasets alongside
corresponding fitted densities. Notably, the fitted curves of AGT, AGSL and CAGN closely align with
the contours of the histograms, attesting to the model’s proficiency in capturing pertinent information
inherent in the observations.

Table 1. Parameter estimates for the S&P 500 data set and the associated AIC, BIC, EDC,
and log-likelihood (/) values for different distributions.

Model u o K a B Y A v AIC BIC EDC l

AGN 0.113 0.755 1.056 — - 1.374 — - 19695.64  19722.7 19751.65 -9843.819
AGT 0.105 1.592  1.049 3212 1319 -— — - 19215.9 19249.72 1928591 -9602.951
AGSL  0.0847 0376 1.038 3.055 1.136 — — - 19227.94  19261.77 19298.01 -9608.971
CAGN 0.108 0.508 1.053 0.131 1.248 0293 — - 19237.83  19278.43 19321.92 -9612.917
SN 0.859 2248 — - - — -0.999 — 20908.13  20929.02 20950.77 -10451.36
ST 0.258 0577 — - - — -0.298  2.79 19275.44  19302.5 19331.49  -9633.719
SCN 0.295 059 — - - 0215 -0.342 0.108 19432.05 19465.88 19502.12 -9711.05
BST 0.139 0737 — 1.321 1455 — — — 19274.54  19301.6 19346.61  -9633.269

Note: Bold font highlights the best model according to the model selection criteria.

Table 2. Parameter estimates for the SSEC data set and the associated AIC, BIC, EDC, and
log-likelihood (7) values for different distributions.

Model u o K a B 0% P v AIC BIC EDC l

AGN 0.105 0933 1.046 — — 1.391 — — 21538.4 21565.31 2159323 -10765.2
AGT 0.0814 1973 1.028 3.053 1368 — — — 2117113 21204.76  21239.76  -10580.56
AGSL  0.0779 046 1.027 2932 1.138 — — — 21169.24  21202.87 21237.78 -10579.62
CAGN 0.074 0.569 1.024 0.159 1.167 0375 — — 21161.66  21202.02 21243.9 -10574.83
SN 1.042 3314 — — — — -1.024 — 2245091 22471.09 22492.03 -11222.46
ST 0.206 0.889 — — — — -0.19 2.868 21215.86 2124277 21270.69 -10604.93
SCN 0.239 0.821 — — — 0.254 -0.227 0.122  21291.59 21328.22 21360.12 -10642.8
BST 0.099 0928 — 1.39 1466 — — — 21232.15 21259.06 21318.45 -10612.07

Note: Bold font highlights the best model according to the model selection criteria.
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Figure 6. Histogram of S&P500 and SSEC data sets with fitted densities.

8. Conclusions

This paper introduced a distribution family named GSMAGN, which holds significant relevance in
the fitting of complex data characterized by skewness and heavy tails. The study focused on examining
the properties of this family and deriving the explicit expression for the moment of order statistics. This
expression serves as a valuable tool for parameter estimation based on the order statistics. To enhance
the efficiency of parameter estimation for this model, an alternative variant of the EM-type algorithm
was established. This variant combined the PLA with the classical ECM algorithm. The proposed
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method not only improves computational speed but also provides efficient estimations. Furthermore,
closed-form expressions of the information matrix, along with the corresponding asymptotic properties
of the MLE, were presented for this distribution family. To assess the performance of the proposed
estimation method, Monte Carlo simulations were conducted under various scenarios. The results
demonstrated that the proposed method satisfies the asymptotic property, and the estimation accuracy
improves with larger sample sizes. The feasibility of the proposed methodology was illustrated through
two real datasets. The encouraging results obtained in this study motivate us to further delve into the
realm of multivariate GSMAGN family for effectively modeling datasets exhibiting asymmetry and
heavy-tailedness in the future.
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Appendix

Part 1: Proofs required for section two

e Proof of Proposition 2.2

According to Proposition 2.1, Y = u + ocU 5 1 (2Z)llf ,and U, I, Z are independent of each other, then
using the binomial expansion, we can obtain

E(Y") = Z (T)a’p’"—izéE(ﬂ)E(zé YE(U™5),

i=0
where Z ~ Gamma(1/, 1), then we can calculate that

b - g, 2 TG+ D)

F(l/,B) ramp

and [ is a discrete random variable with density function f; = %{2 1/=— + 122 1=1/xy- Thus the ith
moments of / are
. K2 1 1 1 1
E(I') = (—k)’ + — = [ + 1’2“]
(I') = (—x) T (-1«

K1+k2 14«2

By substituting E(/') and E(Zé) into the above expression, we can prove Proposition 2.2. In
particular, for m = 1 and m = 2, we obtain E(Y) and E(Y?), respectively. This allows us to derive the
expressions for E(Y) and Var(Y).

e Proof of Proposition 2.3
For AGT distribution, invoking Eq (2.3), we have

! u
Jacr(ysu, ok, @, B) = f u! exXp ( - ’E)fAGN(y;ﬂ, M_l/'BO', K, B)du
0

= 21/51“(1/,81)(??;;(1 sy jo‘m uP exp{ - [%(Ksign(y—m?r“')ﬁ + é]uﬁ}du )

1
[(a)p®

B
Letz = [—( Signo— b ') B]uﬁ, and we obtain

[ (A

1( signo-w Y ~ 'u|) _] (Mﬁ)lx +Oozcwr/lf_le_zdz
2 o B B Jo

@ 1
ﬁw+é—l ( ) 1+ ( S1gN(i—u) ly — /1|) ] (a+ ).

(o

Hence, we can derive the pdf of AGT distribution.

Faan Qi ok B) f(u)
facr ()

As aresult, by using fyy(u | y) =
obtain Proposition 2.3.

and after some algebric manipulation, we can
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e Proof of Proposition 2.4
For AGSL distribution, we have

1
facst s > 0, Ky @, B) = @ f u* ™ fuon s, u” o, k, B)du
0

Kaps gy [ ”( signiy-w Y —,Ul)ﬁ]
= @ —_ = d ,
2UB(1 + 2)T(1 /,B)O'fo “ P T H\K o u

. B
letz = [%(KSlgn@‘“)@) ] and after some calculation we will derive the pdf of AGSL distribution.

) = Jaan Qi ok ) f(u)

Frosi) and after some algebric manipulation, we can obtain

By using fyp(u |y
Proposition 2.4.

e Proof of Proposition 2.5

If y; = 1, then CAGN becomes AGN.
If 0 < y; < 1, then the pdf of U; can be written as

ui—y

1-u;
Huja)=a™ (1 -a)7 ,

and the conditional pdf of U,|Y = y; can be written as
lfu,- uj=y

aifionOtey e )| (- @ fontimeep)|

facon Qs o, K, v, @, B)

Pyy;(ujly)) =

Part 2: Proofs required for Section 3

e Proof of Proposition 3.1
Here, we assume that X, X5, - - - , X, are identically distributed AGN(0, 1, «, 8) samples of size n and
Xins Xouns -+ » Xpn are corresponding order statistics. In the case of X < 0, the cdf of X can be
evaluated using the power series expansion
}sﬂ]

2 (59

U S PR o B VA LR
Faon(x,k,B) = (1 +K2)[‘(1/IB)[F(ﬁ) ; j!(é +j)[2( K)ﬁ

Letb; = j,((_l—lijj), for j =0,1,---, we have that by = 8 # 0. Consider an integer s order expansion of
B

a power series

[ibjy’]s = i by, y >0,
=0 =0

where .
! I, j=0
) _ (=D M _ gy oo b ’
’i ‘thobh Picko By = ) ‘{o, j>0.
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After that, we can obtain

K2(n=1)

T+ 1[F(1/B)"1Z( 1)( )[r (é)r—i—]{ibj[%(_%)ﬂ]}sﬂ}i’

[F()1"™ =

such that

0 K21 n-l1 —i-1
" e B ﬁ (n—1 1 i

o0

0 iy
1 I 1
f x’"[—(—f)ﬁ]ﬁ exp{ — —(—f)ﬁ}dx.
o 127k 2"«
Letu = %(—f)ﬁ and we can easily get

m
l’ll —lloo

I = n( (11)’_’; Z’Z’;:’Zﬁ Z( 1)( )[F( )] Zb(l)r(m+l+l ‘.

Similarly,

m

00 n-1 — 1\ R-i=D-mn
I = m F n—1 d — (n )
2 nfo X'F)]" f(x)dx =n E —

i=0

11 'y om+i+1
T TR BT

Consequently,

m

m+i+1

n-1 oo _1 ‘ . .
E(X,Tn) = nZ Z (n i )(1 " z)n[;(l/ﬂ) — [(_1)l+mK2n+m + KZ(n_l_l)_m]b;l)F(T + ])

i=0 j=

Proof of Proposition 3.2

If X ~ AGN(0, 1, &, 8) when X < 0,

K2 1 %(%)ﬁ 1y
Faon(x,k,B) = m[r(ﬁ) —f(; 15 e dl].
Since
l(;A)B oo 1om
e 1 —t3, _ (=D 1 _7_5 B
~fo dt_mZ::‘)m!(l+m)[ ( K)ﬁ] ’
we obtain

AIMS Mathematics Volume 9, Issue 1, 1291-1322.
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2= 1 . G i
n—1 2yyn-i-1 L1
e e IZ( 1)( )F(ﬁ)] {fo Alear
20D

S in—1 |
Ry Z(_D( i )[F(E)]

( 1)m1+-~~+m,~ 1 —x %+Z§_1m,
§ r;o z; '( +my)- (ﬁ + m")[i(T)ﬁ]
Denote H,(m,n — 1,k) = f X' [F0)]" f(x)dx,
2n ]ﬁ i s s (_1)m|+~-+m,-
Himn= 1,0 =50 Z( 1)( )[r( )] mZO 2T e e
0 L"’Z, 1M 1
<[ e e - g

and let u = 1(=2), then, x = —k(Qu)?, & = —£25us

( 1)m 2n+m23
Him,n = 1,0 =" Z( 1)( )

F(—m+ﬁl+1 +2m1).

=1

i (_1)m1+-~-+m,-
5 Z Z Loeomid (5 + ma) - (5 + my)

m;=0

m_

Using some algebraic operations, we can obtain

m p—1

_1\m 2n+m2 -1 1 ) H 1
Himn =10 = ﬁZ(—ﬁ)( l. )[r%)r"lr(%)

ym+i+1 1 1
XF(:)(m i +1""’,E+1;_1’.“,_1).

11
BB

Denote Hy(m,n — 1,&) = [~ x"[F(x)]"" f(x)dx.

In the same way, we can obtain

n—1 i =2 .
n—1 gHrmi=h-m g m+i+1_
Hy(m,n—1,k) = ( ) - ; ( B
Z; i JA+RyIraprT B
, +1 1 11 1
XF;)(’”—+Z+ ,—,...,—;—+1,...,—+1;—1,---,—1)-
B B BB B

e Proof of Proposition 3.3

If  is an integer, when x < 0 we have

AIMS Mathematics Volume 9, Issue 1, 1291-1322.
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- K : 1/8-1 a-1
F(x) = 1+ KZ)B(G’, 1/[3) [H%(‘T‘)ﬁj_l t (1=0""dr

K2 1/8-1) 1/8-1 | |
= . 1 - a+t—1d ,
(1 +«*)B(a, 1/B) ; ( i )f[ué(;)ﬂ]l (1-19 t

and by binomial expansion we obtain

P a/8-1)

Ci
(1+«*)B(a, 1/B) Z 1+ﬁ( s’

i=

F(x) =

where C; = (-1)("4")-L.

1

n—1
1/p-1)
Let T,(1/8,n — 1) be the coefficient of [1 + g(—f)ﬂ]‘v in the expansion of { D C,-W} .
i=0 1+5( =
Clearly, we have T,(1/8,0) = 1.
Forv=0,1,---,(1/B),
T,(1/8,1)=C

and forn >2,v=0,1,---,(1/B8)(n - 1),

T S

We can calculate every coefficient directly, so [F(x)]""! can be expressed as

2(n—1) (1/B-D(n-1)

[S—

[F(x)]" = -

T,(1/8,n—1 ,
(1 + Kz)n—lB (a,’ 1/ﬁ) £ ( /ﬁ n ) . é(_x 'B]a(n—l)+v

then, we have

0
nli(n—1,k) =n f X" FO ! f(x)dx

A/B-D(n-1)

3 (_l)m(z/ﬁ)%KZVHm m+ 1 "
_l’l(l +K2)n[B(a,,1/ﬁ)]n £ Tv(l/ﬁ,n— I)XB( ﬁ ,an +v — E),

and the above expression exists for @ > ™. It is not hard to verify the following statement

00 n—1
nlh(n —1,«) = nf(; X" [FO ! f(x)dx = nZ (—1)'””( " ; ! )Il(j, 1/x).

=0
Consequently,
oy QBE | e SR . m+ 1 m
E(X}.,) = n(1 + ) | B /BT 2, T,(1/,n—1) X% B( 3 ,an+v ,3)

1/8-1)j
1 (1/B-1)j

n—1 . 1
e (M
;( )( kB 1By
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e Proof of Proposition 3.4

Denote J(m,n —1,k) = f X"[F(x)]""" f(x)dx. When x < 0, i is not an integer and we have

_ « o181 1 1
Fo= (1 +«*)B(a, 1/B) ;(_1)( i )a i1+ B(—zypper

where
Z"’:( 1B =1 _i(l—é)i
- i Ja+i Hila+i)
Let C = — 22 , such that, J(m,n — 1, k) can be represented as
@/B) P (1+x2)"[B(a,1/B)]
0 © (1-4) 1 n-1 1
J(man_19K):CImxm{ . l'(a’fl) 8 a+i} s (a+1/pB)
=0 |1+ 5(—;)/5] |1+ 8-y
0o 00 Hn ](1 _ l)m, 1
ey Y xm -
Hn I(CZ + m, )ml . an+ Y1 mi+1/B
m;=0 my—1=0 ]
Let = [,(_ i 5= u, then, the above integral can be converted to
0 1 ( 1)m m+127 m+1 n-1__, _m 1
f X" ~ dx = ——5—— f w# (1 —w)™E= ™5 dy
o Bran+YT mi+1/B ””
oo

—1ymem 12 m i+ “
:( )fﬂ B(m ,cxn+zmi—ﬂ).
e B — B

Substituting the above equation into J(m,n — 1, k), and using some algebraic operations, we can
obtain

(_l)mk2n+m(2/ﬁ)%B(m+l’ an — %) Y m 1 1
(1 n Kz)"[B(a/’ 1/’3)]'1(;"—1 X Fm((an — E) . (1 — B’a,)’ cee (1 — E,a),

(an+%):(a+l);---,(a/+1);1,---,1).

Jm,n—1,k) =

It is worth noting that, when o3 > B("’Jrl an+ Y m; — ) < I“(’"T“), On the other hand, for a

AIMS Mathematics Volume 9, Issue 1, 1291-1322.
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sufficiently large N, we can bound that

ZZ QD@ = Dy 2 (4= Dl ><B(m+1 an+’im'—ﬂ)
i 1)>N(a+m1)(a+n12)---(a+m,,_1)ml!---mn_1! B’ - "B
(m+1 Z Z = D)y, (1 = D), -+ (1 =b),, ,

st 1)>N(a+m1)(a+m2) (a+mu_my!---my,_q!
m+ 1 D)y (1 = b)yy -+ (1 = b),,_ |
B ( B )L;O mZO(a+m1)(a+m2)---(a+mn_1)m1!---mn_l!
‘Z"' Z (1= ), (1 = b+ (1 = b,
(a+m)a+my)---(a+m,_1)my!---m,_q!

m=0 my—1=0
_r(m+l) = a-m, 7 & a-m))" N
- B £ (a+m)m! L (a+mm! '

This means that for a maximum order statistic from AGT (0, 1, «, @, 8), it’s m-th moments always
exists.

¢ Proof of Proposition 3.5
Suppose that Y ~ ACGN(0, 1,k, 4, a,8), X ~ AGN(0, 1,k, @, ), U is a discrete random variable with
pdf defined in (2.5), then we have
E(Y,,) = P(U = DE[Y,,, | U = 11+ P(U = DE[Y,., | U = /1]
= P(U = DE[[U#X],, | U = 1] + P(U = DE[[UX],., | U = 4]
=PWU = 1E[X,,|U=1]+PU = /l)E[/l‘/?X,n | U = 1].

In view of the independence between U and X,
E(Yy) = P(U = DE(Xs) + P(U = DAFE(X,0) = [ + A7 (1 = @) IE(X,p).

Part 3: Proofs in section five and details to obtain the information matrix

Proof of Theorem 5.1
It is easy to prove that the distributions of the GSMAGN family satisfy item one and two of

Lemma 5.1. As a result, our main task is to verify the GSMAGN family satisfies item three under
different circumstances.

Letv = %(KSig“(y‘“)b%") . According to Proposition 2.1, we can obtain that v 4 y-'z, which
illustrates that E(v*) = E(U*Z*). Taking the first partial derivation with respect to u, o, 3, ,

-1
v _ ﬁsign(,u _ y)Ksign(y—ﬂ)(Ksign(y—#) - P")ﬁ ’
ou 20 o

o _ _E(Ksign@—m -4 )ﬁ

oo 20 o ]’
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e For AGN

1
lanGN = Ink + ln,B - Ban -

Take sufficiently small € > 0, Uy, =

oln fan
I

olnfan
oo

oln fagn

B

‘ Olnfaon _

ok

Let G(y) =

e For AGT

1.2
Infygr o Ink — (1 + B)lnB —1In(1 + &%) —

=Ilnk—(1+ é)lng —In(1 + &%) -

Take sufficiently small € > 0, Uy, =

o _ l(Ksignw by —#l)ﬁ
op 2 o

o B .

i Z(mgn(y - #)(K

In(1 + &%) —

ln(KSign(y”) ly — ul )’

(o

=

sign(y—p) |y B /'ll

_ | ov B signt-1-1/8 _
=l < IV By = g1(v),
L1 B
o Jdo|l o o 09— €
1 1 1 (9v 1
— = f =2+ 0(1/8)— Lo+
,3 ,3 B? B ﬁ ﬁz
1 1 — 212
< N In2 + e(1/(Bo 26))+ v
Bo—€ (Bo—e€) (Bo — €) B
=Gy + g3(v),
l N 2K ov l 2K N é)v
K 1+& okl "k 1 K
1 + 3(ko + €)? B
< +=v
(ko + €)1 + (kg +€)3?] «

= G3 + g4(v).

‘alanGT “ e+ ) B 0’,3+l B
ou B 1+,8v8,u 1+,8v 2B
0ln figr 1 1. B v 1
e T e e LA

oo o B 1+,6’v60'
< 1 N (g + €)(By + €) G,
gpgp— € gp— €
AIMS Mathematics

InB(a, 1/8) -

Inl'(a) —

In[(1/B) -

Ino —v.

{6:]1 6 — 6 |I< €} € ©,Y6 € U, then

+ EV =G+ 50),
o

e/p)

B (9,3

max{G, Gy, G3} + g1(v) + g2(v) + g3(v) + g4(v), for AGN, where U = 1, and we can get

E(Y) = B(Z5), Z ~ Gamma(1/B, 1), for 8 > 0. E0/f) < 00, k > —é, then we have E[G(y)] < oo.

Ino — (o + é)ln(l + pv),

lnl"(é) + Inl'(a + é) —Ino - (o + é)ln(l + Bv).

0:]16-6< € cO,VO € Uy,

Kslgn(y ;1) 1-1/8 < Q,ZBI/BG.IB *lg“(}’_ﬂ)vl_% = gl(v),
) B ﬁ 1 a,B +1
,8 1 +pv 0' o
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‘ah‘afAGT = '—cp(a) + e + l) —In(1 +Bv)| < (@) + p(a + l) +1In(1 + Bv)
« B B
< @lap +€) + plag + €+ O_€)+,3V:G2+g2(v),
Oln f, 1 2 1 1 1 1 1 1 1 1 ov
‘ (%;“GT = Elnﬁ+B+ﬁ—2+ﬁgo(1/,8)—ﬁ—2go(a+l[—g)+ﬁ—zln(l+,8v)—(a/+B)1+IBV(v+,8%)
1 2 1 1 1 1 1 1 1 1 212
Sﬂ_ZlnE-’_B-FE+§¢(1/ﬁ)+ﬁ¢(a+ﬁ)+ﬁln(l+ﬁv)+(a+ﬁ)rﬁv(v+ﬁ7)
s12[1n%+(a+1)B+go(l)+¢(a+l)+2 FQat ey
Bl B B B B B
1 2
S(,Bo—e)2 lnﬁ0_6+(a0+e+1)(ﬁ0+e)+¢(ﬁ0_6)+¢(ao+e+ 0—6)+2
+ Qa +§ + 1)% = Gs + g3(v),
dnfior| |1 2« 1 B | 1 2 _af+1p
‘ Ok k14K (a+ﬁ)1+ﬂ\/6kSK+1+K2+1+,8VKV
< 1 + 3(ko + €)? : (a0+e)(B0+e)+1:G4.
(ko + )1 + (ko + €)?] Ky — €

Let G(y) = max{Gy, G,, Gz, G4} + g1(v) + g2(v) + g3(v), for AGT, E(V*) = E(U%)E(Z*),where U ~
Gamma(a, ), Z ~ Gamma(1/B,1). Invoking Propostion 2.2, if @ > 1, E(v) < o0, and if a + é > 1,

E(vl_ﬁ%) < 0o, such that, when @ > 1, we have E[G(y)] < oo.

e For AGSL

Infygsr = Ink + Ina + InB + Inl'(a + 1/B) — %ln2 —Inl['(1/B) — Ino + Iny(a + ’é, v) —(a + %)lnv,

where y(a + é; V) = m fov 5 e, By taking sufficiently small € > 0, Uy, = {6 :|| 6p — 6 |I<
€lcO,vhe Uy,, then
ol 1 1 1.10
anGSL _ 1 1 va+—71 —v_v _ (a, + _)__V
oy y(@+ v Ma+ p) o B’V ou
3 YOl _a+1/||ov <(a+1/,3_a+1/ﬁ) v
- fOV (5 oty v oul ~ % ve’ ou
a’ﬁ +1 sign(y—u) 1-4 _
Smkg FvTr = g1(v),
ol 1 1 1 0 110
nfacst -2y 1 1 vl Vo (a + _)__v
oo o yla+gv ety oo B voo
1 gl gy 1.1 208+3 2+ +€)+3
L1,V 1 e Ev+(a+—)—'§v$ af < (@ + €)(Bo + €) G,
o fOV (ot O B vo o o9 — €
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ol 1 1 1 4
Infacss :i— + @+ 1/B) + 1 ( 1 f (*5 Ine™'ds
Oa a y(a+ gv)Mi(a+ 5) Jo
pla+z) v
- —ﬂl t‘”llf_le_’dt) —Inv
I (a+ /§) 0
1 fov 5 Inte~'dt
< —+pla+1/8)+ — +@(a+1/B) +|1Invy|
@ J i e
0
1
<~ +2p(a + 1/B) + 2lIny]
< +2¢(ag + €+ 1/(By —€)) +2v =G, + g2(v),
o — €
‘alanGSL _ 1 _ 2k + 1 1 Va+[g—1e—v@ —(a+ l)l@
ok kK 1+ ya+ [l;;v) Ia+ é) Ok B vk
- 1 N 2k N Ve Gy r@t l)lav
p— —_— a _—)— —
Tk 1+k? fv (51 14y OK B v ok
o
1 2k a+1/6p 1.1
< -+ + v+ (@+=)-%
Tk 14k v & (@ ,B)VKV
1 2(kp + €) 2 g +€)(By+e€)+1
< + = G3,
Ko—€ 1+ (kg— €)? Ko — €
1 V o 1_ —
dln 11 11 11 v le gy 1 [ P Intedr
'#:———290(a+—)+—21n2+—290(—)+#0———2Ov T
B B B BB BB fo 15 le-iqr OB B fo “le1dr
1
1 1 1 1 1 1 a+z0 1
< -t —pla+ o)+ —=In2 + — (=) + —L T 4 —iny
B B B B BB v o8 B
1 1 2 2
<l Ll by B By,
B B B B B
1 1 1 2 2
< + sl + €+ ) + (@ + 9B +26)+ 1n2+a’8;r v
Bo—€ (Bo—e) Bo—€ Bo —€) B

=Gy + g3(v).

Let G(y) = max{G,, G,,G3, G4} + g1(v) + g2(v) + g3(v). For AGSL, E(*) = E(U¥E(Z*), where
U ~ Beta(a,1),Z ~ Gamma(1/B,1). Invoking Propostion 2.2, we can obtain that if @ > 1, then
E(v) < 00. For @+ 1 > 1, B(v'"#) < oo, such that @ > 1, E[G(y)] < co.

e For CAGN
feacnOi o 0, K, A, @, B) = afaon (Vi i, APk, B) + (1 — @) fagn (Vi 4, 7, K, B).
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As for CAGN, it can be written as a linear combination of two AGN distributions. According to
the above proof, it can be obtained that the MLE of AGN distribution exists and satisfies the strong
consistency. Therefore, it can be easily concluded that CAGN satisfies the same property.

Details to obtain information matrix:

e For AGT
1 I+ l + k)
ik — ﬁal"(a,) [lAﬂ ]a+ Lk’
and,
fol 5! lnuexp{ (lAﬂ+ ) }du
Sia = _lnﬁ - (p(a) + 1 1
fo uts! exp{ - (%Alﬁ + é)u}du
L 148
1—a gp+m2_ 1" ln”e"P{ (347 + o
Sip = 2 ra
B N S T
1 g4l |
u ﬁexp{ (Aﬂ —) }du
%_lAﬁl (Slgn(y,-—y)lyi_/"l)]x j(; B
B2 o f()l L exp{ _ (%Alﬁ [1;) }du
e For AGSL
M, = a2“+§+KA,-_[(“+")ﬁ+”y(a + 1 + K, 1A,ﬁ),
£l ﬁ 2
and,

1 fol M lnuexp{ - %A,ﬁu}du

Si,a =—+ 1 |
Jy ur exp{ - %A,ﬂu}du

a+i-1 1
us lnuexp{ - EA,ﬁu}du

1
1 1 In2 1 1 . - ﬁ)
Sip= = + /B +In2 11 1 AP In (xiEne») A
B iz B2 - T
Jy urte exp{ -~ %A,ﬂu}du

e For CAGN 1 |
My = A5+ exp{ - 5A/*} +(1-a) exp{ - 5A,ﬂ},
and,
JaonQis i, A Bo, K, B) = facn(is 4, 0, K, B)
1 .
afacnQist, A Bo, &, B) + (1 — @) fagn(Vis 1, 0, &, B)

Si,a -
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_1
@ [[ﬁ B %Alﬁ] Jaon(yis s AP0, 6, B)
@ facn(Yis s /1_11?0', K, B) + (1 — @) facnvis i 05 &, B)

The information-based approximation (11) is asymptotically applicable. The standard errors of ©
can be obtained through the inverse of the empirical information matrix Iy(®[y), with a sufficiently
large sample size. The accuracy of the estimation can be guaranteed and the complexity of
calculation can be reduced.

Sia =

) ©2024 the Author(s), licensee AIMS Press. This

is an open access article distributed under the
@ AIMS Press terms of the Creative Commons Attribution License
o (http://creativecommons.org/licenses/by/4.0)
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