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Abstract: The concept of Lindelof proximate order has been used extensively to study the functions
of completely regular growth. The main drawback of this approach is that it completely ignores the
value of lower order. To overcome this problem, Chyzykov et al. introduced the concept of generalized
proximate order for irregular growth. In this paper we studied the existence of generalized proximate
order for every functions analytic on the unit disc with some new results for functions having irregular
growth.
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1. Introduction

The concept of proximate order was used to obtain a more refined measure of growth of analytic/
entire functions. Lindelof proximate order p(r) has been extensively used in the setting of such
problems [5,6,10,11]. They estimate log M(r, f), M(r, f) = max{|f(z)| : |z| = r} by the flexible function
v(r) = ), where p(r) — pu(f), as r approaches one in the case of functions analytic in the unit disc.
It is known by Valiron’s theorem [5,6,11] that for every entire function of finite order there exists a
proximate order p(r), such that log M(r, f) < V(r) for all r and log M(r,, f) = V(r,) for some sequence
{r,} — oco. This concept has been used to study the functions of completely regular growth [11]. The
main drawback of this approach is that it completely ignores the value of lower order A,,(f). There
is a notion of lower proximate order A(r) [5,11] corresponding to finite lower order A,,(f). Now the
question arises about how to construct a majorant V(r) for log M(r, f) such that, on one hand, it keeps
the information about both the order p,,(f) and the lower order A,,(f) sufficiently flexible. To solve this
problem, Chyzhykov et al. [3] introduced the concept of the generalized proximate order by defining
quasi proximate order for py(f) # Au(f)(0 < Ay(f) < pu(f) < oo) and studied the existence of
generalized proximate order for functions analytic in unit disc . In this paper we have obtained some


http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024055

1117

new results concerning generalized proximate order of functions analytic in unit disc having irregular
growth i.e., py(f) # Ay (f) with the existence of generalized proximate order for these functions, but
our results and methods are different from those of Chyzhykov et al. [3].

In their scientific literature, Chyzhykov and Semochko [4] have given a general definition of growth
for an entire function f in the complex plane that covers arbitrary growth. According to Chyzhykov
and Semochko [4], let @ be the class of positive unbounded increasing function on [1, +c0) such that
¢(€") is slowly growing, i.e.,

ct
im 292 2 1.0 < ¢ < +oo,
t—+00 (p(ef)
If ¢ € @, then
¢! (log x™)
lim —— = +o00,Ym > 0,Vk > 0. (1.1)
x—+00 X

1 “1((1
ogg (1+9)0) _ o vs>o0. (12)
X—>+00 log ¢~!(x)

If ¢ is nondecreasing, then (1.2) is equivalent to the class .
Definition 1.1. [4] Let ¢ be an increasing unbounded function on [1, +00), then the orders of growth
of an entire function f are defined by

M@ ) . log M(r,
Py (f) = limsup "D(%grrf)),p;(f) = tim sup ‘P(O‘c;o—g(rrf)).

Remark 1.1. If ¢(r) = loglog r, then it is clear that ¢ € @. In this case, the above definition of orders
coincide with definitions of usual order and hyper-order, i.e., if f is entire, then

loglog M(r, f)

pl_o%mg(f) = lirfgfgp ~ Joar (),
_ ) logloglog M(r, f)
plo(;loglog(f) = lim sup = pZ(f)

ro>+0o logr

It has been shown [4] that if ¢ € ® and f is an entire function, then

Pl =P =0.1.

Chyzhykov and Semochko [4] used the concept of p,-orders in order to investigate the growth of
solutions of linear differential equations in the complex plane and in the unit disc.

The concept of (p, g)-order and (p, g)-type (p > g > 1) was introduced by Juneja et al. [7,8] for
classifications of order p = 0 and p = oco. This concept is a modification of the classical definition of
order and type obtained by replacing logarithms by iterated logarithms, where the degree of iteration
is determined by p and gq.

According to Sheremeta [12] we have the following definitions.
Let ¢ : [a,+c0) — R be a real valued function such that ¢(x) is positive, differentiable Yx € [a, +00),
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strictly increasing and ¢(x) — oo as x — oo.
For every real valued function y(x) such that y(x) — 0 as x — oo, ¢ satisfies

fim 2L+ YO

1, 1.3
TR (-

then ¢ belongs to class L. The function ¢(x) is said to belong to the class A if ¢(x) € L° and, in place
of (1.3), satisfies the stronger condition

[ den)

im =
o B(x)

for all ¢,0 < ¢ < oo. Functions ¢(x) satisfying (1.4) are called slowly increasing functions (see [12]).

Using the generalized functions a, from classes L° and A, Sheremeta introduced the generalized
(a, B)-order and generalized lower (a, §)-lower order of entire functions by equalities

p(a, ) = lim sup W’

1, (1.4)

Mmm=nggﬁ§%§%ﬁﬁ’

where M(r, ) = maxp-, |f(2)I.
For a(x) = B(x) = log x, p(a, B) gives the formula for (p,q) = (2, 1) of Juneja et al. [7]. For a(x) =
log'”™" x and B(x) = log'! x, p(a, 8) and A(a, B) give the (p, g)-order and lower (p, g)-order introduced
by Juneja et al. [7].

An entire function f of order p is said to be of completely regular growth if there exists a 2-periodic
function / : R — R which does not vanish identically such that

log |f(re”| = h(@)r" + o(r”) (1.5)

as r — oo, for re” outside a union of discs {z : |z — z;| < r;} satisfying

Z ri =o(r)

lzjl<r

as r — oo. One may replace the 7 in (1.5) by 7 with a proximate order p(r). If the order and lower
order of function f are different, then function f cannot be of completely regular growth. Bergweiler
and Chyzhykov [2] gave conditions ensuring that the Julia set and the escaping set of an entire function
of completely regular growth have positive Lebesgue measure. Bandura and Skaskiv [1] studied the
relationship between the class of entire functions of completely regular growth of order p and the class
of entire function with bounded /-index. Possible applications of these functions in the analytic theory
of differential equations have been considered.

For an analytic function f in the unit disc D = {z : |z| < 1}, the order and lower order are defined as
log" log"™ M(r, f) . log"log" M(r, f)

Au(f) = lim inf =2, (1.6)

=1
pm(f) Hfl?‘-lp “log(1 =)
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(0 < Au(f) < pu(f) < o0). Chyzhykov et al. [3] defined quasi proximate order as:
For given 17 € (0, pp(f) — Au(f)), there exists A and its associated function A* = A’ on [0,1) such that

()A€ C'[0,1);

(2) limsup,_,- A(r) = pu(f);

(3) liminf, - A(r) = Au(f) + n;

4) limsup,_,;- —|A'(n|(1 = r)log(l = r) < oo;

BG)A (N <A -1 <A +0(1)A*(r)asr — 17;

(6) A* is nondecreasing and A*(%) SA*(r)forall0 <r<1;

M logM@r, )< (1 -r) W forall0<r< 1.

Further if

(4) limsup, _,;- —|A'(r)|(1 — r)log(1 —r) = 0;

then A is a generalized proximate order of f.

It is noted that in condition (3) we cannot replace Ay(f) + n by A,,(f) without violating the condition
limsup,_,;- =|A"(")|(1 = r)log(1 — r) < oo; [3, pp. 456]. Every generalized proximate order is a quasi
proximate order.

For an analytic function f in the unit disc D = {z : |z] < 1}, we define

T* = lim sup —10g+ M. /) ;= liminf —10g+ M, f).
r—1- (1 - r)—p(r) r—1- (1 - r)—p(r)

The numbers 7 and t* are called the type and lower type of functions analytic in D with respect
to the proximate order p(r). The lower type ¢t completely ignores the value of lower proximate order
A(r). If 0 < * < oo, then the function A(r) satisfying (1)-(4")-(7) is called the generalized proximate
order of f.

2. Existence of generalized proximate order for functions analytic in the unit disc

The following theorem shows that there exists a generalized proximate order for every function,
analytic in D and having nonzero finite order.
Theorem 2.1. Let f be a function analytic in D having order py,(f) and lower order A,,(f) such that
0 < Au(f) < pu(f) < oo, then for every 1,0 < t* < oo, there exists a generalized proximate order of f
satisfying (1)-(7)-(4").
Proof. We first assume

(l _ r)(/lM(f)"'T])(l—W)Jr‘*'l lOg M(}’, f)

£(r) = .
Put x = —log(1 — r) and &(x) = log&(1 — %), then
1
tim £ — () 4 (1 = —— ) — 1+ pu(h).
x—ooe X pu(f)

Let limsup, . &1(x) = oo. Let y = S(x) be the boundary curve of the smallest convex domain
containing the curve y = &;(x) and the positive ray of the x-axis. After doing suitable modifications
in the small neighborhoods of the vertices in this curve, we may assume that the function S(x) is
differentiable in 0 < x < co. The curve S (x) is concave in the sense that a chord joining any two points
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of the curve lies below the curve. The curve 2 is monotonic decreasing and nonnegative, and this

X
implies that function %must tend to a limit as x — oo. Since the curve y = S(x) and y = &(x) have

infinitely many common points {x,} such that x, — co, then

S 1
tim 2 = () 4 (1 = ——)* — 1+ py(P) @1
x>0 X om(f)
and
&E(x) <S(x) for all x > 0. 2.2)
In view of (2.1), we obtain
1
lim §'(x) = =(Au(f) + (1 - )" =1+ pu(f). (2.3)
x—e0 eu(f)

Using (2.2), we get

S(=log(1-r))

2 1 +
log M(r, f) < (1 — ry W0 =155

Set

. | S(—log(1 -r))
1=(@ 1-—)" -1 .
R L R v L s P

Since A(r) is positive and differentiable in 0 < r, < r < 1, it follows that

Ar)(1 - (2.4)

A(r)(1 -

Y+ 1 - () +n)d - Y'+1 as r— 17 by (2.2).

1 1
pm(f) pu(f)

Further,

S(—log(1-r))

~(1 = NIV (Nllog(1 = r) = "(~log(l = 1)) — — log(1=7)

Using (2.2) and (2.3), we obtain
—(1 =r))AM|log(1—=r) >0 as r— 1.
Finally, by (2.4) and (2.2), we get
log M(r, ) < (1 = ) "
forall rin 0 < r, < r < 1, and there exists a sequence r, — 1 as n — oo in which
log M(r,, f) = 1°(1 = ) ),

Thus, A(r) defined by (2.4) is a generalized proximate order.
Theorem 2.2. For every generalized proximate order A(r) € C'(0, o), there exists a generalized
proximate order A;(r) € C%(0, o) such that

A(r)

|lo
e

| = 0[ —log(1 - r)_l] as r— 17, (2.5
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where C”(0,00),v = 1,2 is the space of all functions defined on [0, c0) whose V" derivatives are
continuous.

Proof. Suppose that A,(r) and A(r) are the generalized proximate orders coinciding on the sequence
{r,} such that

1
Ar)=40), r,=1- TR n=0,1,2,.... (2.6)

In this case, for r € [r,, r,41), We have

AN AW 4@y (T 1

PNE "L [a(x) Al<x>]dx' N 'f 0[(1 — ) log(1 - x)ldx'
B log(1 —r,)
= o] log log(1 — 1)

|log

] = 0[ — log(1 - r)_l] as r— 1.

To study the properties of generalized proximate order of a function analytic in unit disc, we need
the concept of the slowly increasing function. A real valued function L(r),0 < r < 1 is said to be
slowly increasing if for every k,1 < k < oo,

L+ 55
lim Tr)k = 1. (2.7)
Theorem 2.3. Let A(r) be a generalized proximate order of a function f analytic in unit disc and having
generalized order Ay,(f) + n, then
L(r) = (1 = p) O s g slowly increasing function of r in 0<r<1 (2.8)
and

ALy o1 . ) . . : .
(1-r) ANA=zmm)" =1 s a monotonically increasing function of r in (2.9)

0<r,<r<1 and tends to c as r - 1.

Proof. We have

L(r) = (1 - r)—/l(r)+/lM(f)+77,

log L(r) =(=A(r) + Au(f) +n)log(l —r)
= —A(r)log(1 =) + (Au(f) + m) log(1 — 1),
SO

L'(r) ., _ 1
o) =A"(r)log(l —r) + A(r)

1
l_r—(/lM(f)JF?]):

= X log(1 - )+ 20 _lﬂfif )7

_ A =nA()]og(d - 1) + ) — Au(f) =71
- (I-7r)

), for all values of r sufficiently close to one.

_Ol—r
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Therefore,

) L(r + %)
G TR

Hence, (2.8) is proved.
In order to prove (2.9), we have

h [ e ] BT TR R T e
r

)X
pm(f)
(1 = 1) O35 og(1 - r)

> (n(f) + = &)1 =) > 0,

since (4') is satisfied. This proves (2.9).

Theorem 2.4. For (1,,(f) +n)(1 — Fﬁ(f))* > a,0 < (Ay(f) +n)(l - mf <ocoand0<pB<r<l,

' “AN(1-—L ) +a
f (1- t)_/l(t)(l_m)+_l+"dt (1-r) u®
B

T+ - o —a

+o(1 — r)_ﬂ(r)(l_ﬁ)ua.

Proof. Integrating by parts with (A, (f) +n)(1 — /#(f)f —1>0as

T T
f (1- t)—a(z)(l—m)*—lmdt _ f (1- t)a—[(/lM(f)+n)(l—m)++l]X
B B

(1 = P+ 1=A010=575)" 41 gy

_ 1 )+
(1 _ t) A1 PM(f)) +a |r

G

-
_f(l _t)—a(z)(l—%r—lmx
B

{=(1 =X -

T+ D1 1 -
o)) T Dloeld =)

1
- — (1 = ——)" + D}dr.
+ (A1) — A (f) —m(( o f)) + 1)}dt

From (3) and (4), we have

@) — Au(f) —nl < g as r— 17
and
= (1 =20 log(1 - 1)| < g
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Hence,

SA(1= )+
fr(l P K (L=p) 7 ™

5 T((H (1 - oy —a

—o(1) f (1 — O e gy,
B

(1+0(1))

This implies that

r “AN(1- L) +a
f (- t)—/l(t)(l—mﬁ—lﬂydt (I-r) o)
B

T+ - Sy e

+o(1 - r)_l(r)(l_m)ua.

Hence, the proof is completed.

Let ¢(r) be a bounded function defined on (0, c0) and A(r) be a generalized proximate order such
that

) o
1m sup A0y =
r—1- (1 — ]/‘) pmf)

2

.. r
lim inf 9(r) — =
r—1- (1 _ r)—/l(t)(l—m) -1

b

and fora > 1,

dr = sq,

lim sup{(1 —r)l(r)(l_mlm)*‘“f _¢n
r—1- B (1 - r)—a

lim inf((1 — ") L

Theorem 2.5. For the constants p, g, s, s, defined above, the following inequalities hold.

q < o < P

1 <s;m<s < 1 : (2.10)
() + (1 - =15y —a () + (1 - =15y —a

Proof. For givene >0andr > r, > > 0,

B(r) < (p+ &)1 = ) !

and

j; (l(f;?)_adtsml)+(p+g)f(l — 10,
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Using Theorem 2.4, we get

O <oy ¢ P ) O g
s (1-n = An() +m{ - ZF)" -

+o(l - ry ) e,

This implies

lim sup{(1 — )" 7"~ 20 < P

-1 p A=07" " Qu(H+m - ) —a’

and it follows the third part of the inequality in (2.10). Similarly, it can be seen that

lim inf{(1 — "m0 f 20 — :
i p (L= = ((H+m( - =15y —a
Hence, the proof is completed.
Let
¥ = lim sup LY U, A
-1 (1 —r)_/l(r)(l_m)+ r—1- (1 _r)—/l(r)(l—m)+

(2.11)

Lemma 2.1. Let f(z) = ;" a,Z" be analytic in D, having order py(f) and lower order A,(f) such
that either 1 < Ay (f) < pu(f) < o0 or 0 < Ay(f) < pu(f) < 1 with generalized proximate order A(r),

then

) r w1 - r
T* = limsup Hr) —0 = lim inf M) RV
1 (1 _ r)—/l(r)(l—m) +1 r—1- (1 _ r)_l(r)(l_PiM(f)) +1

where u(r) = max,sofla,|r"}.
Proof. Using inequality 1.4.11 of [6, pp. 31] for 0 < r, < r < 1, we have

1-r. 1

log M(r, ) < logu(r) + log[{1 + 2v(r + )} ].
vir) " 1-r
Further, for any € > 0 from (4.5.9) of [6, pp. 45], we have
v(r), (1 — r)—(1+pM(f)+€),
forallyrin0 < r; <r<1.Letr € max(r,,r),thenforO<r <r<1,
v(r)
log M(r, f) <logu(r) + (1 + pu(f) + €) log -1 2+ pu(f) + &).

log(1 —r) + o(1).

Now dividing by (1 — r)_/l(r)(l_fﬁ)++1 and proceeding the limits as r — 17, we get

. r x .. r
T" < limsup Hr) —; 1" < liminf Hr) —.
== (1 = ) Oy = (= Oy

(2.12)
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The reverse inequalities follows from the relation

u(r) < M(r, f).

Now we prove
Theorem 2.6. Let f be a function analytic in unit disc having generalized proximate order A(r) and
either 1 < Ay (f) < pu(f) < 0 or 0 < Ay(f) < pu(f) < 1. Lety,6 and T*,t* be defined by (2.11)
and (2.12), respectively, then

> 9 (k - 1)(/1M(f)+11)(1 el
_(/lM(f) + 77)(1 - l(f))Jr k
+ YD awpema—gimt
k- k
. 0 (k - 1)<AM<f)+n>(1—%)++1
(A () + (- (f))+ +1 k
6 k=L aupma-zlmr+1
+ PM(f)
k( k )
Proof. Using (2.11) for given & > 0, we have
) > (6 = e)r(1 = O mm)”
forall rin0 < r,(e) < r < 1. For k > 1, we have
1- 1-
f de > vy log(1 + S22 5y L=D),
. kr k

From [6, Eq 1.4.10], we get

10g,u(r+(1;r)):10g/,t(r0)+ th f @dt

To

> log u(r,) + (6 — &) f (1 = ) O gy
(1 - r)

+v(r)

For @ = —1, we get from the above 1nequa11ty

1— 5— &)1 — )07 )+l
log u(r + S=) > log u(ry) + E= L =1 -
(An(f) +m(l = =) + 1
+o(1 — Py 0=+
Dividing by ()" " and proceeding to limits, we get with Lemma 1.1 that

T > 6 (k — l)umfm)a—mw
(An(f) +md - le(f>)+ ok

+ Z(u)wuﬂn)(l—w)m
k™ k
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s S 1 (k - 1)<AM<f>+n><1—w%f)>*+1
An () +mU = )" + 1 k

N §(k - l)uM(f)m)(l—W)wl.
k™ k

Hence, the proof is completed.
Example 2.1. As an example of Theorem 2.6 and following Kapoor [9], we can find the following
inequalities.
For a function f analytic in unit disc having nonzero finite order py(f), we have

() + (1 = )y + ) )2

v+06< _
(A () + A = %)y + 1)((1M(f)+n)<l—m)) +1)

1
pm(f)

and the equality cannot simultaneously hold in the above two inequalities. If the equality holds in the
first inequality, then #* = 0.

0 < ((Au(f) +m(l - )"+ DT,

3. Conclusions

The existence of generalized proximate order for every functions analytic in the unit disc has been
proved. Also, to obtain refined measure of growth of analytic/entire functions of irregular growth some
new results have been obtained.
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