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Abstract: The Burgers-KdV equation as a highly nonlinear model, is commonly used in weakly
nonlinear analysis to describe small but finite amplitude ion-acoustic waves. In this study, we
demonstrate that by considering viscous dissipation, we can derive the Burgers-KdV limit from a
one-dimensional plasma system by using the Gardner-Morikawa transformation. This transformation
allows us to obtain both homogeneous and inhomogeneous Burgers-KdV equations, which incorporate
dissipative and dispersive terms, for the ionic acoustic system. To analyze the remaining system, we
employ the energy method in Sobolev spaces to estimate its behavior. As a result, we are able to
capture the Burgers-KdV dynamics over a time interval of order O(g™!), where & represents a small
parameter.
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1. Introduction

Recently, highly nonlinear models have attracted the focus of many scientists due to their ability to
provide more meaningful insights into physical phenomena with memory effects [1]. The
Burgers-Korteweg-de Vries (Burgers-KdV) equation has gained attention for the purpose of modeling
various natural phenomena, such as the propagation of undular bores in shallow water, the flow of
liquids containing gas bubbles and the propagation of waves in elastic tubes filled with viscous
fluids [2-5]. This equation has attracted physicists, engineers and applied mathematicians from
different disciplines who are interested in studying these phenomena. In the field of weak
nonlinearity, the Burgers-KdV equation (or KdV equation) is commonly used to describe dispersion
waves of finite but small magnitude, and it is not limited to waves in bubble streams. On the other
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hand, the nonlinear Schrodinger equation (or Ginzburg-Landau equation) is a widely used nonlinear
wave equation (or nonlinear evolution equation) for cases involving strong dispersion.

Yatabe et al. [6] employed a multi-scale method to derive two KdV-Burgers equations that
incorporate a drag force correction term. They verified that the time evolution of wave dissipation,
caused by the drag force, differs from that caused by acoustic radiation. From a mathematical
perspective, there exists a close relationship between the Burgers equation (s = 0) [7] and the KdV
equation (8 = 0) [8]. The standard Burgers-KdV equation is given by

U + audy + Py + Sy, = 0,

where the real constants a, S and s satisfy that B8s # 0. The nonexistence of a spectral solution for
this equation presents a challenge in studying its integrability. Currently, there is no effective analytical
method available to solve this type of equation.

Indeed, there have been numerous studies on the Burgers-KdV equation, addressing various aspects
such as the existence, uniqueness, well-posedness, stability and solution properties [9-15]. Many
physical processes can be perturbed by external factors, and the nature of these perturbations can vary
across different problems. In recent years, investigating the limit problem with viscous dissipation has
received significant attention.

Significant progress has been made in understanding the Burgers-KdV equation. Luc and
Francis [16] showed that the Burgers-KdV equations are globally well-posed. They established the
low regularity of solutions through the use of an algebraic inequality and an a priori estimate.
Dlotko [17] proved the local and global solvability in H*(R) of the Cauchy problem for the
generalized KdV-Burgers equation by using the parabolic regularization technique. Wang et al. [18]
obtained an approximate solution to the KdV-Burgers equation with boundary conditions by
employing the Adomian decomposition method. Feng and Knobel [19] obtained traveling wave
solutions from a KdV-Burgers-type equation with higher-order nonlinearities. Zhao and
colleagues [20-22] introduced some localized wave solutions of the high-dimensional integrable
systems for the nonlinear mathematical physics. These are just a few examples of the extensive
research findings in this area.

Recently, there has been significant interest in the asymptotic connection between ionic dynamical
systems and hydrodynamic models. The Euler-Poisson system has been used to derive various
nonlinear dispersive equations through the use of reduced perturbation methods, including the KdV
equation [23], Kadomtsev-Petviashvili equation [24], Zakharov-Kuznetsov equation [25,26], Burgers
equation [27] and Schrodinger equation [28]. However, directly applying this method to nonlinear
systems involving both dissipative and dispersive effects can be challenging. Based on the literature
mentioned, this paper focuses on the question of whether the Burgers-KdV system can converge to a
similar solution. The reduced perturbation method is not directly applicable when both dispersion and
dissipation are present.

When regardless of the magnetic field, we consider the one-dimensional plasma with viscous
dissipation [29, 30], the two-fluid system describing ionic sound waves is reduced to
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Opni + 0v(nv;) = 0, (1.1a)

mini(0yvi + vi0yv;) = =0y p; — niedv + #3)2« Vi, (1.1b)
KT,

0=edyp — 0yne, (1.1¢)

9%¢ = 4me(n, — n;), (1.1d)

where ¢ is the perturbed potential, u is interpreted as the equivalent viscosity coefficient and n; and v;
represent the density and velocity, respectively.
Standardize the physical quantities in (1.1) as follows:

x=x/L, t=1-cs/L, v=vi/c,, ®=e¢/KT., n=ni/ng, n.=n./n,

where L is the characteristic scale of fluctuation, ¢, = Ifn—T denotes the ion-acoustic velocity, K is the

Boltzmann constant and n is the undisturbed density.
When ignoring the influence of the ion pressure term, the dimensionless equations can be simplified

to
on+ d.(nv) =0, (1.2a)
1
Oy + 10w + 8,0 — — —8%y = 0, (1.2b)
Legn
1
0,® = —0o,n,, (1.2¢)
ne
B
Eax(b =n,—n, (12d)

where v = mﬁ‘ .- Tepresents the equivalent kinematic viscosity coefficient and Ap = +/KT,/4nnye? is the
Debye length.

Assuming a finite small quantity of density perturbation, let An = n; —ngy; we have thatn—1 = ﬁ—: <
1; taking ﬁ—(’; =& < 1, let Ap/L? = ae and v/Lc, = Be; this is what the weak dispersion and viscosity
require. The quantity ¢ is a quantity that describes the strength of the nonlinearity. When both the
weak dispersion and the weak dissipative effect are equivalent to &, we can obtain the Burgers-KdV

equation via the perturbation method. The system (1.1a) can be rewritten as follows:

on+ d,(nv) =0, (1.3a)
Oy +vow + 0,0 — %aiv =0, (1.3b)
He—N = ae(')iCD, (1.3¢)
0,0 = ni@xne. (1.3d)

e

1.1. Derivation of Burgers-KdV equation
By applying the following Gardner-Morikawa transformation [29] to (1.3),

x> x—Apt, t — &t, (1.4)
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we obtain the following parameterized system:

g0 — Ay + 0(nv) =0, (1.5a)
g0,y — Ap0,v +vo,v + 0,D — %aiv =0, (1.5b)
ne—n= ae@itl), (1.5¢)
0,0 = ni@xne, (1.5d)

e

where the small quantity ¢ is also the amplitude of initial disturbance and A, is the velocity parameter.
Assume that the variables have the following expansions:

n=1+en" +&n® +&n® +&n® +... (1.6a)
_ () 2..(2) 3,3 4.4

ne=1+en’+en”+en’ +en’ +---, (1.6b)

v=evD 4+ @ 4 O 4 H® 4 (1.6¢)

we then incorporate (1.6) into system (1.5), terminating each expansion at different orders of
magnitude ¢.
At the order of O(g), we have

~2p0,nY + 9,Y =0, (1.7a)
20, + laxng” =0, (1.7b)
”S) M= Oi (1.7¢)
a simpler calculation gives

v = 200 = 290D, (1.8a)
{ Aon, = 1. (1.8b)

At the order of O(&?), we have
anV — 20,0 + 0,0V + nvy = 0, (1.92)
D — 2000? + v VoD + nlaxngD -~ §a§v<1> =0, (1.9b)
n® —n = L g2, e (1.9¢)

e

Taking 0, of (1.9¢), multiplying (1.9a) by Ay and then putting them into (1.9b), we obtain the

homogeneous Burgers-KdV equation for n'":

34 a
)+ 000+ S = L =0, 110
where we applied (1.8). Note that system (1.10) and (1.9) are self contained for (nV, v(D, ¢V,

From (1.9), we can express (n?,1?) in the following form:

{v@) = Aon? + f(1), (1.11a)
n® =n® — @226, (1.11b)
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where we have used (1.8b) and the function f(1) only depends on n ) and its derivatives.
At the order of O(&?), we have

an® — 20,0 + 9,V + nOyv® 4 @y = 0, (1.12a)
1

AV — 100 + vV VP + PP D 4 —Gxnf) - éaiv@ =0, (1.12b)

n
e
3 3 @ e, ¥p @
n? —n® = —;(axng N2+ n—axng ). (1.12¢)
e e

Taking d, of (1.12c¢), multiplying (1.12a) by A, and then putting them into (1.12b), we obtain the

inhomogeneous Burgers-KdV equation for n?:

and + %aan?)) + S AN - f Fnl = G(1), (1.13)
where we have applied (1.11) and G(1) depends only on n'" and its derivatives.

At the order of O(¥*"), we can get the linearized inhomogeneous Burgers-KdV equation for nl":

%aing’o =Gk—1), k>3, (1.14)

).

an® + 3; 3.(nn®) + ﬂ%aang«)_

where G(k — 1) only depends on nV, .. gk Y. which can all be determined from the preceding k-1

steps. The system (1.14) is also self—contamed and only depends on n®.

Equations (1.10), (1.13) and (1.14) contain both third derivative terms and second derivative terms
which arise from the interplay of dispersion and dissipation in the system. Finding a general
Gardner-Morikawa transformation that keeps the equation unchanged is not possible in this case. This
implies that the general reduced perturbation method fails to preserve the original form of the
equation. Therefore we assumed that the magnitudes of the dispersion and dissipation terms are at the

same level.

Remark 1.1. If the magnitudes of dispersion and dissipation terms are not on the same order, the
approximate evolution equation may be reduced to either the KdV equation (A> /L2 > v/L.,) or the
Burgers equation (13,/L* < v/L. ) respectively. These reduced equations capture the dominant
behavior of the system when either dispersion or dissipation is significantly stronger than the other.

Remark 1.2. Through qualitative analysis, (1.10), (1.13) and (1.14) can be likened to a nonlinear
oscillator equation with a damping term, which can be solved in the form of an oscillating shock wave
by applying qualitative analysis for sufficiently large damping. On the contrary, when the damping is
small enough, the soliton-mode solution with slow attenuation of amplitude can be obtained.

Theorem 1.1. Let s, > 2 be a sufficiently large integer. Then for any given initial data n(l) H'(R),
there exists T, > 0 such that the initial value problem (1.8) and (1.10) has the unique solutlon

(l/l(l), V(l), I’lgl)) € Loo(_T*’ Tus HSI (R))
with initial data (n(l) ﬂon(l) g)). Moreover, we can extend the solution to any time interval -1, T] by
the conservation of the Burgers-KdV equation [30, 31].

Theorem 1.2. Let k > 2 and s, < s1 — 3(k — 1) be sufficiently large integers. Then, for any T > 0

and any given initial data (nf)k),vg(), (k)) € H*(R), the initial value problem of (1.14) with initial

data (nf)k), vf)k), gg) has the unique solution

(n®, v, 10y € L*(~1, 7; H*(R)).
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1.2. Remainder system

Next, we will give a strict proof to show that n'V converges to a solution of the Burgers-KdV
equation as £ — 0. Suppose that (n®,v®, n®), 1 < k < 4 are sufficiently smooth. Let (n, v, n,) be a
solution of (1.5) and have the following expansions:

n=1+enV +n® +n® + @ + &N, (1.15a)
n.=1+ sn(l) +¢& n(z) +&n (3) +& n(4) + &N, (1.15b)
v=eaV + @ + & V(3)+8 v+ &V, (1.15¢)

where (n®,v®, n®) for 1 < k < 4 satisfies (1.8), (1.10) and (1.13) respectively, and (N, V, N,) is the
remainder.
Just for the sake of calculation, we denote

i=n+en® + 0 + 0@,

(1) +8n(2) +¢ n(3) +&n (4)
4)

Sl

= v(l) +ev? + 20 4 9D,

<t

Putting (1.15) into the scaled system (1.5), a simper calculation gives the remainder system, as follows

/l —
ON -2 N+20.V+0.7iV+ 3N + R, =0, (1.16a)
E E
Ao — 1
av-2"Vovi Lon cosv-Lorvier =0, (1.16b)
. n
2
N, - N = Z&@N, - = 0,7i,0.N, + sRs, (1.16c)
e n:

where

Ry = 0@ + 9, (n@vD + VO + n®) + 26, (MIVD + nV) 1+ £20,(n VWD),
Ry = =0@ + (V90 + 1D v + 13§ 1@ +vD5 1) + (V@I VD + VPO +1PG v
+&20,(vOhv¥) — é@ v — és[)xv(“),
Rs = n<4> -~ 2—“<axn£)axne ) = 2620 dn.” + axne )
2(6xne Al + 0,nonl?) + & L (03ng O+ 0.

Next, we give some basic estimates for the remainder term R;. .
Lemma 1.1. For the s = 1,2,... integers, there exists some constant C = C(||n(’)||Ha) and
C = CA s VBN, stch that Ry, Rallae < C(In ) and

[1Rslls < CUInD e SN INellgss s = 1,2, ..., (1.18)
107 Ralls < Clnellge, SNl NOrNellas, s = 1,2, (1.19)

where 6 = max{2, s — 1}; due to the fact that H* is an algebra, the proof of Lemma 1.1 is obvious; also,
the constant C is nondecreasing.
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1.3. Main results

The main results are given as follows:

Theorem 1.3. Let s; > 2 in Theorems 1.1 and 1.2 be sufficiently large and nV, v, 1y e HY be

a solution constructed in Theorem 1.1 for the Burgers-KdV equation with initial data (n(ol), vél),nig

in H* satisfying (1.8). Let (n? v®, n") € H%(i = 2,3,4) be a solution of (1.14), as constructed in
Theorem 1.2 with initial data (ng), vg), nig) in H". Let (N, V5, N%)) € H® and assume the following:
np=1+ sng]) + sznf)z) + 83nf)3) + 84né4) + &N,

(1) 2.(2) 3,03 4.(4) 3
o TENG teny +&n, +& N, (1.20)

3
vo = e + 7 + e + e + 2.

no=1+¢en

Then, for any T > 0, there exists &y > 0 such that, if 0 < € < &, the solution of the system (1.5) with
initial data (ny, vy, n.o) can be expressed as follows:

n=1+en" +&n? +&n® + &n@ + &N,

n.=1+ 8n£1) + szn(ez) + £3ng3) + s4n£4) + &N, (1.21)

v =gl + @ 4+ &y 4 gh@ 1 gy,
such that, for all 0 < € < &,

{IN, V, NI + &ll@3V, BN, + 103N |17}
Sup ”€H28x’x€L28 xtVvelly2

[0.7] (1.22)
< Co(1 + I(No, Vo, Neo)lI32 + €ll(03Vo, BN, + 710N ol[22).

From (1.22), we obtain the uniform H*-norm of the remainder (N, V, N,) on &, and it satisfies

(n—1)/e
sup (n,—1)/e |- BKdV <Ce (1.23)
[0,e717] V/S

H?
where C is independent of € and BKdV denotes the Burgers-KdV equation.
In order to give the proof of Theorem1.3, we define the following weighted norm:

IV, NIZ = VI, + INZ . + elLVIP + ell@INL + +&7I0LN, 1. (1.24)
2. The uniform estimate

In this section, we will give the uniform estimates of the system (1.16) and show that (1.16) has
smooth solutions for significantly small 7, > 0, as dependent on & > 0. Let C be a constant that is
independent of €. By the classical theorem, we know that there exists 7. > 0 such that on [0, 7],

NI NIV, NI < C. (2.1)

Note that n is bounded, i.e., 1/2 < n < 3/2, and |v| < 1/2 for € < g,. There exists some constant
C, = C,(£C) for any a, 8 > 0 such that

07,03, Rsl < C1 = C1(£C), 22)

where C; is chosen to be nondecreasing in its argument.
Next, we will give some lemmas to show the relation between N and N,.
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constants 0 < g < 1 and C; = C,(eC) such that for every 0 < € < &,

CTIOTNIP < IOINCIP + elldT NP + 2105 NI < CilldNIP. (2.3)

Lemma 2.1. Let (N,V,N,) be a solution to (1.16) and o > 0 be an integer. There exist some

Proof. When a = 0, taking the inner product of (1.16c¢) with N,, we have

1 2
IV + e LI0.N,|2 = f NN, — sa f 8x(—)6xNeNe—82—a 0.7.0.NN, + & f RN, (2.4)
ne ne

ng
where « 1s a constant and % <n, < %; therefore, there exists a constant C such that

a
8n_||axNe”2 2 CsllaxNellz’ (25)

so the left of (2.5) is larger than ||N,||*> + &]|0,N,|[*.
Due to the fact that

1
ax(—) < C(eld,iia] + £10,N.), (2.6)
n,
combined with Young’s inequality, we get
1 1 )
‘ _ea f Hx(—)(?xNeNe < SINP + CEIDN.IE + Co* ClaN.IP. 2.7
n,

Due to the fact that 7i, is bounded in L™, by the Holder inequality, we have

2
‘—gz—f f 8.71.0N.N,

1
" < g”NeHZ + C&||0. NI (2.8)

From Lemma 1.1, it holds that € < g, which is sufficiently small such that

1
& f RN, < Z||Ne||2. (2.9)
Therefore, by the Holder inequality, we have
INGIP + &lldxNe|> < CIINIP. (2.10)

Taking the inner product of (1.16¢) with £€9°N,,, we have
2
ElONIP + & ZNPNIP = £ f 0,71, N, &N, — & f N&N, — & f RPN, ; @.11)
e n:

by the Holder inequality, the result is as follows
0N + NI < CIINIP. (2.12)
Then, applying the L?-norm of (1.16¢), we obtain some C such that
INIP <IN + E2 1IN + €110 NelI. (2.13)

Putting (2.10), (2.12) and (2.13) together, we obtain (2.3) for @ = 0.

For the higher-order cases, we can differentiate (1.16c) with respect to 9%, take the inner product
with *N, and £0°*>N, and then perform the same procedure as for the case @ = 0; we can complete
this lemma.
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Lemma 2.2. Let (N, V,N,) be a solution to (1.16) and a > 0 be an integer. There exist some constants
C and C, = C,(£C) such that

lONIP < CUINI, + VI + ElldINP + EX10INIP) + Ce (2.14)

and
€8, NIP < C1INIE, + IVIE, + &llOIN 7 + E2107N.I) + Ce. (2.15)

Proof. Due to the fact that 1/2 < n < 3/2 and |v| < 1/2, taking the L?>-norm of (1.16a) gives
ledNI> < CI0NIP + 10:VIP) + C*(&” + INIF + IIVIP). (2.16)

By using Lemma 2.1 with @ = 1, we have (2.14).
Then, taking d, of (1.16a), we obtain

led NIP < C(IVIIE + INIF.) + Cé‘éf|<9XV|2|t9xN|2 +Cé*. (2.17)

By the Sobolev embedding inequality, we have
Cl0,VIIZ-l0NIP < CeVIIT + INI < CEONVIla3 (2.18)
then by Lemma 2.1, we complete this lemma.

Lemma 2.3. Let (N, V,N,) be a solution to (1.16) and a > 0 be an integer. There exist some constants
C, = C,(eC) and &, > 0 such that for any 0 < € < &,

)l0,0° ' N,|1* + 110,0°N,|I* < C||0,0°N|* + C,. (2.19)

Proof. For the case of @ = 0, taking 9, of (1.16¢) and then taking the inner product with 9,N,, we have

(0
16N |I* +6n_f|athe|2

1 I
- f 8,NON, + as f 6,(n—)6§Ne(?tNe _oe f ax(n—)ataxNeatNe

1 2
2 f at(ﬁ)axﬁeaxzveatzve - f (n—fgza,axﬁeaxzve)a,zve

o) 7
- f(_czygzaxﬁeataxNe)atNe + f8(9t723(9tNe =: ZA“
e i=1

where «@ is a constant and 1/2 < n, < 3/2, so there exists a constant C such that - f 10N> >

Ce f |0,.N,|?; therefore, the left of (2.20) is greater than or equal to C(||9;N,||> + & f 10,:N.|>). Now, we
estimate the right of (2.20). For A, for any small y > 0, by Young’s inequality, we have

(2.20)

Ay = fazNazNe < YION + C,lIa,NIP. (2.21)
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Due to the fact that ]
0= = CCeland + 10N,
n

e

< C(&l0,it,| + €310, N,)),

b

()
(5]

by the Holder inequality and Sobolev embedding inequality, we obtain

A, < Cé&? f (10:1,] + %10,N|)3>N,0;N, < C1(||0:N,II* + EX|0>N,|I*) + C1,
A3 < ng f(laxﬁel + gzlaxNel)ataxNealNe < Cl(llatNellz + 8||8xlNe”2) + Cla

and

A4 < C83 f(latﬁe| + SzlalNel)axﬁeaxNeatNe < C1(||(9tNe||2 + 8||axNe”2) + Cl‘

Similar to A,, by the Holder inequality, we obtain
Asg7 < CLlONCIP + ellduNel) + C.

Therefore, we have
10:NII* + &ll0uN.|I* < Clld,NIP + Cy.

When a = 1, we take d,, of (1.16c); then, taking the inner product with £9,,N,, we have
2
c f 0.2N, P
= e f 8uNOLN, + & f axt(@)aizveax,zve e f ax(@)ataiNeax,Ne
n .

2 2
—e f axt( n“) 29.71.,9.N.d,N, — f (n—fszaxtaxﬁeaxzve)ax,zve

e

—e f O 2 £20,71,0.0 N)c?x,N te f €0, RaduN, = ZB

Due to the fact that 1 1
axt(_) s axt(_z)
n, n

for arbitrary y > 0, by Young’s inequality, we obtain

2
EllduNllI” +

< C(Slax[ﬁel + 83|axtNe|)’

By < yell0uNel* + C,l10.4NI.
Using (2.1), by the Holder inequality and Sobolev embedding inequality, we have
By < C&*(19ute| + 210 NFNOuN, < Cr(elldulNel® + 2| G, FNIP) + C
and

B3 < C83 f(laxﬁel + 82laxNe|)ataiNeaxtNe < C‘l(‘g”axtl\]e”2 + gzllataiNellz) + Cl-

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)
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Similar to the process for B,, by the Sobolev embedding inequality, we have
Buser < Ci(ellduNel + E0,0NI1) + C; (2.31)

therefore, we have
BN + El0.N.II* < ClloNI + C;. (2.32)

We can give by the similar process for the case of @ > 2.

2.1. Zeroth, first and second order estimates

Proposition 2.1. Let (N, V,N,) be a solution to (1.16) and k = 0, 1,2; then,
1d
2dt

1d
2dt

IVIP +

1 as
( f PN+ f 1057 NE) < G+ I NI + VNI, (233)

nn,
Proof. We take 0% of (1.16b) and the inner product of 0{V. Integrating by parts yields

1d A
5Eua;vnz——o f IV + f (7 + V), V)V + f 8D IV)OV

E
1 6K+1‘]
- f a;(gaiv)a;w f PRIV = f o (o)==

The second term vanishes by integration by parts. The third term can be divided into two parts as
follows

(2.34)

f AT+ VIOVIAY = f N30, V)V + f P (£2VOV)V;

for the first part, integration by parts gives

1
f FFONVIIV = —3 f 0,90V + c? f aTVIVOV < CIVIL,,

0<y<k-1

where, when « = 0, there is no such “summation” term. Regarding the second part, after integration
by parts, for 0 < « < 2, we have

2
& f (Vo V)0V = —‘% f 0, VO VOV + Z Cl & f FTVITTVIV < C0,Vm IV
0<y<k-1

For the fourth therm, similar to the first term,

f 30, FV)FV = f (0.50V)V + Y f FIIHPVIV < ClIVIE,.

0<y<k—1
For the fifth therm, similar to the first term, integration by parts gives

- [ellaviev = [oforvavs [Lorvarv- 30 o [ar(Borvey
n n n n

0<y<k-1

< C(elld.fi + 0. Nll=) 105 VIE + 1195VIF) + Cllay VP,
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By Lemma (1.1), we have
f F(R2)OV < Ce||V|[F.

Now, we estimate the right side of (2.34) for 0 < k < 2; taking 0% of (1.16a), we have

AV 1Ay -
* = _(O_V(9§+1N — ataiN _ Z CZ@;—V(T} + 82V)(93€/+1N _ (E)aiﬂv
>

£ n &

0<y<k-1
" 8
_ Cza;-Y(—)a;“v — F@AY) - F(DIN) - s@fﬂ%l) = >'D,
0<y<k-1 € i=1
Incorporating this into the right side of (2.34), we have
8 8 1
M= f a;-l(—axNe)D,.. (2.35)
i=1 i=1 Mle
We first estimate the term for 3 < i < 8; for the term I3, by the Holder inequality and Sobolev

embedding inequality, we have

1 1
L= — Z (o4 f a;-l(n—axNe)Za;—Vvag”N—

0<y<k-1

1 1
76> f a;-‘(—axzve)—a;-yva;“zv
n, n
0<y<k—1
2 2 2 2 2 2
< CUINll + [INellg2) + Ci(1 + 71N + 71V ElINl s
Similar to I3, simple calculation gives
«—1 1 1 ~ 2 «+1
L=|& (—axzve)—(n £ ENFY
n, n
< C(IVIE, + INII7) + Ci(1 + €2IN17 + EXVIF2)elNellpe.
and | |
5=- Y f a;—l(—axzve)—(a;-yn L EFTINYTTV
0<y<k-1 Ne n

< CUIVIE, + IN2) + CE TNl IN a1 V117

By Lemma (1.1), with a similar calculation to that for I3, we obtain

Is+ I + Is < C(IVIE, + NI + INl[7.)-

Lemma 2.4. Let (N, V,N,) be a solution to (1.16); we have
Iy < Ci(1 + IV, NI + IV, NI, (2.36)
where I is defined in (2.35).
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Proof. For the first term /;, by using a simpler calculation, we can decompose it into two parts:

Lo1a 1ol
f (Nt N Y f o7 (o) o (2 o
n, e n, e

O<y<2
= 111 +112.

I

Taking 6<*' of (1.16¢), we have

8K+1N 8K+1N 6K+1(n aZN) 0k+1(i 26xne6 N) 88§+1R3;

e e

inserting it into /;; gives

I

14 20
f 8§‘1(n6N) 0" (ak“zv aK“( 86§N) ak“(n ZaxneaN) sa;+17e3)

n &
4
. Z Illi-
i=1

Regarding estimate of /;;;, by commutator estimation and Sobolev embedding, we obtain

e

1A
I = fﬁi‘l(n p N) SZgIN, < Cia(l + SN, VNI, V. NI

Regarding estimate of Iy,, by performing integration by parts twice, commutator estimation and
Sobolev embedding, we have

1 1A 1 1A
L = fak( 9 N) 207 Vg (@aizve) T faf;l( d.N, )a ( 0~ )ak( 83§N3)
N, n & n, n & n,
< Cie(1 + EI(N, V, NOIEIN ei0)-
The estimate of /;3 is similar to that of /,:
Lz < Ci(1 + EIN, V, NOIREINAG -

By Lemma 1.1, we have
s < ClIOEN.II.

With a similar estimate to /;;, for 0 <y < 2, we obtain
iy < Ci(1 + (N, V, NI ENNA ).
Combining the estimate of /;; and /;,, we can get (2.36).

Lemma 2.5. Let (N, V,N,) be a solution to (1.16); then, the following inequality holds
1d 1 1d

< - — K _ - K+1
L < ST | N,J? 7 f IO NP + L+ NIV, N)IDA + IV NI, (2.37)
where I, is defined in (2.35).
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Proof. Taking 0,0 of (1.16¢), we have
8,0°N = 8, N, — a,a;(?aizv) a,ak( £0,71,0.N, ) £0,0°Rs:

inserting it into /, gives
1 1 ag :
- f a;-‘(—axNe)—(ata;Ne - a,a;(—aizv) iy aK( £20,71,0. N) sata;%) = L.
e n e —
Regarding the estimate of I, through integration by parts, we obtain

1d (1 I I I I
hi=—5 [ =N+ 2 f o). - ¢, f 0 (=)o NN,
2dt ) nn, 2 nn, “ nn, n

where the second term on the right-hand side is bounded as follows

1 1
2 5(
2f \nn,

where we have used the fact that

1
)
nn,

for the third term, by the Holder inequality and Sobolev embedding inequality, we have

)IacheI2 < Ci(1 + IV, NN 7o)

< C(e(0,71| +10,17e]) + £ (19,N| + 10N |));

< Ce(ell NP + ell 0 NelP)E NNl + 71N )

fa/( 1- y ay+1N atak

therefore, we have

_1d
AT 0dr

For the estimate of 1,,, we have the followmg decomposition:

1 1 1 1
I = fai‘l( —0 N)—ﬁc?,a"”N +faﬁ_l(—axNe)—at(E)asze
nn n \n,

YR f o aN) 8,0 V(‘jf)m”zv

AN+ (1 + IV, NI ElIN 7). (2.38)

O<y<k-1
1 1 ae 4
v Y f a;-l(—axNe)—a;-y(—)a,a;”zve = > b,
O<y<k-1 Ne n Ne i=1

For the term Iy, through integration by parts, and by using the Holder inequality and Sobolev
embedding inequality, we have

_ 1 d K+ 1 K+1
t =35 [ N3 o) N
1
_C7fal< 7( )6K+1N atak+1N fak l -9 N)a( Cl’g)aaKHN
n, nn,

1d
YT IHK“NI + C1(1+ IV, NI ElIN7),
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where we used the fact that

'8(“—82) < CeX(1 + £2(10,N| + 18, N.])),
nn;

ax ( asE )
nn,

For the term 1,5, by the Holder inequality and Sobolev embedding inequality, we have

< CE%(1 + 2(10,N| + |0,N.))).

Iy < CE(IFNP + 105 NI + Ce N Nells (IO, Nel + 1052 Ne|I?).-
For the term /5,3, by the Holder inequality and Sobolev embedding inequality, we have
Iz < Ci(1 + IV, NI ENNC]I70).

Therefore, we have the estimate

1d AE  rlar 12 2 2 2
I < Y7 n—nglax+ Ne|” + Ci(1 + £7[[|(V, NI ENNge)- (2.39)

For the estimate of 1,3, by the Holder inequality and Sobolev embedding inequality, we have
by < CE(IFNIP + |0 NIP) + CENFNL= 10N + CEIFNP + 1led T NP (2.40)
Regarding the estimate of 154, by Lemma 1.1, we have
Ly < Cél|d“N,|I*. (2.41)
Combining (2.38), (2.39), (2.40) and (2.41), we complete this lemma.

2.2. Third order estimates
Proposition 2.2. Let (N, V,N,) be a solution to (1.16); then,

1d 1d £ ag?
—— (gl V| +——(f 83N62+f—64N€2)
Zdt(gll VI 2dt nnel ool ngnl oNVel

< Ci(1+ IV, NIIDA + IV, NI

(2.42)

Proof. Taking & of (1.16b) and then taking the inner product with 3V, we have
1d A 1
SV - f N5t VedV + f SR o V)edV + f F DIV V — f ai(ﬁ aiv)eaiv
P> >

n
1
; f £ RosdV = f ai(n—axNe)aiv.
‘ (2.43)

Estimate the left-hand side of (2.43). The second term vanishes by integration by parts. For the third
term, by the Holder inequality and Sobolev embedding inequality, we get

1 1
f -P W0, V)edV = 3 f £0,(V + EV)OPV]* + f e0X(V + E2V)PVOV + f £0X(V + V)0, VOV
&

< C(1 + &0, Vlie= + ENFV Il + 210, V=) (ElVIP + £lldiVIP)
< Ci(1+ IV NI + NIV, NIIE).
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Regarding the estimate for the fourth term, similar to the third term, we have
f 820,7V)edV < Ce(1 + [VIL,).

Regarding the estimate for the fifth term, we have the following decomposition:

1 1 1
f ai(éaiv)aaiv — Be f _OVEYV + Be f ax(—)aivaiv +ps f ai(—)aivaiv
n n n n
1
+ﬁgfa§(—)aﬁvaiv = E| + E, + E5 + Ey.
n
Integration by parts twice yields
1 1
B =5 [oS)ove-pe [ Latve
2 n n
< CelldVIP + CEI0LVIP + CENF V= (IONI* + gllaLVIP).

Through by parts, and by using the Sobolev embedding inequality, we have
1
E, +E; = gg f ai(—)aivaiv < Ce*(1 + &(||0>N|* + |2 VIP)I02 V2.
n
Similarly, through integration by parts, and by using the Sobolev embedding inequality, we have

1 1
E, = —fe f aﬁ(—)wivﬁ — Be f aﬁ(—)aﬁvaj‘cv
n n
< CX(1 + &(|0ANIP + &l VIPOIRVIP + CEX10VIP + C02 V= (102N + 2103 VIP).

For the last term, by Lemma 1.1, we have
f 0 R0V < CE2(1 +IVIE).

Estimate the right-hand side of (2.43). Taking 8> of (1.16a) and inserting it into the right-hand side
of (2.43) gives

6 2
1 1

E ‘ f ai(—é‘xNe)—(ai((ﬂo —v),N) — £9,0N — § CL 7 ndr IV — 863, V)

=1 e n -

6
— £ (N) — sZaiRl) = 1.

i=1

We first give the estimate of [; for 3 < i < 6. For I3, we have the following decomposition:
. 2 o 1 | IV 37 of 1 oy angir
I=- ; c’ f ax(n—eaxzve);azgnax "y ; c] f é‘x(n—e@xNe);é‘xs NGV
=: Iy + L.
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Regarding the estimate for I3;, by the Holder inequality and Sobolev embedding, we have
- 1 1 - 11
Fi==).Cle | (o) amotrv - ¢ f 0. ) N
31 ; 38f n, X n xn X ; 38 n.)n X xn X

3
1\1
- e f 8§(—)—8XN68§718i‘7V
~ n./n
y=1
< CENBNIP + ENVIEs + ENONAP NNz + 10NN ).

Regarding the estimate for I3, through integration by parts, and by using the Holder inequality and
Sobolev embedding, we have

Iy < Ci(1 +[II(V, NDIDNICV, NI
Via a similar calculation process, we have
7 35192 2 2
I15 < C(1 + &|0\N,||=)(ElINllgs + €llVII7s).

By Lemma 1.1, we have
Is < Ce(&|INLI2).

Lemma 2.6. Let (N, V,N,) be a solution to (1.16); we have
L < Ci(1 + IV NI + IV, NIIE)- (2.44)

Proof. We have the following decomposition:

_ | Ao — | |
i f ai(—axNe) 0 Vot - f aﬁ(—axNe)—ax(gv + EV)PN
ne n ne n
1 1
- f ai(—axzve)—[ai(sv L EVION + 825 + £ V)FN]
n, n
= I~11 + I~12 + I~13

Regarding the estimate for I, taking d* of (1.16¢) and inserting it into I,;, we have

L

1 Ao — 2
f éﬁ(—axNe) 0 V(athe—ajt(@aiNe)+ai(—fszaxﬁeaxNe)—gajR3)
ne n ne n

e
4
321111'
i=1

Regarding the estimate for I,;, by the Holder inequality and Sobolev embedding, we have

Ly < Ci(1+ IV, NI + 11V, NN,
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where we used the fact that

/l _
ax( 0 V)‘ < Ce(1 + E10.N| + £210,V] + £10.N.)).
n

Regarding the estimate for I}, and 7,3, through integration by parts, using the Holder inequality and
Sobolev embedding, we have

Lizs < Ci(1+ EIV, NI + NIV, NI
By Lemma 1.1, we have

Lia < Ce(e| NI + llFINIP + &ll0.NIP).

Therefore, we have
Iiy < Ci(1 + EICV, NIZDA + IV, NDIIE).

Regarding the estimate for I}», through integration by parts, and by using the the Holder inequality and
Sobolev embedding, we have

|
i, = fa3 29 N) .(s7 + & V)62N+f02 29 N) (n) (& + EV)EN
n f ai(laxNe)—aﬁ(gv + EVIEN
Mo n
< C1(1 + |V, NIHA + 1KV, NI

Regarding the estimate for 3, through integration by parts, and by using the Holder inequality and
Sobolev embedding, we have

Ly < Ci(1+ EI(V, N)IIDA + IV, NIE).

Lemma 2.7. Let (N, V,N,) be a solution to (1.16); we have

. 1d 1d [ a&
L <—=— 53 P —— f@@il\’eﬁ ++Ci(1 + IV, NHIEDA + IV, NI (2.45)

2 dt ¥ 2dt
Proof. Taking 9,0° of (1.16¢), and then inserting the result in I, we have
1 2a :
L=- f aﬁ(—axzv ) (a &N, - ata3( &N, ) 0,63(—326xnea N ) £0, 723) = L.
ne i=1

Regarding the estimate for I, through integration by parts, we have

N 1d 1
L =14 NP + f al( £ )|3§Ne|2— f 6x(—)6§Nefa,6iNe
2dt nn, ne
f52 9N, aa*N _. 14 13N, P +Zz
! " 2dt ) nn, 20
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For I, by using the Holder inequality and Sobolev embedding, we have
Ly < Ce(1 + 10Nl + X10:Nell=)(ElFINIP).
For I,,,, through integration by parts, by using the Holder inequality and Sobolev embedding, we have
- 1 1 1
Tz = f ) A f 0. N DN, + f 0. o Eraan.
ne n ne n ne n
< Ce(1 + EN NI + €l 0Nl + Ell0xNll =) NN + EIOINI + &lld, TN
For b3, it is similar to ,:
1
s = f 03( )a N.EoFN, + f 02 62N La0N, + f aﬁ(—)axNeax(f)a,aiNe
Ne Me n
<Ce(l+e ”aiNe”L"" +e ”a)che”L“’ + 8I|é’xN||L0<:)(8||8z(9)26Ne||2 + (10N + 10INP).

Therefore, we have

N+ Cr(1+ SV, NI + IV, NIIE)-

Regarding the estimate for I,,, we have the following decomposition:

Iy =- f =GN a,aZ(n 82N) f P (n n)a3zvaa2(n80§zve)
1 1 2
; f ax(—)aiNﬁata3( 62N) f ai(—)axzvefa,m( 82N) Zl
n, n n, n, n

i=

For the term I, through integration by parts,we have

o _l i e 4 0/8 4 _ 4
boi = -5 |8N|+ fa, GNP f N SDJN,
f a“zv 0,0 ( )03 f E9ND ( )a &N, - f &N, a,az( )021\/
nen n, n.n nen M,
- f PN 52( )6,82N
n.n n,

1d

- __ = 4
= o |5N| +lezlz

By using the Holder inequality and Sobolev embedding, we have
Iiia3 < Ce(l + |, + E1,NIP + 10,0 Nells + 10Nl )ENTNAP + llINIP).

Regarding the term L4, due to the term 6t6iNe, even if we raise the Sobolev order or the expansion
order, it cannot be controlled in terms of [||(V, N,)|||s, the essential reason is related to Lemmas 2.2 and
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2.3. But, by observing its features, we can use (1.16c) to complete this estimate. Simple calculation
gives
- 1 1
Toots = — f faiNeax(—)a,ax(“—gaiNe - Ne) n f faiNeax(—)ataxNe
n M, n

1
+ f fatheax( )(a a,( )82N a,( )a3N a( )H,GZNE),
n n, n,

by using (1.16c), we have

2
RN, — N, = Z2620.1,0.N, — Ry — N
n

ne ”

Inserting it into D14, and using the Holder inequality and Sobolev embedding, we have
. £ 1 20 5, .
Tois = - —axNeax(—)a,ax(—zs 0.7.0.N, - Rs ~ N
n n

1
f a“zva( )(a a,( )62N a,( )63N a( )ataz )
I’le ne ne ne
" f —atheax(—)a,axNe
n 1,

< Ci(1 + IV, NI + IV, NI
Regarding the terms /5 and I, by using the Holder inequality, we obtain
Dois + Iais < C(1 + E02N,NI =) (E NN + BN + ellB,0N,I).

Therefore, we have

Iy < —5— —|(94N| + Ci(1+ IV, NI + NIV, NI

Regarding the estimate of I,,, by using the Holder inequality and Sobolev embedding, we have

» 1\1
T < C1(1 + £V, NIB + IV, NIR) — ae? f ax(n ) NN, + T,

NN,

where we note that

|
F = —a/szfax( )n FN.O,6'N,.

n.n

The difficulty is that the term a,éﬁtNE cannot be controlled in terms of |||(V, N.)|||s; we can use (1.16¢) to
complete this estimate. Simple calculation gives

1 1
F = e f ax( )63N a,az( 25N, — N, ) f p ( )83N 3,5°N,
ne ne.n

te f a( )031\/ (a,az( )62N 02( )6,62N +ata( )aiNe
ne l’le ne ne

+9 (n )ataﬁv +at( )64NE),
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by using (1.16c¢), through integration by parts, by using the Holder inequality and Sobolev embedding,
we have

1 2 |
F = - f ax(—)aiNeatai(—fgzaxﬁeaxNe _ &R — N) —e f ax( )aizvea,aizve
n n n.n

ne
. f a a3N (ataz( )aZN +az( )a,azzv +ata( S)aizve
n.n n, e
np ( )ataw ; at( )64N )
ne ne

< Ci(1 + IV, NI + IV, NII).

Regarding the estimate of I3, through integration by parts, and by using the Holder inequality and
Sobolev embedding, we have

3 Ny 1.1 o 1.1
T = —aé? f aﬁ(—)aiNe—ataﬁ(—aiNe)—agz f ax(—)aizve—atai(—aﬁzve)
ne n ne ne n ne
2 2 1 2 1 2 1 2
_os ax(—)axzveax(—)a,ax(—axzve)
n, n n,

< Ci(1+ IV, NIDA + IV, NIIE) + Fo,

where we note that | 1
Fy = —a f P ( )63N w0,
n, nn

by using (1.16c), we have

1\ 1 2 1\ 1
Fy = —¢ f p ( )a3N “ 285 62N ( =2 £20,71,0,N, — eRs —N) s f ax(—)aiNe—a,aﬁNe
n, nn, n n, n

e

1\ 1
re f 8x(—)6iNe (a 62( )82N 32( )atazN +a,a( ‘9)a§Ne
ne I’le ne ne

+0,0 (n )ataw +at( )a“zv)

< Ci(1+ IV, NIDA + IV, NI

therefore, we have
Loy < Ci(1+ EII(V, NoIDA + IV, NI

Regarding the estimate of 4, through integration by parts, and by using the Holder inequality and
Sobolev embedding, we have

s < Ci(1 + IV, NI + IV, N + F,

1 11
Ty =: a82f84( )0 N,— 8t03 N,;
e nn,

where we note that

by using (1.16c) we have

1, 1 (2 1y, 1
7= f 0 o= 0,05 2 0DN, - Rs = N + f o )a N,~3,5N,
e n n’
< Ci(1+ IV, NIIDA + IV, NIIE).-
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Therefore, we have

7 ld (ag 4 0o 2 2 2
Iy < =5 — | =10 Nel” + Ci(1 + £7(I(V, NI + [II(V. NoIIT)-
2dt ) nin

Regarding the estimate for L3, similar to I,, we have
Dy < Ci(1 + &I(V, NI + IV, NI
By Lemma 1.1, we have
Ly < Ce(8lldIN|1 + NN + 210.N).

Combining these estimates, we complete this lemma.
3. Conclusions

Proof of Theorem 1.3. Combining Propositions 2.1 and 2.2, we have

1d 1d 1 ae 1 aE
——(IVI?, + &||o>V|]? +——((f N82+f—0xNez)+(f axNez+f—82N62)
2dt(ll Iz + €lloyVIF) 7 nnel | nngl | nnel | nngl N

1 2
+ (f N, + f—“‘g |3§Ne|2) ; (f—g BN, + f—"‘g |ajNe|2))
nn, nn2 nn, nZn

< Ci(1+ IV, NIDA + IV, NI

3.1
Integrating the inequality over (0, ) yields

IV, NDOIIEZ < ClICV, N)O)IIZ + fo Ci(1 + [IICV, NI + IV, NWZ)d s
< CIlI(V, NI + f Ci(1 +£0)(1 + IV, N)II2)dss,
0

where C is an absolute constant.

Since C| is nondecreasing and depends on |||(V, N,)|||?> through &l||(V, No)||I?, let Ci=c()and C; >
Csupilll(V, No)O)|l|>. For any arbitrarily given 7 > 0, we choose C such that C > e*“17(1+C,)(1+CY).
Then there exists gy > 0 such that eC < 1 for all £ < &y; we have

sup [Il(V, No)@)IIZ < C/2.

0<t<t

By Lemma 2.1, we have )
sup [[(NDIII5. < €/2.

0<t<t

By the Gronwall inequality, we complete the proof of Theorem 1.3.
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