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Abstract: The coronavirus disease 2019 (COVID-19) is caused by a new coronavirus known as severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infects the epithelial (target)
cells by binding its spike protein, S, to the angiotensin-converting enzyme 2 (ACE2) receptor on the
surface of epithelial cells. During the process of SARS-CoV-2 infection, ACE2 plays an important
mediating role. In this work, we develop two models which describe the within-host dynamics of
SARS-CoV-2 under the effect of humoral immunity, and considering the role of the ACE2 receptor.
We consider two discrete (or distributed) delays: (i) Delay in the SARS-CoV-2 infection of epithelial
cells, and (ii) delay in the maturation of recently released SARS-CoV-2 virions. Five populations are
considered in the models: Uninfected epithelial cells, infected cells, SARS-CoV-2 particles, ACE2
receptors and antibodies. We first address the fundamental characteristics of the delayed systems, then
find all possible equilibria. On the basis of two threshold parameters, namely the basic reproduction
number, <0, and humoral immunity activation number, <1, we prove the existence and stability of
the equilibria. We establish the global asymptotic stability for all equilibria by constructing suitable
Lyapunov functions and using LaSalle’s invariance principle. To illustrate the theoretical results,
we perform numerical simulations. We perform sensitivity analysis and identify the most sensitive
parameters. The respective influences of humoral immunity, time delays and ACE2 receptors on the
SARS-CoV-2 dynamics are discussed. It is shown that strong stimulation of humoral immunity may
prevent the progression of COVID-19. It is also found that increasing time delays can effectively
decrease <0 and then inhibit the SARS-CoV-2 replication. Moreover, it is shown that <0 is affected
by the proliferation and degradation rates of ACE2 receptors, and this may provide worthy input for
the development of possible receptor-targeted vaccines and drugs. Our findings may thus be helpful
for developing new drugs, as well as for comprehending the dynamics of SARS-CoV-2 infection inside
the host.

http://http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024052


1047

Keywords: SARS-CoV-2; ACE2 receptor; COVID-19; discrete delay; Lyapunov method; global
stability
Mathematical Subject Classification 2020: 34D20, 34D23, 37N25, 92B05

1. Introduction

The coronavirus disease 2019 (COVID-19) began in China in December 2019; it then turned into
a global pandemic [1]. According to the World Health Organization report of August 27, 2023, there
were over 770 million confirmed cases and 6.9 million deaths globally [2]. The world has also seen
economic losses as a result of this sickness. COVID-19 originated from an infection with a virus
called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is a single-stranded RNA
virus in the coronaviridae family. SARS-CoV-2 attacks the epithelial (target) cells by binding its
spike protein, S, to the angiotensin-converting enzyme 2 (ACE2) receptor on the surface of epithelial
cells [3, 4]. ACE2 receptors of epithelial cells play a crucial role in cellular entry in humans, which
may provide worthy input for the development of possible receptor-targeted vaccines and drugs [4, 5].
Some of the symptoms that may appear in COVID-19 patients are like include headaches, fatigue,
fever, myalgia, dry cough, nausea, abdominal pain, vomiting and diarrhea. Recognition of COVID-19
is essential because it enables the introduction of effective infection control measures and potentially
helpful antiviral therapy. The adaptive immune response has an effective role in resisting and fighting
viruses that attack the human body. B cells and cytotoxic T lymphocytes (CTLs) are two main players
in the adaptive immune response. B cells generate antibodies to neutralize the SARS-CoV-2, while
CTLs kill the epithelial cells infected by SARS-CoV-2.

Since the beginning of the spread of this disease, scientists and researchers from all fields have
united their massive efforts to study and understand the mechanism between the virus and host cells
in order to produce treatments and vaccines for this virus. Experimental evaluation of interactions
between SARS-CoV-2, epithelial cells and immune cells can be difficult and expensive. Studying
the dynamics of SARS-CoV-2 infection within the host by performing mathematical modeling may
facilitate understanding of the dynamic behavior of the virus and its target cells, as well as immune
cells. This type of study also helps in understanding the effectiveness of medications, whether
individually or in combination. A within-host SARS-CoV-2 infection model with target-limited cells
was given in [6]. Li et al. [7] included the production and death of the epithelial cells in a model of
SARS-CoV-2 infection. Some biological processes were incorporated into the SARS-CoV-2 infection
models by considering the effect of the immune response [8–16], drug therapies [17–20] and time
delay [21]. In these works, the dynamics of ACE2 receptors of epithelial cells were not considered.
In [22–25], the authors modeled the effect of the dipeptidyl peptidase 4 receptor on the Middle East
respiratory syndrome coronavirus (MERS-CoV) infection. Chatterjee and Al Basir [26] presented a
SARS-CoV-2 model with ACE2 receptors. The authors studied the local stability of equilibria. Lv
and Ma [27] formulated a system of delay differential equations (DDEs) for SARS-CoV-2 infection,
as mediated by ACE2 receptors, as follows:
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Uninfected epithelial cells: Ė(t) =

Proliferation of epithelial cells︷︸︸︷
λE −

Reduction of epithelial cells by SARS-CoV-2 and ACE2︷               ︸︸               ︷
ηΨ(A(t))E(t)S (t)

−

Natural death︷ ︸︸ ︷
δEE(t) , (1.1)

Infected cells: İ(t) =

Production of infected cells︷                                           ︸︸                                           ︷
e−α1τ1ηΨ(A(t − τ1))E(t − τ1)S (t − τ1) −

Natural death︷︸︸︷
δI I(t) , (1.2)

SARS-CoV-2 particles: Ṡ (t) =

Production of SARS-CoV-2︷ ︸︸ ︷
δIνI(t) −

Natural death︷ ︸︸ ︷
δS S (t) , (1.3)

ACE2 receptors: Ȧ(t) =

Proliferation of ACE2 receptors︷︸︸︷
λA −

Decrease in ACE2 receptors︷                ︸︸                ︷
κηΨ(A(t))A(t)S (t)

−

Degradation of ACE2 receptors︷︸︸︷
δAA(t) . (1.4)

The variables E(t), I(t), S (t) and A(t) represent, respectively, the concentrations of per unit volume of
uninfected epithelial cells, infected cells, SARS-CoV-2 particles and ACE2 receptors at time t. Ψ(A)
is the probability of successful entry of the SARS-CoV-2 into the epithelial cell mediated by the ACE2
receptors. When the concentration of ACE2 receptor is lower (higher), then Ψ(A) ∼ 0 (∼ 1) [27]. Here,
τ1 is the time from the SARS-CoV-2 particles making contact with uninfected epithelial cells to them
becoming actively infected cells. The factor e−α1τ1 is the probability of survival of infected cells during
the delay period of [t − τ1, t]. Note that the term ηΨ(A)ES denotes a decrease in uninfected epithelial
cells (due to free virions), and the average number of ACE2 receptors carried by each uninfected
epithelial cell is A/E. Therefore, the decrease in ACE2 receptors due to the decrease in uninfected
epithelial cells (caused by free virions) is κηΨ(A)ES = κηΨ(A)ES × (A/E) = κηΨ(A)AS , where κ is a
constant [27].

The model described by Eqs (1.1)–(1.4) does not take the immune system’s response to SARS-
CoV-2 infection into account. Furthermore, the model ignores the maturation delay and only takes into
account one type of discrete-time (constant) delay, τ1. Therefore, our aim in this paper is to extend the
model given by Eqs (1.1)–(1.4) by including the role of the humoral immune response and considering
two classes of delays: (i) Delay in the SARS-CoV-2 infection of epithelial cells, and (ii) delay in the
maturation of recently released SARS-CoV-2 virions. In the first model, we consider discrete-time
delays which are generalized in the second model by considering distributed-time delays. We first
look into the fundamental characteristics of the DDEs; then, we find all equilibria and discuss their
existence and global stability. We construct suitable Lyapunov functions and use LaSalle’s invariance
principle (LIP) to investigate the global asymptotic stability of all equilibria. We use numerical
simulations to demonstrate the theoretical findings. Finally, we discuss the obtained results.

2. Model with discrete delays

2.1. Model formulation

We formulate a system of DDEs for SARS-CoV-2 infection, as mediated by ACE2 receptors. We
consider two discrete-time delays and the humoral immune response:
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Ė(t) = λE − ηΨ(A(t))E(t)S (t) − δEE(t),
İ(t) = e−α1τ1ηΨ(A(t − τ1))E(t − τ1)S (t − τ1) − δI I(t),
Ṡ (t) = e−α2τ2δIνI(t − τ2) − δS S (t) − γS (t)B(t),
Ȧ(t) = λA − κηΨ(A(t))A(t)S (t) − δAA(t),
Ḃ(t) = %S (t)B(t) − δBB(t),

(2.1)

where B(t) denotes the concentration of antibodies at time t. The antibodies are stimulated at a rate
of %S B, die at a rate of δBB and neutralize the SARS-CoV-2 particles at a rate of γS B. Here, τ2 is the
maturation time of new virions. Factor e−α2τ2 represents the probability of survival of SARS-CoV-2
particles during their delay period of [t − τ2, t]. Usually, Ψ(A) is chosen as the classic Hill function:
Ψ(A) = An

An
s+An , where As is the half-saturation constant and n > 0 is the Hill coefficient [27, 28].

The function Ψ(A) is continuously differentiable on [0,∞) and strictly monotonically increasing. All
parameters of model (2.1) are positive. A schematic representation of the model given by (2.1) is
illustrated in Figure 1.

Figure 1. The schematic diagram of the SARS-CoV-2 infection.

Let τ∗ = max{τ1, τ2}, and consider the initial conditions for model (2.1) as follows:

E(θ) = φ1(θ), I(θ) = φ2(θ), S (θ) = φ3(θ), A(θ) = φ4(θ), B(θ) = φ5(θ),
φi(θ) ≥ 0, i = 1, 2, ..., 5, θ ∈ [−τ∗, 0], (2.2)

where φi ∈ C([−τ∗, 0],R≥0) is the Banach space of continuous functions mapping from [−τ∗, 0] to R≥0

with the norm ‖φi‖ = sup
−τ∗≤θ≤0

|φi(θ)| for φi ∈ C, i = 1, 2, ..., 5. We note that system (2.1) with the initial

conditions given by Eq (2.2) has a unique solution [29].

2.2. Basic qualitative properties

This subsection proves the non-negativity and boundedness of the solutions of system (2.1).
Lemma 1. The solutions of model (2.1) with the initial conditions given by Eq (2.2) are non-negative
and ultimately bounded.
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Proof. We have that Ė |E=0= λE > 0, Ȧ |A=0= λA > 0 and Ḃ |B=0= 0. Hence, E(t), A(t), B(t) ≥ 0 for all
t ≥ 0 (see Proposition B.7 of [30]). From the second and third equations of system (2.1), we have

I(t) = e−δI tφ2(0) + e−α1τ1

∫ t

0
e−δI (t−θ)ηΨ(A(θ − τ1))E(θ − τ1)S (θ − τ1)dθ ≥ 0,

S (t) = e−
∫ t

0 (δS +γB(r))drφ3(0) + e−α2τ2

∫ t

0
e−

∫ t
θ

(δS +γB(r))drδIνI(θ − τ2)dθ ≥ 0

for all t ∈ [0, τ∗] [31]. Hence, by recursive argumentation, we obtain that I(t), S (t) ≥ 0 for all t ≥ 0.
Hence, E, I, S , A and B are non-negative.

Now, we prove the ultimate boundedness of E(t), I(t), S (t), A(t) and B(t). From the first equation of
system (2.1), we have that lim

t→∞
sup E(t) ≤ λE

δE
= ω1. To prove the ultimate boundedness of I(t),we define

Π1(t) = e−α1τ1 E(t − τ1) + I(t).

Then, we obtain

Π̇1(t) = e−α1τ1 Ė(t − τ1) + İ(t) = e−α1τ1λE − e−α1τ1ηΨ(A(t − τ1))E(t − τ1)S (t − τ1)
− e−α1τ1δEE(t − τ1) + e−α1τ1ηΨ(A(t − τ1))E(t − τ1)S (t − τ1) − δI I(t)
= e−α1τ1λE − e−α1τ1δEE(t − τ1) − δI I(t)
≤ λE − p1[e−α1τ1 E(t − τ1) + I(t)]
= λE − p1Π1(t),

where p1 = min{δE, δI}. Therefore, lim
t→∞

sup Π1(t) ≤ λE
p1

= ω2. Since E(t) ≥ 0 and I(t) ≥ 0, then
lim
t→∞

sup I(t) ≤ ω2. Now, let us define

Π2(t) = S (t) +
γ

%
B(t).

Then, we obtain

Π̇2(t) = Ṡ (t) +
γ

%
Ḃ(t) = e−α2τ2δIνI(t − τ2) − δS S (t) − γS (t)B(t)

+
γ

%
[%S (t)B(t) − δBB(t)]

= e−α2τ2δIνI(t − τ2) − δS S (t) −
γδB

%
B(t)

≤ δIνω2 − p2[S (t) +
γ

%
B(t)]

= δIνω2 − p2Π2(t),

where p2 = min{δS , δB}. Therefore, lim
t→∞

sup Π2(t) ≤ δIνω2
p2

= ω3, and then lim
t→∞

sup S (t) ≤ ω3 and

lim
t→∞

sup B(t) ≤ %

γ
ω3 = ω5. Finally, from the fourth equation of system (2.1), we have that lim

t→∞
sup A(t) ≤

λA
δA

= ω4. Then, E, I, S , A and B are ultimately bounded.
From Lemma 1, we can establish that Γ = {(E, I, S , A, B) ∈ C5

≥0 : ‖E‖ ≤ ω1, ‖I‖ ≤ ω2, ‖S ‖ ≤ ω3,

‖A‖ ≤ ω4, ‖B‖ ≤ ω5} is positively invariant for system (2.1).
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2.3. Equilibria

This subsection is a derivation of all equilibria of model (2.1) and the threshold parameters that
determine the existence of the equilibria. First, we compute the basic infection reproduction number
<0 for system (2.1) by using the next-generation matrix method [32]. Define the matrices F and V
as follows:

F =

(
0 e−α1τ1ηΨ(A0)E0

0 0

)
, V =

(
δI 0

−e−α2τ2δIν δS

)
,

where E0 = λE/δE and A0 = λA/δA. Then,<0 can be derived as the spectral radius of FV−1, as follows:

<0 =
e−α1τ1−α2τ2ηνΨ(A0)E0

δS
. (2.3)

Second, let ∆ = (E, I, S , A, B) be any equilibrium of system (2.1); we have

0 = λE − ηΨ(A)ES − δEE, (2.4)
0 = e−α1τ1ηΨ(A)ES − δI I, (2.5)
0 = e−α2τ2δIνI − δS S − γS B, (2.6)
0 = λA − κηΨ(A)S A − δAA, (2.7)
0 = %S B − δBB. (2.8)

Equation (2.8) has two solutions, B = 0 and S = δB
%

. When B = 0, then, from Eq (2.6), we get

δI I =
δS

ν
eα2τ2S . (2.9)

Substituting Eq (2.9) into Eq (2.5), we get

(e−α1τ1ηΨ(A)E −
δS

ν
eα2τ2)S = 0,

and then we have
S = 0, or e−α1τ1ηΨ(A)E −

δS

ν
eα2τ2 = 0.

If S = 0, then, from Eqs (2.4), (2.5) and (2.7), we have that E = λE/δE, I = 0 and A = λA/δA. Then,
we obtain the uninfected equilibrium ∆0 = (E0, 0, 0, A0, 0).

If S , 0, then I , 0 and

e−α1τ1ηΨ(A)E =
δS

ν
eα2τ2 . (2.10)

Therefore, we obtain

E =
λE − eα1τ1δI I

δE
, S =

e−α2τ2δIνI
δS

and A =
λA

δA + κeα1τ1δI I/E
. (2.11)

Substituting Eq (2.11) into Eq (2.5), we have

e−α1τ1ηΨ

(
λA

δA + κeα1τ1δI I/E

) (
λE − eα1τ1δI I

δE

) (
e−α2τ2δIνI

δS

)
− δI I = 0.
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Since I , 0, then

e−α1τ1ηΨ

(
λA

δA + κeα1τ1δI I/E

) (
λE − eα1τ1δI I

δE

) (
e−α2τ2δIν

δS

)
− δI = 0.

We define a function G(I) as follows:

G(I) = e−α1τ1−α2τ2

(
ην

δS

)
Ψ

(
λA

δA + κeα1τ1δI I/E

) (
λE − eα1τ1δI I

δE

)
− 1 = 0.

We have

G(0) =
ηνe−α1τ1−α2τ2

δS
Ψ

(
λA

δA

) (
λE

δE

)
− 1 = <0 − 1 > 0, if <0 > 1,

lim
I→ λE

δI
e−α1τ1

G(I) = −1 < 0,

and

d
dI

[
Ψ

(
λA

δA + κeα1τ1δI I/E

)]
= −

eα1τ1κδIδEλAλE

[δAλE + eα1τ1δI I(κδE − δA)]2 ΨI

(
λA

δA + κeα1τ1δI I/E

)
= Θ < 0.

So, we have

dG(I)
dI

=
ηνe−α1τ1−α2τ2

δS

(
λE − eα1τ1δI I

δE

)
Θ −

ηνδIe−α2τ2

δS δE
Ψ

(
λA

δA + κeα1τ1δI I/E

)
< 0. (2.12)

Then, there exists a unique I1 ∈
(
0, λE

δI
e−α1τ1

)
that satisfies that G(I1) = 0.

Therefore, there exists a unique infected equilibrium without humoral immunity ∆1 =

(E1, I1, S 1, A1, 0) when <0 > 1, where E1 = λE−eα1τ1δI I1
δE

∈
(
0, λE

δE

)
, S 1 = e−α2τ2δIνI1

δS
∈

(
0, λEν

δS
e−α1τ1−α2τ2

)
and A1 = λA

δA+κeα1τ1δI I1/E1
∈

(
0, λA

δA

)
.

If B , 0 and S = δB
%

, we therefore obtain

E =
λE − eα1τ1δI I

δE
, A =

λA

δA + κeα1τ1δI I/E
, B =

δS

γ

(
e−α2τ2δIν%I

δS δB
− 1

)
. (2.13)

Substituting Eq (2.13) into Eq (2.5), we obtain

e−α1τ1ηΨ

(
λA

δA + κeα1τ1δI I/E

) (
λE − eα1τ1δI I

δE

) (
δB

%

)
− δI I = 0.

Define a function G∗(I) as follows:

G∗(I) = e−α1τ1ηΨ

(
λA

δA + κeα1τ1δI I/E

) (
λE − eα1τ1δI I

δE

) (
δB

%

)
− δI I = 0.

We have

G∗(0) = e−α1τ1

(
ηδB

%

)
Ψ

(
λA

δA

) (
λE

δE

)
> 0,
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lim
I→ λE

δI
e−α1τ1

G∗(I) = −λEe−α1τ1 < 0.

Moreover,

d
dI

[
Ψ

(
λA

δA + κeα1τ1δI I/E

)]
= −

eα1τ1κδIδEλAλE

[δAλE + eα1τ1δI I(κδE − δA)]2 ΨI

(
λA

δA + κeα1τ1δI I/E

)
= Θ∗ < 0.

So, we have

dG∗(I)
dI

= Θ∗e−α1τ1
ηδB

%

(
λE − eα1τ1δI I

δE

)
−

(
ηδIδB

%δE

)
Ψ

(
λA

δA + κeα1τ1δI I/E

)
− δI < 0. (2.14)

Hence, there exists a unique I2 ∈
(
0, λE

δI
e−α1τ1

)
that satisfies that G∗(I2) = 0. Consequently, there exists

a unique infected equilibrium with humoral immunity ∆2 = (E2, I2, S 2, A2, B2) when <1 > 1, where
E2 = λE−eα1τ1δI I2

δE
∈

(
0, λE

δE

)
, S 2 = δB

%
, A2 = λA

δA+κeα1τ1δI I2/E2
∈

(
0, λA

δA

)
and B2 = δS

γ

(
<1 − 1

)
, where

<1 =
e−α2τ2δIν%I2

δS δB
. (2.15)

Here,<1 represents the humoral immunity activation number.
We have that Ψ(A2) < Ψ(A0) and E2 < E0. Therefore,

<1 =
e−α2τ2δIν%I2

δS δB
=

e−α2τ2δIν%

δS δB

e−α1τ1ηΨ(A2)E2S 2

δI

=
e−α1τ1−α2τ2νηΨ(A2)E2

δS
<

e−α1τ1−α2τ2νηΨ(A0)E0

δS
= <0. (2.16)

Now, we can state the following lemma:
Lemma 2. For system (2.1), there exist two threshold parameters <0 and <1 such that the following
conditions hold:

(i) If<0 ≤ 1, then the uninfected equilibrium ∆0 = (E0, 0, 0, A0, 0) is the only equilibrium.
(ii) If <1 ≤ 1 < <0, then there exists two equilibria, ∆0 and the infected equilibrium without

humoral immunity ∆1 = (E1, I1, S 1, A1, 0).
(iii) If <1 > 1, then there exist three equilibria, ∆0, ∆1 and the infected equilibrium with humoral

immunity ∆2 = (E2, I2, S 2, A2, B2).

2.4. Global stability

This subsection describes the use of the Lyapunov method to study the global asymptotic stability
of the equilibria. We define a function Φ(x) = x − 1 − ln x. Clearly, Φ(1) = 0 and Φ(x) ≥ 0 for x > 0.
Let Ω̃ j be the largest invariant subset of

Ω j = {(E, I, S , A, B) :
dΛ j

dt
= 0}, j = 0, 1, 2,

where Λ j(E, I, S , A, B) is a Lyapunov function candidate. Denote (E, I, S , A, B) =

(E(t), I(t), S (t), A(t), B(t)) and (Eτ, Iτ, S τ, Aτ) = (E(t − τ), I(t − τ), S (t − τ), A(t − τ)). Subsequent to the
studies of [33] and [44], we construct Lyapunov functions in the following theorems.
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Theorem 1. For system (2.1), if <0 ≤ 1, then ∆0 is globally asymptotically stable (G.A.S), and it is
unstable when<0 > 1.
Proof. Define

Λ0 = E0Φ

(
E
E0

)
+ eα1τ1 I +

eα1τ1+α2τ2

ν
S +

E0

κA0

(
A − A0 −

∫ A

A0

Ψ(A0)
Ψ(ξ)

dξ
)

+
γeα1τ1+α2τ2

%ν
B +

∫ t

t−τ1

ηΨ(A(s))E(s)S (s)ds + eα1τ1δI

∫ t

t−τ2

I(s)ds. (2.17)

We note that Λ0(E, I, S , A, B) > 0 for all E, I, S , A, B > 0 and Λ0(E0, 0, 0, A0, 0) = 0. We evaluate dΛ0
dt

along the solutions of system (2.1) as follows:

dΛ0

dt
=

(
1 −

E0

E

)
Ė + eα1τ1 İ +

eα1τ1+α2τ2

ν
Ṡ +

E0

κA0

(
1 −

Ψ(A0)
Ψ(A)

)
Ȧ

+
γeα1τ1+α2τ2

%ν
Ḃ +

d
dt

∫ t

t−τ1

ηΨ(A(s))E(s)S (s)ds + eα1τ1δI
d
dt

∫ t

t−τ2

I(s)ds.

Using system (2.1), we get

dΛ0

dt
=

(
1 −

E0

E

)
[λE − ηΨ(A)ES − δEE]

+ eα1τ1[e−α1τ1ηΨ(Aτ1)Eτ1S τ1 − δI I]

+
eα1τ1+α2τ2

ν
[e−α2τ2δIνIτ2 − δS S − γS B]

+
E0

κA0

(
1 −

Ψ(A0)
Ψ(A)

)
[λA − κηΨ(A)S A − δAA]

+
γeα1τ1+α2τ2

%ν
[%S B − δBB] + ηΨ(A)ES

− ηΨ(Aτ1)Eτ1S τ1 + eα1τ1δI I − eα1τ1δI Iτ2 .

Collecting terms, we get

dΛ0

dt
=

(
1 −

E0

E

)
[λE − δEE] + ηΨ(A)E0S −

eα1τ1+α2τ2

ν
δS S

+ ηΨ(A0)E0S − ηΨ(A0)E0S +
E0

κA0

(
1 −

Ψ(A0)
Ψ(A)

)
[λA − δAA]

−
E0

A0
(Ψ(A) − Ψ(A0)) ηS A −

γδBeα1τ1+α2τ2

%ν
B

=

(E − E0

E

)
[λE − δEE] +

(
ηΨ(A0)E0 −

eα1τ1+α2τ2

ν
δS

)
S

+ ηE0S (Ψ(A) − Ψ(A0)) +
E0

κA0Ψ(A)
(Ψ(A) − Ψ(A0)) [λA − δAA]

−
E0

A0
(Ψ(A) − Ψ(A0)) ηS A −

γδBeα1τ1+α2τ2

%ν
B.
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Using the equilibrium condition of λE = δEE0, as well as λA = δAA0, we get

dΛ0

dt
= −δE

(E − E0)2

E
+
δS eα1τ1+α2τ2

ν
(<0 − 1)S

+ ηE0S (Ψ(A) − Ψ(A0))
A0

A0
+

δAE0

κA0Ψ(A)
(Ψ(A) − Ψ(A0)) (A0 − A)

−
ηE0

A0
S (Ψ(A) − Ψ(A0)) A −

γδBeα1τ1+α2τ2

%ν
B

= −δE
(E − E0)2

E
+
δS eα1τ1+α2τ2

ν
(<0 − 1)S

+

(
ηE0S

A0
+

δAE0

κA0Ψ(A)

)
(Ψ(A) − Ψ(A0)) (A0 − A) −

γδBeα1τ1+α2τ2

%ν
B.

Since Ψ(A) is strictly monotonically increasing, then (Ψ(A) − Ψ(A0)) (A0 − A) ≤ 0. Therefore, dΛ0
dt ≤ 0

for all E, S , A, B > 0 when <0 ≤ 1. In addition, dΛ0
dt = 0 when E = E0, A = A0 and S = B = 0.

Solutions of system (2.1) converge to Ω̃0, which contains elements [37]. Since Ω̃0 is invariant with
respect to (2.1), on Ω̃0, we have

0 = Ṡ = e−α1τ1δIνI =⇒ I = 0 for all t.

Therefore, Ω̃0 = {∆0} and, applying the LIP (see [29, 39]), we obtain that ∆0 is G.A.S.
To show the instability of ∆0, we calculate the characteristic equation of system (2.1) at ∆0

as follows:

0 = (c + δE)(c + δB)
[
c3 + (δI + δS + δA)c2 + (δS δA + δI(δS + δA) − ηe−(α1+c)τ1−(α2+c)τ2δIνΨ(A0)E0)c

+δIδS δA − ηe−(α1+c)τ1−(α2+c)τ2δIνδAΨ(A0)E0

]
.

Define a function where T (c) as follows:

T (c) = c3 + (δI + δS + δA)c2 + (δS δA + δI(δS + δA) − ηe−(α1+c)τ1−(α2+c)τ2δIνΨ(A0)E0)c
+ δIδS δA − ηe−(α1+c)τ1−(α2+c)τ2δIνδAΨ(A0)E0,

which is continuous on [0,∞). We have

T (0) = δIδS δA(1 −<0) < 0, when <0 > 1,
lim
c→∞
T (c) = ∞.

Hence, T (c) has a positive real root and ∆0 is unstable.
To confirm the result on the dynamics of ∆1, we require additional assumptions [38]:

S 1 ≤
δB

%
. (A)

Theorem 2. Consider system (2.1) and suppose that assumption (A) is satisfied and <1 ≤ 1 < <0;
then, ∆1 is G.A.S.
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Proof. Define

Λ1 = e−α1τ1 E1Φ

(
E
E1

)
+ I1Φ

(
I
I1

)
+

eα2τ2

ν
S 1Φ

(
S
S 1

)
+

e−α1τ1 E1

κA1

(
A − A1 −

∫ A

A1

Ψ(A1)
Ψ(ξ)

dξ
)

+
γeα2τ2

ν%
B

+ δI I1

∫ t

t−τ1

Φ

(
Ψ(A(s))E(s)S (s)

Ψ(A1)E1S 1

)
ds + δI I1

∫ t

t−τ2

Φ

(
I(s)
I1

)
ds. (2.18)

Note that Λ1(E, I, S , A, B) > 0 for all E, I, S , A, B > 0 and Λ1(E1, I1, S 1, A1, 0) = 0. We evaluate dΛ1
dt as

follows:

dΛ1

dt
= e−α1τ1

(
1 −

E1

E

)
Ė +

(
1 −

I1

I

)
İ +

eα2τ2

ν

(
1 −

S 1

S

)
Ṡ

+
e−α1τ1 E1

κA1

(
1 −

Ψ(A1)
Ψ(A)

)
Ȧ +

γeα2τ2

ν%
Ḃ

+ δI I1
d
dt

∫ t

t−τ1

Φ

(
Ψ(A(s))E(s)S (s)

Ψ(A1)E1S 1

)
ds + δI I1

d
dt

∫ t

t−τ2

Φ

(
I(s)
I1

)
ds.

Using system (2.1), we get

dΛ1

dt
= e−α1τ1

(
1 −

E1

E

)
[λE − ηΨ(A)ES − δEE]

+

(
1 −

I1

I

)
[e−α1τ1ηΨ(Aτ1)Eτ1S τ1 − δI I]

+
eα2τ2

ν

(
1 −

S 1

S

)
[e−α2τ2δIνIτ2 − δS S − γS B]

+
e−α1τ1 E1

κA1

(
1 −

Ψ(A1)
Ψ(A)

)
[λA − κηΨ(A)S A − δAA]

+
γeα2τ2

ν%
[%S B − δBB]

+ δI I1

[
Ψ(A)ES

Ψ(A1)E1S 1
−

Ψ(Aτ1)Eτ1S τ1

Ψ(A1)E1S 1

]
+ δI I1 ln

(
Ψ(Aτ1)Eτ1S τ1

Ψ(A)ES

)
+ δI I1

[
I
I1
−

Iτ2

I1

]
+ δI I1 ln

(
Iτ2

I

)
.

Collecting terms, we get

dΛ1

dt
= e−α1τ1

(
1 −

E1

E

)
[λE − δEE] − ηe−α1τ1Ψ(A)ES

+ ηe−α1τ1Ψ(A)E1S + e−α1τ1ηΨ(Aτ1)Eτ1S τ1

− e−α1τ1ηΨ(Aτ1)Eτ1S τ1

I1

I
+ δI I1 −

eα2τ2δS

ν
S

− δI Iτ2

S 1

S
+

eα2τ2δS

ν
S 1 +

eα2τ2γ

ν
S 1B +

e−α1τ1 E1

κA1

(
1 −

Ψ(A1)
Ψ(A)

)
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1057

× [λA − δAA] −
e−α1τ1 E1

A1
ηS A (Ψ(A) − Ψ(A1)) −

γδBeα2τ2

ν%
B

+ δI I1
Ψ(A)ES

Ψ(A1)E1S 1
− δI I1

Ψ(Aτ1)Eτ1S τ1

Ψ(A1)E1S 1

+ δI I1 ln
(
Ψ(Aτ1)Eτ1S τ1

Ψ(A)ES

)
+ δI I1 ln

(
Iτ2

I

)
.

Using the equilibrium condition for ∆1, i.e.,

λE = ηΨ(A1)E1S 1 + δEE1, δI I1 = e−α1τ1ηΨ(A1)E1S 1,

δS S 1 = e−α2τ2δIνI1, λA = κηΨ(A1)S 1A1 + δAA1, (2.19)

we obtain

dΛ1

dt
= −δEe−α1τ1

(E − E1)2

E
+ 4δI I1 − δI I1

E1

E
+ e−α1τ1ηΨ(A)E1S

− δI I1
Ψ(Aτ1)Eτ1S τ1 I1

Ψ(A1)E1S 1I
− e−α1τ1ηΨ(A1)E1S − δI I1

Iτ2S 1

I1S

+

(
γeα2τ2

ν
S 1 −

γδBeα2τ2

ν%

)
B +

e−α1τ1δAE1

κA1Ψ(A)
(Ψ(A) − Ψ(A1)) (A1 − A) − δI I1

Ψ(A1)
Ψ(A)

−
e−α1τ1ηE1

A1
(Ψ(A) − Ψ(A1)) S A + δI I1 ln

(
Ψ(Aτ1)Eτ1S τ1

Ψ(A)ES

)
+ δI I1 ln

(
Iτ2

I

)
= −δEe−α1τ1

(E − E1)2

E
+ 4δI I1 − δI I1

E1

E
+ e−α1τ1ηE1S (Ψ(A) − Ψ(A1))

− δI I1
Ψ(Aτ1)Eτ1S τ1 I1

Ψ(A1)E1S 1I
− δI I1

Iτ2S 1

I1S
+

(
γeα2τ2

ν
S 1 −

γδBeα2τ2

ν%

)
B

+
e−α1τ1δAE1

κA1Ψ(A)
(Ψ(A) − Ψ(A1)) (A1 − A) − δI I1

Ψ(A1)
Ψ(A)

−
e−α1τ1ηE1

A1
(Ψ(A) − Ψ(A1))

× S A + δI I1 ln
(
Ψ(Aτ1)Eτ1S τ1

Ψ(A)ES

)
+ δI I1 ln

(
Iτ2

I

)
= −δEe−α1τ1

(E − E1)2

E
+ 4δI I1 − δI I1

E1

E
+

e−α1τ1ηE1S
A1

(Ψ(A) − Ψ(A1)) (A1 − A)

− δI I1
Ψ(Aτ1)Eτ1S τ1 I1

Ψ(A1)E1S 1I
− δI I1

Iτ2S 1

I1S

+
γeα2τ2

ν
[S 1 − S 2]B +

e−α1τ1δAE1

κA1Ψ(A)
(Ψ(A) − Ψ(A1)) (A1 − A)

− δI I1
Ψ(A1)
Ψ(A)

+ δI I1 ln
(
Ψ(Aτ1)Eτ1S τ1

Ψ(A)ES

)
+ δI I1 ln

(
Iτ2

I

)
.

Using the equalities

ln
(
Ψ(Aτ1)Eτ1S τ1

Ψ(A)ES

)
= ln

(
Ψ(Aτ1)Eτ1S τ1 I1

Ψ(A1)E1S 1I

)
+ ln

(
Ψ(A1)
Ψ(A)

)
+ ln

(
IS 1

I1S

)
+ ln

(E1

E

)
,
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ln
(

Iτ2

I

)
= ln

(
Iτ2S 1

I1S

)
+ ln

(
I1S
IS 1

)
,

we obtain

dΛ1

dt
= −δEe−α1τ1

(E − E1)2

E
− δI I1Φ

(E1

E

)
− δI I1Φ

(
Ψ(Aτ1)Eτ1S τ1 I1

Ψ(A1)E1S 1I

)
− δI I1Φ

(
Iτ2S 1

I1S

)
− δI I1Φ

(
Ψ(A1)
Ψ(A)

)
+
γeα2τ2

ν

(
S 1 −

δB

%

)
B

+

[
e−α1τ1δAE1

κA1Ψ(A)
+

e−α1τ1ηS E1

A1

]
(Ψ(A) − Ψ(A1)) (A1 − A). (2.20)

We have that (Ψ(A) − Ψ(A1)) (A1 − A) ≤ 0, and, from Assumption (A), we have that S 1 −
δB
%
≤ 0. Thus,

dΛ1
dt ≤ 0 for all E, I, S , A, B > 0. In addition, dΛ1

dt = 0 when E = E1, A = A1, B = 0 and

Iτ2S 1

I1S
=

Ψ(Aτ1)Eτ1S τ1 I1

Ψ(A1)E1S 1I
= 1. (2.21)

All solutions of system (2.1) are attracted to Ω̃1. Since Ω̃1 is invariant with respect to (2.1), on Ω̃1,
we have

0 = Ė = λE − ηΨ(A1)E1S − δEE1 =⇒ S (t) = S 1 for any t,

and, from Eq (2.21), we get that I(t) = Iτ2 = I1 for any t. Therefore, Ω̃1 = {∆1}, and by applying
the LIP, we obtain that ∆1 is G.A.S.
Theorem 3. Consider system (2.1) and let<1 > 1; then, ∆2 is G.A.S.
Proof. Consider

Λ2 = e−α1τ1 E2Φ

(
E
E2

)
+ I2Φ

(
I
I2

)
+

eα2τ2

ν
S 2Φ

(
S
S 2

)
+

e−α1τ1 E2

κA2

(
A − A2 −

∫ A

A2

Ψ(A2)
Ψ(ξ)

dξ
)

+
γeα2τ2

ν%
B2Φ

(
B
B2

)
+ δI I2

∫ t

t−τ1

Φ

(
Ψ(A(s))E(s)S (s)

Ψ(A2)E2S 2

)
ds + δI I2

∫ t

t−τ2

Φ

(
I(s)
I2

)
ds. (2.22)

We note that Λ2(E, I, S , A, B) > 0 for all E, I, S , A, B > 0 and Λ2(E2, I2, S 2, A2, B2) = 0. We calculate
dΛ2
dt as follows:

dΛ2

dt
= e−α1τ1

(
1 −

E2

E

)
Ė +

(
1 −

I2

I

)
İ +

eα2τ2

ν

(
1 −

S 2

S

)
Ṡ

+
e−α1τ1 E2

κA2

(
1 −

Ψ(A2)
Ψ(A)

)
Ȧ +

γeα2τ2

ν%

(
1 −

B2

B

)
Ḃ

+ δI I2
d
dt

∫ t

t−τ1

Φ

(
Ψ(A(s))E(s)S (s)

Ψ(A2)E2S 2

)
ds + δI I2

d
dt

∫ t

t−τ2

Φ

(
I(s)
I2

)
ds.

From system (2.1), we get

dΛ2

dt
= e−α1τ1

(
1 −

E2

E

)
[λE − ηΨ(A)ES − δEE]
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+

(
1 −

I2

I

)
[e−α1τ1ηΨ(Aτ1)Eτ1S τ1 − δI I]

+
eα2τ2

ν

(
1 −

S 2

S

)
[e−α2τ2δIνIτ2 − δS S − γS B]

+
e−α1τ1 E2

κA2

(
1 −

Ψ(A2)
Ψ(A)

)
[λA − κηΨ(A)S A − δAA]

+
γeα2τ2

ν%

(
1 −

B2

B

)
[%S B − δBB]

+ δI I2

[
Ψ(A)ES

Ψ(A2)E2S 2
−

Ψ(Aτ1)Eτ1S τ1

Ψ(A2)E2S 2

]
+ δI I2 ln

(
Ψ(Aτ1)Eτ1S τ1

Ψ(A)ES

)
+ δI I2

[
I
I2
−

Iτ2

I2

]
+ δI I2 ln

(
Iτ2

I

)
.

Collecting terms, we get

dΛ2

dt
= e−α1τ1

(
1 −

E2

E

)
[λE − δEE] − ηe−α1τ1Ψ(A)ES

+ ηe−α1τ1Ψ(A)E2S + e−α1τ1ηΨ(Aτ1)Eτ1S τ1

− e−α1τ1ηΨ(Aτ1)Eτ1S τ1

I2

I
+ δI I2

−
eα2τ2δS

ν
S − δI Iτ2

S 2

S
+

eα2τ2δS

ν
S 2

+
γeα2τ2

ν
S 2B +

e−α1τ1 E2

κA2

(
1 −

Ψ(A2)
Ψ(A)

)
[λA − δAA]

−
e−α1τ1 E2

A2
(Ψ(A) − Ψ(A2)) ηS A −

γeα2τ2δB

ν%
B −

γeα2τ2

ν
S B2

+
γeα2τ2δB

ν%
B2 + δI I2

Ψ(A)ES
Ψ(A2)E2S 2

− δI I2
Ψ(Aτ1)Eτ1S τ1

Ψ(A2)E2S 2

+ δI I2 ln
(
Ψ(Aτ1)Eτ1S τ1

Ψ(A)ES

)
+ δI I2 ln

(
Iτ2

I

)
.

Using the equilibrium condition for ∆2, i.e.,

λE = ηΨ(A2)E2S 2 + δEE2, δI I2 = e−α1τ1ηΨ(A2)E2S 2,

δS S 2 = e−α2τ2δIνI2 − γS 2B2, λA = κηΨ(A2)S 2A2 + δAA2, S 2 =
δB

%
,

we obtain

dΛ2

dt
= −δEe−α1τ1

(E − E2)2

E
+ 4δI I2 − δI I2

E2

E
+ e−α1τ1ηΨ(A)E2S

− δI I2
Ψ(Aτ1)Eτ1S τ1 I2

Ψ(A2)E2S 2I
− e−α1τ1ηΨ(A2)E2S

− δI I2
Iτ2S 2

I2S
− δI I2

Ψ(A2)
Ψ(A)

+
e−α1τ1δAE2

κA2Ψ(A)
(Ψ(A) − Ψ(A2)) (A2 − A)
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−
e−α1τ1 E2

A2
ηS A (Ψ(A) − Ψ(A2)) + δI I2 ln

(
Ψ(Aτ1)Eτ1S τ1

Ψ(A)ES

)
+ δI I2 ln

(
Iτ2

I

)
= −δEe−α1τ1

(E − E2)2

E
+ 4δI I2 − δI I2

E2

E
+ e−α1τ1ηE2S (Ψ(A) − Ψ(A2))

− δI I2
Ψ(Aτ1)Eτ1S τ1 I2

Ψ(A2)E2S 2I
− δI I2

Iτ2S 2

I2S
− δI I2

Ψ(A2)
Ψ(A)

+
e−α1τ1δAE2

κA2Ψ(A)
(Ψ(A) − Ψ(A2)) (A2 − A) −

e−α1τ1 E2

A2
ηS A (Ψ(A) − Ψ(A2))

+ δI I2 ln
(
Ψ(Aτ1)Eτ1S τ1

Ψ(A)ES

)
+ δI I2 ln

(
Iτ2

I

)
.

Using the equalities

ln
(
Ψ(Aτ1)Eτ1S τ1

Ψ(A)ES

)
= ln

(
Ψ(Aτ1)Eτ1S τ1 I2

Ψ(A2)E2S 2I

)
+ ln

(
Ψ(A2)
Ψ(A)

)
+ ln

(
IS 2

I2S

)
+ ln

(E2

E

)
,

ln
(

Iτ2

I

)
= ln

(
Iτ2S 2

I2S

)
+ ln

(
I2S
IS 2

)
,

we obtain

dΛ2

dt
= −δEe−α1τ1

(E − E2)2

E
− δI I2Φ

(E2

E

)
− δI I2Φ

(
Ψ(Aτ1)Eτ1S τ1 I2

Ψ(A2)E2S 2I

)
− δI I2Φ

(
Iτ2S 2

I2S

)
− δI I2Φ

(
Ψ(A2)
Ψ(A)

)
+

[
e−α1τ1δAE2

κA2Ψ(A)
+

e−α1τ1ηS E2

A2

]
× (Ψ(A) − Ψ(A2)) (A2 − A). (2.23)

If<1 > 1, we get that dΛ2
dt ≤ 0 for all E, I, S , A > 0. Further, dΛ2

dt = 0 when E = E2, A = A2 and

Iτ2S 2

I2S
=

Ψ(Aτ1)Eτ1S τ1 I2

Ψ(A2)E2S 2I
= 1. (2.24)

Trajectories of system (2.1) converge to Ω̃2, where E = E2 and A = A2; then,

0 = Ė = λE − ηΨ(A2)E2S − δEE2 =⇒ S (t) = S 2 for any t,

and, from Eq (2.24), we get that I(t) = Iτ2 = I2 for any t. Moreover, the third equation of system (2.1)
yields

0 = Ṡ = e−α2τ2δIνI2 − δS S 2 − γS 2B =⇒ B(t) = B2 for any t.

Hence, Ω̃2 = {∆2} and the LIP implies that ∆2 is G.A.S.

3. Model with distributed delays

In the previous section, we assumed that the time between the virus entering the cell and the
production of new immature virions (τ1) is fixed for each cell. Moreover, the maturation time (τ2)
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for each virus is fixed. Several viral infection models were developed by taking into account the time
delay as a random variable drawn from the probability distribution function in order to avoid such
an (biologically implausible) assumption (see, e.g., [34–36]). In this section, we study a SARS-CoV-2
infection model with distributed-time delay. It is worth pointing out that the distributed delay is one of
various time delays, and it is more general than discrete delay. In various nonlinear systems, other types
of time delays have been examined, including proportional delay [40], time-varying delay [45,46] and
state-dependent delay [47].

3.1. Model formulation

We formulate a SARS-CoV-2 infection system with two kinds of distributed delays as follows:

Ė = λE − ηΨ(A)ES − δEE,
İ = η

∫ h1

0
f1(τ)e−α1τΨ(Aτ)EτS τdτ − δI I,

Ṡ = δIν
∫ h2

0
f2(τ)e−α2τIτdτ − δS S − γS B,

Ȧ = λA − κηΨ(A)AS − δAA,
Ḃ = %S B − δBB.

(3.1)

Here, τ is a random variable from a probability distributed function fi(τ) over the interval [0, hi] ,where
hi is the limit superior of the delay period, and i = 1, 2. The factor f1(τ)e−α1τ represents the probability
that uninfected epithelial cells contacted by the SARS-CoV-2 at time t − τ survive τ time units and
become infected at time t. The factor f2(τ)e−α2τ is the probability that an immature SARS-CoV-2 at
time t − τ survives τ time units to become mature SARS-CoV-2 at time t. The function fi(τ) satisfies
the following conditions:

fi(τ) > 0,
∫ hi

0
fi(τ)dτ = 1,

∫ hi

0
fi(τ)e`τdτ < ∞, where ` > 0, i = 1, 2. (3.2)

Let χi(τ) = fi(τ)e−αiτ and ζi =
∫ hi

0
χi(τ)dτ; thus, 0 < ζi ≤ 1, i = 1, 2. Because fi(τ) is a general

distribution, it is possible to model a variety of delay distributions by using model (3.1). The initial
conditions for model (3.1) are the same as those given by Eq (2.2), where τ∗ = max{h1, h2}.

3.2. Basic qualitative properties

This subsection proves the non-negativity and boundedness of the solutions of system (3.1).
Lemma 3. Solutions of model (3.1) with the initial conditions given by Eq (2.2) are non-negative and
ultimately bounded.
Proof. We have that Ė |E=0= λE > 0, Ȧ |A=0= λA > 0 and Ḃ |B=0= 0. Thus, E(t) ≥ 0, A(t) ≥ 0 and
B(t) ≥ 0 for all t ≥ 0 (see Proposition B.7 of [30]). In addition, we have

I(t) = e−δI tφ2(0) + η

∫ t

0

∫ h1

0
χ1(τ)Ψ(A(θ − τ))E(θ − τ)S (θ − τ)e−δI (t−θ)dτdθ ≥ 0,

S (t) = e−
∫ t

0 (δS +γB(r))drφ3(0) + δIν

∫ t

0

∫ h2

0
χ2(τ)I(θ − τ)e−

∫ t
θ

(δS +γB(r))drdτdθ ≥ 0

for all t ∈ [0, τ∗] [31]. Hence, by recursive argumentation, we get that I(t), S (t) ≥ 0 for all t ≥ 0.
Hence, E, I, S , A and B are non-negative.

AIMS Mathematics Volume 9, Issue 1, 1046–1087.



1062

Now, we prove that E, I, S , A and B are all ultimately bounded. From the first equation of
system (3.1) we have that lim

t→∞
sup E(t) ≤ λE

δE
= ω1. To investigate the ultimate boundedness of I,

we define

Π1 =

∫ h1

0
χ1(τ)Eτdτ + I.

Then, we obtain

Π̇1 =

∫ h1

0
χ1(τ)Ė(t − τ) + İ =

∫ h1

0
χ1(τ){λE − ηΨ(Aτ)EτS τ

− δEEτ}dτ + η

∫ h1

0
χ1(τ)Ψ(Aτ)EτS τdτ − δI I

= λE

∫ h1

0
χ1(τ)dτ − δE

∫ h1

0
χ1(τ)Eτdτ − δI I

≤ λEζ1 − p1

[∫ h1

0
χ1(τ)Eτ + I

]
≤ λE − p1

[∫ h1

0
χ1(τ)Eτ + I

]
= λE − p1Π1,

where p1 = min{δE, δI}.

It follows that lim
t→∞

sup Π1(t) ≤ λE
p1

= ω2. Since E ≥ 0 and I ≥ 0, then lim
t→∞

sup I(t) ≤ ω2. Now, let us

define Π2 = S +
γ

%
B. Then, we obtain

Π̇2 = Ṡ +
γ

%
Ḃ = δIν

∫ h2

0
χ2(τ)Iτdτ − δS S − γS B

+
γ

%
(%S B − δBB)

= δIν

∫ h2

0
χ2(τ)Iτdτ − δS S −

γδB

%
B

≤ δIνω2ζ2 − p2[S +
γ

%
B]

≤ δIνω2 − p2[S +
γ

%
B]

= δIνω2 − p2Π2,

where p2 = min{δS , δB}. Hence, lim
t→∞

sup Π2(t) ≤ δIνω2
p2

= ω3. Since S ≥ 0 and B ≥ 0, then

lim
t→∞

sup S (t) ≤ ω3 and lim
t→∞

sup B(t) ≤ %

γ
ω3 = ω5. Finally, from the fourth equation of system (3.1),

we have lim
t→∞

sup A(t) ≤ λA
δA

= ω4. Then, E, I, S , A and B are ultimately bounded.

From Lemma 3, we can demonstrate that Γ = {(E, I, S , A, B) ∈ C5
≥0 : ‖E‖ ≤ ω1, ‖I‖ ≤ ω2, ‖S ‖ ≤ ω3,

‖A‖ ≤ ω4, ‖B‖ ≤ ω5} is positively invariant for system (3.1).
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3.3. Equilibria

First, we compute the basic reproduction number <̄0 for system (3.1). Define F̄ and V̄ as follows:

F̄ =

(
0 ηζ1Ψ(A0)E0

0 0

)
, V̄ =

(
δI 0
−ζ2δIν δS

)
,

where E0 = λE/δE and A0 = λA/δA. Then, <̄0 can be computed as the spectral radius of F̄V̄−1,
as follows:

<̄0 =
ηνζ1ζ2Ψ(A0)E0

δS
. (3.3)

Second, let ∆ = (E, I, S , A, B) be any equilibrium of system (3.1) such that

0 = λE − ηΨ(A)ES − δEE, (3.4)
0 = ηζ1Ψ(A)ES − δI I, (3.5)
0 = δIνζ2I − δS S − γS B, (3.6)
0 = λA − κηΨ(A)S A − δAA, (3.7)
0 = %S B − δBB. (3.8)

Equation (3.8) has two solutions, B = 0 and S = δB
%

. When B = 0, then, from Eq (3.6), we get

δI I =
δS

νζ2
S . (3.9)

Substituting Eq (3.9) into Eq (3.5), we obtain[
ηζ1Ψ(A)E −

δS

νζ2

]
S = 0, (3.10)

and then we have
S = 0, or ηζ1Ψ(A)E −

δS

νζ2
= 0.

If S = 0, then, from Eqs (3.4), (3.5) and (3.7), we have that E = λE/δE, I = 0 and A = λA/δA. Then,
we obtain the uninfected equilibrium ∆0 = (E0, 0, 0, A0, 0).

If S , 0, then I , 0 and

ζ1ηΨ(A)E =
δS

νζ2
. (3.11)

Therefore, we obtain

E =
λE − ζ

−1
1 δI I

δE
, S =

ζ2δIνI
δS

and A =
λA

δA + κζ−1
1 δI I/E

. (3.12)

Substituting Eq (3.12) into Eq (3.5), we have

ζ1ηΨ

(
λA

δA + κζ−1
1 δI I/E

) (
λE − ζ

−1
1 δI I

δE

) (
ζ2δIνI
δS

)
− δI I = 0.
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Since I , 0, then

ζ1ηΨ

(
λA

δA + κζ−1
1 δI I/E

) (
λE − ζ

−1
1 δI I

δE

) (
ζ2δIν

δS

)
− δI = 0.

We define a function G1(I) as follows:

G1(I) = ζ1ζ2

(
ην

δS

)
Ψ

(
λA

δA + κζ−1
1 δI I/E

) (
λE − ζ

−1
1 δI I

δE

)
− 1 = 0.

We have

G1(0) =
ηνζ1ζ2

δS
Ψ

(
λA

δA

) (
λE

δE

)
− 1

= <̄0 − 1 > 0 for <̄0 > 1

lim
I→ λE

δI
ζ1

G1(I) = −1 < 0

and

d
dI

[
Ψ

(
λA

δA + κζ−1
1 δI I/E

)]
= −

ζ−1
1 κδIδEλAλE

[δAλE + ζ−1
1 δI I(κδE − δA)]2

ΨI

(
λA

δA + κζ−1
1 δI I/E

)
= Θ1 < 0.

So, we have

dG1(I)
dI

=
ηνζ1ζ2

δS

(
λE − ζ

−1
1 δI I

δE

)
Θ1 −

ηνδIζ2

δS δE
Ψ

(
λA

δA + κζ−1
1 δI I/E

)
< 0. (3.13)

Hence, there exists a unique I1 ∈
(
0, λE

δI
ζ1

)
satisfying that G1(I1) = 0.

Therefore, there exists a unique infected equilibrium without humoral immunity ∆1 =

(E1, I1, S 1, A1, 0) when <̄0 > 1, where E1 =
λE−ζ

−1
1 δI I1

δE
∈

(
0, λE

δE

)
, S 1 =

ζ2δIνI1
δS

∈
(
0, λEν

δS
ζ1ζ2

)
and

A1 = λA
δA+κζ−1

1 δI I1/E1
∈

(
0, λA

δA

)
.

If B , 0 and S = δB
%

, we therefore obtain

E =
λE − ζ

−1
1 δI I

δE
, A =

λA

δA + κζ−1
1 δI I/E

, B =
δS

γ

(
ζ2δIν%I
δS δB

− 1
)
. (3.14)

Substituting Eq (3.14) into Eq (3.5), we obtain

ζ1ηΨ

(
λA

δA + κζ−1
1 δI I/E

) (
λE − ζ

−1
1 δI I

δE

) (
δB

%

)
− δI I = 0.

Define a function G∗1(I) as follows:

G∗1(I) = ζ1ηΨ

(
λA

δA + κζ−1
1 δI I/E

) (
λE − ζ

−1
1 δI I

δE

) (
δB

%

)
− δI I = 0.
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We have

G∗1(0) = ζ1

(
ηδB

%

)
Ψ

(
λA

δA

) (
λE

δE

)
> 0,

lim
I→ λE

δI
ζ1

G∗1(I) = −λEζ1 < 0.

Moreover,

d
dI

[
Ψ

(
λA

δA + κζ−1
1 δI I/E

)]
= −

ζ−1
1 κδIδEλAλE

[δAλE + ζ−1
1 δI I(κδE − δA)]2

ΨI

(
λA

δA + κζ−1
1 δI I/E

)
= Θ∗1 < 0.

So, we have

dG∗1(I)
dI

= Θ∗1ζ1
ηδB

%

(
λE − ζ

−1
1 δI I

δE

)
−

(
ηδIδB

%δE

)
Ψ

(
λA

δA + κζ−1
1 δI I/E

)
− δI < 0. (3.15)

Then, there exists a unique I2 ∈
(
0, λE

δI
ζ1

)
such that G∗1(I2) = 0. It follows that there exists a unique

infected equilibrium with humoral immunity ∆2 = (E2, I2, S 2, A2, B2) when <̄1 > 1, where E2 =
λE−ζ

−1
1 δI I2

δE
∈

(
0, λE

δE

)
, S 2 = δB

%
, A2 = λA

δA+κζ−1
1 δI I2/E2

∈
(
0, λA

δA

)
and B2 = δS

γ

(
<̄1 − 1

)
, where

<̄1 =
ζ2δIν%I2

δS δB
. (3.16)

Here, <̄1 represents the antibody activation number.
We have that Ψ(A2) < Ψ(A0) and E2 < E0. Therefore,

<̄1 =
ζ2δIν%I2

δS δB
=
ζ2δIν%

δS δB

ζ1ηΨ(A2)E2S 2

δI

=
ζ1ζ2νηΨ(A2)E2

δS
<
ζ1ζ2νηΨ(A0)E0

δS
= <̄0. (3.17)

Now, we can state the following lemma:
Lemma 4. For system (3.1), there exist two threshold parameters <̄0 and <̄1 such that the following
conditions hold:

(i) If <̄0 ≤ 1, then the uninfected equilibrium ∆0 = (E0, 0, 0, A0, 0) is the unique equilibrium.
(ii) If <̄1 ≤ 1 < <̄0, then there exists two equilibria, ∆0 and the infected equilibrium without

humoral immunity ∆1 = (E1, I1, S 1, A1, 0).
(iii) If <̄1 > 1, then there exist three equilibria, ∆0, ∆1 and the infected equilibrium with humoral

immunity ∆2 = (E2, I2, S 2, A2, B2).

3.4. Global stability

This subsection proves the global stability of the equilibria of model (3.1) by using the Lyapunov
method. Let ¯̃Ω j be the largest invariant subset of

Ω̄ j = {(E, I, S , A, B) :
dΛ̄ j
dt

= 0}, j = 0, 1, 2,
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where Λ̄ j(E, I, S , A, B) is a Lyapunov function candidate. Subsequent to the studies of [33, 34, 36], we
construct Lyapunov functions in the following theorems.
Theorem 4. Consider system (3.1) and let <̄0 ≤ 1; then, ∆0 is G.A.S. Moreover, if <̄0 > 1, then ∆0

is unstable.
Proof. Define

Λ̄0 = ζ1E0Φ

(
E
E0

)
+ I +

1
νζ2

S +
ζ1E0

κA0

(
A − A0 −

∫ A

A0

Ψ(A0)
Ψ(ξ)

dξ
)

+
γ

%νζ2
B

+ η

∫ h1

0
χ1(τ)

∫ t

t−τ
Ψ(A(s))E(s)S (s)dsdτ +

δI

ζ2

∫ h2

0
χ2(τ)

∫ t

t−τ
I(s)dsdτ. (3.18)

We note that Λ̄0(E, I, S , A, B) > 0 for all E, I, S , A, B > 0 and Λ̄0(E0, 0, 0, A0, 0) = 0. We evaluate dΛ̄0
dt

as follows:

dΛ̄0

dt
= ζ1

(
1 −

E0

E

)
Ė + İ +

1
νζ2

Ṡ +
ζ1E0

κA0

(
1 −

Ψ(A0)
Ψ(A)

)
Ȧ +

γ

%νζ2
Ḃ

+ η
d
dt

∫ h1

0
χ1(τ)

∫ t

t−τ
Ψ(A(s))E(s)S (s)dsdτ +

δI

ζ2

d
dt

∫ h2

0
χ2(τ)

∫ t

t−τ
I(s)dsdτ.

Using system (3.1), we get

dΛ̄0

dt
= ζ1

(
1 −

E0

E

)
[λE − ηΨ(A)ES − δEE]

+ η

∫ h1

0
χ1(τ)Ψ(Aτ)EτS τdτ − δI I

+
1
νζ2

[
δIν

∫ h2

0
χ2(τ)Iτdτ − δS S − γS B

]
+
ζ1E0

κA0

(
1 −

Ψ(A0)
Ψ(A)

)
[λA − κηΨ(A)S A − δAA]

+
γ

%νζ2
[%S B − δBB]

+ η

∫ h1

0
χ1(τ) [Ψ(A)ES − Ψ(Aτ)EτS τ] dτ

+
δI

ζ2

∫ h2

0
χ2(τ)[I − Iτ]dτ.

Collecting terms, we get

dΛ̄0

dt
= ζ1

(
1 −

E0

E

)
[λE − δEE] + ηζ1Ψ(A)E0S −

δS

νζ2
S

+ ηζ1Ψ(A0)E0S − ηζ1Ψ(A0)E0S +
ζ1E0

κA0

(
1 −

Ψ(A0)
Ψ(A)

)
[λA − δAA]

−
ζ1E0

A0
(Ψ(A) − Ψ(A0)) ηS A −

γδB

%νζ2
B
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= ζ1

(E − E0

E

)
[λE − δEE] +

(
ηζ1Ψ(A0)E0 −

δS

νζ2

)
S

+ ηζ1E0S (Ψ(A) − Ψ(A0)) +
ζ1E0

κA0Ψ(A)
(Ψ(A) − Ψ(A0)) [λA − δAA]

−
ζ1E0

A0
(Ψ(A) − Ψ(A0)) ηS A −

γδB

%νζ2
B.

Using the equilibrium condition λE = δEE0, as well as λA = δAA0, we get

dΛ̄0

dt
= −ζ1δE

(E − E0)2

E
+
δS

νζ2

(
νζ1ζ2ηΨ(A0)E0

δS
− 1

)
S

+ ηζ1E0S (Ψ(A) − Ψ(A0))
A0

A0
+

ζ1δAE0

κA0Ψ(A)
(Ψ(A) − Ψ(A0)) (A0 − A)

−
ηζ1E0

A0
S (Ψ(A) − Ψ(A0)) A −

γδB

%νζ2
B

= −ζ1δE
(E − E0)2

E
+
δS

νζ2
(<̄0 − 1)S +

(
ηζ1E0S

A0
+

ζ1δAE0

κA0Ψ(A)

)
× (Ψ(A) − Ψ(A0)) (A0 − A) −

γδB

%νζ2
B.

Since <̄0 ≤ 1 and (Ψ(A) − Ψ(A0)) (A0−A) ≤ 0, then dΛ̄0
dt ≤ 0 for all E, S , A, B > 0. In addition, dΛ̄0

dt = 0
when E = E0, A = A0 and S = B = 0. Trajectories of system (3.1) converge to ¯̃Ω0, where S = 0 and
Ṡ = 0. The third equation of system (3.1) gives

0 = Ṡ = δIν

∫ h2

0
χ2(τ)Iτdτ =⇒ I(t) = 0 for all t.

Therefore, ¯̃Ω0 = {∆0} and by using the LIP, we obtain that ∆0 is G.A.S.
To show the instability of ∆0, we calculate the characteristic equation of system (3.1) at ∆0

as follows:

0 = (c + δE)(c + δB)
[
c3 + (δI + δS + δA)c2 + (δS δA + δI(δS + δA) − ηζ̄1ζ̄2δIνΨ(A0)E0)c

+δIδS δA − ηζ̄1ζ̄2δIνδAΨ(A0)E0

]
,

where ζ̄i =
∫ hi

0
fi(τ)e−(c+αi)τdτ, i = 1, 2. Define a function T̄ (c) as follows:

T̄ (c) = c3 + (δI + δS + δA)c2 + (δS δA + δI(δS + δA) − ηζ̄1ζ̄2δIνΨ(A0)E0)c
+ δIδS δA − ηζ̄1ζ̄2δIνδAΨ(A0)E0,

which is continuous on [0,∞). We have

T̄ (0) = δIδS δA(1 − <̄0) < 0 when <̄0 > 1,
lim
c→∞
T̄ (c) = ∞;
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this shows that T̄ (c) has a positive real root; therefore, ∆0 is unstable.
Theorem 5. Consider system (3.1) and suppose that Assumption (A) is satisfied and <̄1 ≤ 1 < <̄0;
then, ∆1 is G.A.S.
Proof. Define

Λ̄1 = ζ1E1Φ

(
E
E1

)
+ I1Φ

(
I
I1

)
+

1
νζ2

S 1Φ

(
S
S 1

)
+
ζ1E1

κA1

(
A − A1 −

∫ A

A1

Ψ(A1)
Ψ(ξ)

dξ
)

+
γ

%νζ2
B

+ ηΨ(A1)E1S 1

∫ h1

0
χ1(τ)

∫ t

t−τ
Φ

(
Ψ(A(s))E(s)S (s)

Ψ(A1)E1S 1

)
dsdτ

+
δI

ζ2
I1

∫ h2

0
χ2(τ)

∫ t

t−τ
Φ

(
I(s)
I1

)
dsdτ. (3.19)

Clearly, Λ̄1(E, I, S , A, B) > 0 for all E, I, S , A, B > 0 and Λ̄1(E1, I1, S 1, A1, 0) = 0. We obtain dΛ̄1
dt

as follows:

dΛ̄1

dt
= ζ1

(
1 −

E1

E

)
Ė +

(
1 −

I1

I

)
İ +

1
νζ2

(
1 −

S 1

S

)
Ṡ

+
ζ1E1

κA1

(
1 −

Ψ(A1)
Ψ(A)

)
Ȧ +

γ

%νζ2
Ḃ + ηΨ(A1)E1S 1

d
dt

∫ h1

0
χ1(τ)

×

∫ t

t−τ
Φ

(
Ψ(A(s))E(s)S (s)

Ψ(A1)E1S 1

)
dsdτ +

δI

ζ2
I1

d
dt

∫ h2

0
χ2(τ)

∫ t

t−τ
Φ

(
I(s)
I1

)
dsdτ.

Using system (3.1), we get

dΛ̄1

dt
= ζ1

(
1 −

E1

E

)
[λE − ηΨ(A)ES − δEE]

+

(
1 −

I1

I

) [
η

∫ h1

0
χ1(τ)Ψ(Aτ)EτS τdτ − δI I

]
+

1
νζ2

(
1 −

S 1

S

) [
δIν

∫ h2

0
χ2(τ)Iτdτ − δS S − γS B

]
+
ζ1E1

κA1

(
1 −

Ψ(A1)
Ψ(A)

)
[λA − κηΨ(A)S A − δAA] +

γ

%νζ2
[%S B − δBB]

+ ηΨ(A1)E1S 1

∫ h1

0
χ1(τ)

[
Ψ(A)ES

Ψ(A1)E1S 1
−

Ψ(Aτ)EτS τ

Ψ(A1)E1S 1

+ ln
(
Ψ(Aτ)EτS τ

Ψ(A)ES

)]
dτ +

δI

ζ2
I1

∫ h2

0
χ2(τ)

[
I
I1
−

Iτ
I1

+ ln
( Iτ

I

)]
dτ.

Collecting terms, we get

dΛ̄1

dt
= ζ1

(
1 −

E1

E

)
[λE − δEE] + ζ1ηΨ(A)E1S
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− η

∫ h1

0
χ1(τ)Ψ(Aτ)EτS τ

I1

I
dτ + δI I1 −

δS

νζ2
S

−
δI

ζ2

∫ h2

0
χ2(τ)Iτ

S 1

S
dτ +

δS

νζ2
S 1 +

γ

νζ2
S 1B +

ζ1E1

κA1

(
1 −

Ψ(A1)
Ψ(A)

)
× [λA − δAA] −

ζ1E1

A1
ηS A (Ψ(A) − Ψ(A1)) −

γδB

%νζ2
B + ηΨ(A1)E1S 1

×

∫ h1

0
χ1(τ) ln

(
Ψ(Aτ)EτS τ

Ψ(A)ES

)
dτ +

δI

ζ2
I1

∫ h2

0
χ2(τ) ln

( Iτ
I

)
dτ.

Using the equilibrium condition for ∆1, i.e.,

λE = ηΨ(A1)E1S 1 + δEE1, δI I1 = ηζ1Ψ(A1)E1S 1,

δS S 1 = δIνζ2I1, λA = κηΨ(A1)S 1A1 + δAA1,

we obtain

dΛ̄1

dt
= −ζ1δE

(E − E1)2

E
+ 4δI I1 − δI I1

E1

E
+ ζ1ηΨ(A)E1S

−
δI

ζ1
I1

∫ h1

0
χ1(τ)

Ψ(Aτ)EτS τI1

Ψ(A1)E1S 1I
dτ − ζ1ηΨ(A1)E1S

−
δI

ζ2
I1

∫ h2

0
χ2(τ)

IτS 1

I1S
dτ +

(
γ

νζ2
S 1 −

γδB

%νζ2

)
B +

ζ1δAE1

κA1Ψ(A)
(Ψ(A) − Ψ(A1))

× (A1 − A) − δI I1
Ψ(A1)
Ψ(A)

−
ηζ1E1

A1
(Ψ(A) − Ψ(A1)) S A

+
δI

ζ1
I1

∫ h1

0
χ1(τ) ln

(
Ψ(Aτ)EτS τ

Ψ(A)ES

)
dτ +

δI

ζ2
I1

∫ h2

0
χ2(τ) ln

( Iτ
I

)
dτ

= −ζ1δE
(E − E1)2

E
+ 4δI I1 − δI I1

E1

E
+ ηζ1E1S (Ψ(A) − Ψ(A1))

−
δI

ζ1
I1

∫ h1

0
χ1(τ)

Ψ(Aτ)EτS τI1

Ψ(A1)E1S 1I
dτ −

δI

ζ2
I1

∫ h2

0
χ2(τ)

IτS 1

I1S
dτ

+
γ

νζ2

(
S 1 −

δB

%

)
B +

ζ1δAE1

κA1Ψ(A)
(Ψ(A) − Ψ(A1)) (A1 − A) − δI I1

Ψ(A1)
Ψ(A)

−
ηζ1E1

A1
(Ψ(A) − Ψ(A1)) S A +

δI

ζ1
I1

∫ h1

0
χ1(τ) ln

(
Ψ(Aτ)EτS τ

Ψ(A)ES

)
dτ

+
δI

ζ2
I1

∫ h2

0
χ2(τ) ln

( Iτ
I

)
dτ.

Using the equalities

ln
(
Ψ(Aτ)EτS τ

Ψ(A)ES

)
= ln

(
Ψ(Aτ)EτS τIi

Ψ(Ai)EiS iI

)
+ ln

(
Ψ(Ai)
Ψ(A)

)
+ ln

(
IS i

IiS

)
+ ln

(Ei

E

)
,
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ln
( Iτ

I

)
= ln

(
IτS i

IiS

)
+ ln

(
IiS
IS i

)
, i = 1, 2, (3.20)

we obtain

dΛ̄1

dt
= −ζ1δE

(E − E1)2

E
− δI I1

[
Φ

(E1

E

)
+

1
ζ1

∫ h1

0
χ1(τ)Φ

(
Ψ(Aτ)EτS τI1

Ψ(A1)E1S 1I

)
dτ

+
1
ζ2

∫ h2

0
χ2(τ)Φ

(
IτS 1

I1S

)
dτ + Φ

(
Ψ(A1)
Ψ(A)

)]
+

γ

νζ2

(
S 1 −

δB

%

)
B +

[
ζ1δAE1

κA1Ψ(A)
+
ηζ1E1S

A1

]
(Ψ(A) − Ψ(A1)) (A1 − A). (3.21)

We have that (Ψ(A) − Ψ(A1)) (A1 − A) ≤ 0, and, from Assumption (A), we have that S 1 −
δB
%
≤ 0. It

follows that dΛ̄1
dt ≤ 0 for all E, I, S , A, B > 0. In addition, dΛ̄1

dt = 0 when E = E1, A = A1, B = 0 and

IτS 1

I1S
=

Ψ(Aτ)EτS τI1

Ψ(A1)E1S 1I
= 1 for almost all τ ∈ [0, τ∗]. (3.22)

All solutions of system (3.1) are attracted to ¯̃Ω1. Since ¯̃Ω1 is invariant with respect to (3.1), on ¯̃Ω1, we
have

0 = Ė = λE − ηΨ(A1)E1S − δEE1 =⇒ S (t) = S 1 for any t,

and, from Eq (3.22), we get that I(t) = Iτ = I1 for any t. Therefore, ¯̃Ω1 = {∆1}, and by applying the
LIP, we obtain that ∆1 is G.A.S.
Theorem 6. For system (3.1), let <̄1 > 1; then, ∆2 is G.A.S.
Proof. Define

Λ̄2 = ζ1E2Φ

(
E
E2

)
+ I2Φ

(
I
I2

)
+

1
νζ2

S 2Φ

(
S
S 2

)
+
ζ1E2

κA2

(
A − A2 −

∫ A

A2

Ψ(A2)
Ψ(ξ)

dξ
)

+
γ

%νζ2
B2Φ

(
B
B2

)
+ ηΨ(A2)E2S 2

∫ h1

0
χ1(τ)

∫ t

t−τ
Φ

(
Ψ(A(s))E(s)S (s)

Ψ(A2)E2S 2

)
dsdτ

+
δI

ζ2
I2

∫ h2

0
χ2(τ)

∫ t

t−τ
Φ

(
I(s)
I2

)
dsdτ. (3.23)

Obviously, Λ̄2(E, I, S , A, B) > 0 for all E, I, S , A, B > 0 and Λ̄2(E2, I2, S 2, A2, B2) = 0. We calculate
dΛ̄2
dt as follows:

dΛ̄2

dt
= ζ1

(
1 −

E2

E

)
Ė +

(
1 −

I2

I

)
İ +

1
νζ2

(
1 −

S 2

S

)
Ṡ

+
ζ1E2

κA2

(
1 −

Ψ(A2)
Ψ(A)

)
Ȧ +

γ

%νζ2

(
1 −

B2

B

)
Ḃ

+ ηΨ(A2)E2S 2
d
dt

∫ h1

0
χ1(τ)

∫ t

t−τ
Φ

(
Ψ(A(s))E(s)S (s)

Ψ(A2)E2S 2

)
dsdτ

+
δI

ζ2
I2

d
dt

∫ h2

0
χ2(τ)

∫ t

t−τ
Φ

(
I(s)
I2

)
dsdτ.
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From system (3.1), we get

dΛ̄2

dt
= ζ1

(
1 −

E2

E

)
[λE − ηΨ(A)ES − δEE]

+

(
1 −

I2

I

) [
η

∫ h1

0
χ1(τ)Ψ(Aτ)EτS τdτ − δI I

]
+

1
νζ2

(
1 −

S 2

S

) [
δIν

∫ h2

0
χ2(τ)Iτdτ − δS S − γS B

]
+
ζ1E2

κA2

(
1 −

Ψ(A2)
Ψ(A)

)
[λA − κηΨ(A)S A − δAA]

+
γ

%νζ2

(
1 −

B2

B

)
[%S B − δBB]

+ ηΨ(A2)E2S 2

∫ h1

0
χ1(τ)

[
Ψ(A)ES

Ψ(A2)E2S 2
−

Ψ(Aτ)EτS τ

Ψ(A2)E2S 2

+ ln
(
Ψ(Aτ)EτS τ

Ψ(A)ES

)]
dτ

+
δI

ζ2
I2

∫ h2

0
χ2(τ)dτ

[
I
I2
−

Iτ
I2

+ ln
( Iτ

I

)]
dτ.

Collecting terms, we get

dΛ̄2

dt
= ζ1

(
1 −

E2

E

)
[λE − δEE] + ηζ1Ψ(A)E2S

− η

∫ h1

0
χ1(τ)Ψ(Aτ)EτS τ

I2

I
dτ + δI I2 −

δS

νζ2
S −

δI

ζ2

×

∫ h2

0
χ2(τ)Iτ

S 2

S
dτ +

δS

νζ2
S 2 +

γ

νζ2
S 2B +

ζ1E2

κA2

(
1 −

Ψ(A2)
Ψ(A)

)
[λA − δAA]

−
ζ1E2

A2
(Ψ(A) − Ψ(A2)) ηS A −

γδB

%νζ2
B −

γ

νζ2
S B2 +

γδB

%νζ2
B2 + ηΨ(A2)E2S 2

×

∫ h1

0
χ1(τ) ln

(
Ψ(Aτ)EτS τ

Ψ(A)ES

)
dτ +

δI

ζ2
I2

∫ h2

0
χ2(τ) ln

( Iτ
I

)
dτ.

Using the equilibrium condition for ∆2, i.e.,

λE = ηΨ(A2)E2S 2 + δEE2, δI I2 = ηζ1Ψ(A2)E2S 2,

δS S 2 = δIνζ2I2 − γS 2B2, λA = κηΨ(A2)S 2A2 + δAA2, S 2 =
δB

%
,

we obtain

dΛ̄2

dt
= −δEζ1

(E − E2)2

E
+ 4δI I2 − δI I2

E2

E
+ ζ1ηΨ(A)E2S

−
δI

ζ1
I2

∫ h1

0
χ1(τ)

Ψ(Aτ)EτS τI2

Ψ(A2)E2S 2I
dτ − ηζ1Ψ(A2)E2S
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−
δI

ζ2
I2

∫ h2

0
χ2(τ)

IτS 2

I2S
dτ +

ζ1δAE2

κA2Ψ(A)
(Ψ(A) − Ψ(A2)) (A2 − A)

− δI I2
Ψ(A2)
Ψ(A)

−
ζ1E2

A2
ηS A (Ψ(A) − Ψ(A2)) +

δI

ζ1
I2

∫ h1

0
χ1(τ)

× ln
(
Ψ(Aτ)EτS τ

Ψ(A)ES

)
dτ +

δI

ζ2
I2

∫ h2

0
χ2(τ) ln

( Iτ
I

)
dτ

= −δEζ1
(E − E2)2

E
+ 4δI I2 − δI I2

E2

E
+ ζ1ηE2S (Ψ(A) − Ψ(A2))

−
δI

ζ1
I2

∫ h1

0
χ1(τ)

Ψ(Aτ)EτS τI2

Ψ(A2)E2S 2I
dτ −

δI

ζ2
I2

∫ h2

0
χ2(τ)

IτS 2

I2S
dτ

+
ζ1δAE2

κA2Ψ(A)
(Ψ(A) − Ψ(A2)) (A2 − A) − δI I2

Ψ(A2)
Ψ(A)

−
ζ1E2

A2
ηS A

× (Ψ(A) − Ψ(A2)) +
δI

ζ1
I2

∫ h1

0
χ1(τ) ln

(
Ψ(Aτ)EτS τ

Ψ(A)ES

)
dτ

+
δI

ζ2
I2

∫ h2

0
χ2(τ) ln

( Iτ
I

)
dτ.

Applying the equalities of (3.20) for i = 2, we obtain

dΛ̄2

dt
= −δEζ1

(E − E2)2

E
− δI I2

[
Φ

(E2

E

)
+

1
ζ1

∫ h1

0
χ1(τ)Φ

(
Ψ(Aτ)EτS τI2

Ψ(A2)E2S 2I

)
dτ

+
1
ζ2

∫ h2

0
χ2(τ)Φ

(
IτS 2

I2S

)
+ Φ

(
Ψ(A2)
Ψ(A)

)]
+

[
ζ1δAE2

κA2Ψ(A)
+
ζ1ηS E2

A2

]
× (Ψ(A) − Ψ(A2)) (A2 − A). (3.24)

If <̄1 > 1, we get that dΛ̄2
dt ≤ 0 for all E, I, S , A > 0. Further, dΛ̄2

dt = 0 when E = E2, A = A2 and

IτS 2

I2S
=

Ψ̄(Aτ)EτS τI2

Ψ(A2)E2S 2I
= 1 for almost all τ ∈ [0, τ∗]. (3.25)

All solutions of system (3.1) are attracted to ¯̃Ω2. Since ¯̃Ω2 is invariant with respect to (3.1), on ¯̃Ω2,
we have

0 = Ė = λE − ηΨ(A2)E2S − δEE2 =⇒ S (t) = S 2 for any t,

and, from Eq (3.25), we get that I(t) = Iτ = I2 for any t. The third equation of system (3.1) yields

0 = Ṡ = δIνζ2I2 − γS 2B − δS S 2 =⇒ B(t) = B2 for any t.

Hence, ¯̃Ω2 = {∆2} and, by utilizing the LIP, we get that ∆2 is G.A.S.

4. Comparison results

Let us compare our proposed model (2.1) and the model given by Eqs (1.1)–(1.4), which was
studied in [27]. We consider the administration of a treatment to inhibit the virus replication with a
drug efficacy εI ∈ [0, 1] [43]. Then, model (2.1) becomes
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Ė(t) = λE − ηΨ(A(t))E(t)S (t) − δEE(t),
İ(t) = e−α1τ1ηΨ(A(t − τ1))E(t − τ1)S (t − τ1) − δI I(t),
Ṡ (t) = (1 − εI)e−α2τ2δIνI(t − τ2) − δS S (t) − γS (t)B(t),
Ȧ(t) = λA − κηΨ(A(t))A(t)S (t) − δAA(t),
Ḃ(t) = %S (t)B(t) − δBB(t).

(4.1)

The basic reproduction number of system (4.1) is given by

<
εI
0 =

(1 − εI)e−α1τ1−α2τ2ηνΨ(A0)E0

δS
= (1 − εI)<0, (4.2)

where <0 is the basic reproduction number of system (2.1) (i.e., there is no treatment). Assume that
<0 > 1; then, the uninfected equilibrium ∆0 for system (2.1) is unstable. Now, we want to determine
the range of medication efficacy, εI , that stabilizes system (4.1)’s equilibrium ∆0 and makes<εI

0 ≤ 1:

1 ≥ εI ≥ ε
min
I =

<0 − 1
<0

. (4.3)

On the other hand, the model given by Eqs (1.1)–(1.4) under the effect of treatment becomes
Ė(t) = λE − ηΨ(A(t))E(t)S (t) − δEE(t),
İ(t) = e−α1τ1ηΨ(A(t − τ1))E(t − τ1)S (t − τ1) − δI I(t),
Ṡ (t) = (1 − εI)δIνI(t) − δS S (t),
Ȧ(t) = λA − κηΨ(A(t))A(t)S (t) − δAA(t),

(4.4)

and the basic reproduction number of system (4.4) is given by

<̂
εI
0 =

(1 − εI)e−α1τ1ηνΨ(A0)E0

δS
= (1 − εI)<̂0,

where <̂0 is the basic reproduction number of the system given by Eqs (1.1)–(1.4), which is assumed
to be <̂0 > 1. We determine the drug efficacy εI that makes <̂εI

0 ≤ 1 and stabilizes the uninfected
equilibrium, ∆̄0, of system (4.4) as follows:

1 ≥ εI ≥ ε̂
min
I =

<̂0 − 1

<̂0

. (4.5)

Since τ2 > 0, then

<0 =
e−α1τ1−α2τ2ηνΨ(A0)E0

δS
<

e−α1τ1ηνΨ(A0)E0

δS
= <̂0.

It follows from Eqs (4.3) and (4.5) that εmin
I < ε̂min

I . As a result, adding the maturation delay τ2 to the
system will lessen the amount of medication required to stabilize it at the uninfected equilibrium ∆0

and eradicate SARS-CoV-2 from the body. Thus, designing overflow antiviral medications will result
from neglecting the maturation delay in SARS-CoV-2 infection models.

When we look at our proposed model (2.1) and the model given by Eqs (1.1)–(1.4), we can see that
our model admits three equilibria, uninfected equilibrium (∆0): infected equilibrium without humoral
immunity (∆1) and infected equilibrium with humoral immunity (∆2). On the other hand, the model
given by Eqs (1.1)–(1.4) admits only two equilibria:

(i) Uninfected equilibrium, ∆̄0 = (E0, 0, 0, A0), where the SARS-CoV-2 infection is cleared.
(ii) Infected equilibrium ∆̄1 = (E1, I1, S 1, A1), where the SARS-CoV-2 infection is present.
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This shows that ignoring the effect of humoral immunity in the SARS-CoV-2 infection model may
not accurately describe SARS-CoV-2 infection. Thus, our proposed models are more relevant as a tool
to describe the within-host dynamics of SARS-CoV-2 infection than the model presented in [27].

The above comparisons underscore the significance of including both the humoral response and
maturation delay in the SARS-CoV-2 infection paradigm.

5. Numerical simulations

In this section, we describe the numerical simulation for model (2.1) to illustrate the theoretical
findings. We performed sensitivity analysis for the model. We demonstrate here the effect of
humoral immunity and time delays on the SARS-CoV-2 dynamics. The system of DDEs were solved
numerically by using the dde23 solver in MATLAB version R2022a. Table 1 contains the values of
some parameters of model (2.1). The other values were chosen just for numerical purposes. We chose
the function Ψ as Ψ(A) = An

An
s+An [27, 28]. Then<0, given by Eq (2.3) becomes

<0 =
e−α1τ1−α2τ2ηνE0

δS

An
0

An
s + An

0
. (5.1)

Table 1. Model parameters.

Parameter Value Parameter Value Parameter Value Parameter Value
λE 5 % Varied δE 0.1 δB 0.1
η Varied As 50 δI 0.1 α2 1
ν 20 α1 1 δS 0.1 τ2 Varied
γ 0.04 τ1 Varied λA 1 n 1
κ 0.3 δA 0.1

5.1. Stability of the equilibria

To show the global stability of the equilibria of system (2.1), we applied the following three
initial conditions:

C1 : (E(θ), I(θ), S (θ), A(θ), B(θ)) = (20, 2, 3, 6, 1),
C2 : (E(θ), I(θ), S (θ), A(θ), B(θ)) = (30, 4, 5, 8, 2),
C3 : (E(θ), I(θ), S (θ), A(θ), B(θ)) = (45, 6, 8, 9.5, 3),

where θ ∈ [−max {τ1, τ2} , 0] . Here, we set τ1 = τ2 = 0.9 and selected the values of η and % as follows:
State 1. (Stability of ∆0) η = 0.003 and % = 0.001. These values give <0 = 0.826494 < 1.

Figure 2 shows that the trajectories tend to the equilibrium ∆0 = (50, 0, 0, 10, 0) for all initial
conditions C1–C3. This shows that ∆0 is G.A.S according to Theorem 1. In this state, SARS-CoV-2
particles are eventually cleared.

State 2. (Stability of ∆1) η = 0.01 and % = 0.001. With such a selection, we obtain that <1 =

0.923507 < 1 < 2.75498 = <0 and S 1 = 88.157 < δB
%

= 0.1
0.001 = 100. The equilibrium point ∆1 exists
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with ∆1 = (23.3341, 10.8416, 88.157, 7.44692, 0). Figure 3 shows that the trajectories tend, eventually,
to ∆1 for all initial conditions, and this is in agreement with Theorem 2. This state describes an infected
individual when humoral immunity is not activated.

State 3. (Stability of ∆2) η = 0.01 and % = 0.005. This gives <1 = 1.65788 > 1. The
numerical results show that ∆2 = (38.1854, 4.8035, 20, 9.1506, 2.3824) exists. Figure 4 displays that
the trajectories converge eventually to ∆2 for all initial conditions and this is consistent with Theorem 3.
This state describes an infected individual with active humoral immunity.
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Figure 2. Solutions of model (2.1) with initial conditions C1–C3 converge to ∆0 =

(50, 0, 0, 10, 0) when<0 ≤ 1 (State 1).
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Figure 3. Solutions of model (2.1) with initial conditions C1–C3 converge to ∆1 =

(23.3341, 10.8416, 88.157, 7.44692, 0) when<1 ≤ 1 < <0 (State 2).
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Figure 4. Solutions of model (2.1) with initial conditions C1–C3 converge to ∆2 =

(38.1854, 4.8035, 20, 9.1506, 2.3824) when<1 > 1 (State 3).
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5.2. Impact of the delays on SARS-CoV-2 dynamics

We show the effects of time delays τ1 and τ2 on solutions of the system, as well as the stability
of ∆0. We can see from Eq (5.1) that<0 is reduced by increasing the delay parameters τ1 and τ2 when
all other parameters are fixed. Therefore, the stability of ∆0 can significantly be changed based on τ1

and τ2. Let us fix η = 0.003, % = 0.01 and vary τ1 and τ2 as follows:

D1: τ1 = τ2 = 0,

D2: τ1 = τ2 = 0.79,

D3: τ1 = τ2 = 1,

D4: τ1 = τ2 = 2.

Further, we consider the following initial condition:

C4 : (E(θ), I(θ), S (θ), A(θ), B(θ)) = (48, 1.5, 6, 9.8, 5), θ ∈ [−max{τ1, τ2}.0].

Assume that τ = τ1 = τ2; then,<0, in the case of n = 1, is given by

<0 =
e−(α1+α2)τηνλEλA

δS (AsδEδA + λAδE)
. (5.2)

We see that<0 is a decreasing function of τ. Let τcr be such that<0(τcr) = 1. Consequently,

<0 ≤ 1 for all τ ≥ τcr.

Hence, ∆0 is G.A.S when τ ≥ τcr = 0.804719. Therefore, we have the following cases:

(i) If τ ≥ τcr, then <0 ≤ 1 and ∆0 is G.A.S. Therefore, when τ is large enough, then ∆0 can
be stabilized.

(ii) If τ < τcr, then<0 > 1 and ∆0 will be unstable.

Figure 5 shows the effect of time delay on the system’s trajectories. It is clear that, as τ is
increased, the population of the uninfected epithelial cells and ACE2 receptors are increased, while
the populations of infected epithelial cells, SARS-CoV-2 particles and antibodies are decreased.

5.3. Impact of humoral immunity on the SARS-CoV-2 infection

This subsection addresses the effect of the stimulated rate constant % on the dynamics of
system (2.1). We fix the parameters η = 0.01 and τ1 = τ2 = 0.9 and vary the parameter % as follows:
% = 0.001, % = 0.003, % = 0.005 and % = 0.007. Further, we consider the following initial condition:

C5 : (E(θ), I(θ), S (θ), A(θ), B(θ)) = (35, 6, 30, 9, 2), θ ∈ [−0.9, 0].

The impact of humoral immunity on SARS-CoV-2 infection can be seen in Figure 6. We observe that,
as % is increased, the concentrations of uninfected epithelial cells, antibodies and ACE2 receptors are
increased, while concentrations of infected cells and SARS-CoV-2 particles are decreased. We note
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that <0 does not depend on the humoral immune parameters; therefore, humoral immunity plays the
role of controlling the infection, but not clearing it. This may help to develop drug therapies with the
ability to stimulate the humoral response.
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Figure 5. Solutions of model (2.1) under the impact of the time delay τ.
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Figure 6. Solutions of model (2.1) under the impact of the humoral immunity parameter %.
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5.4. Sensitivity analysis

Sensitivity analysis is crucial in pathology and epidemiology when modeling complex
interactions [41]. Sensitivity analysis can help us to assess how well we are able to prevent the
progression of the disease between hosts and within the host. Three techniques may be used to
determine sensitivity indices: Directly by direct differentiation, with the use of a Latin hypercube
sampling technique or by linearizing the system and resolving the resultant equations [41, 42]. With
the use of direct differentiation, the indices in this study may be stated analytically. When variables
fluctuate according to the parameters, one may get the sensitivity index by using partial derivatives.
The normalized forward sensitivity index of<0 is written in terms of the parameter m:

Sm =
m
<0

∂<0

∂m
. (5.3)

Using the values given in Table 1 and η = 0.003, % = 0.001 and τ1 = τ2 = 0.9, we present the
sensitivity index Sm in Table 2 and Figure 7. Obviously, λE, η, λA and ν have positive indices. Clearly,
λE, η and ν have the most positive sensitivity index. In this state, there is a positive relationship between
the progression of COVID-19 and the parameters λE, η, λA and ν when all other parameters are fixed.
The parameters δE, δS , δA, τ1, τ2, α1, α2 andAs have negative indices, meaning that, when the values
of these parameters rise, the value of <0 declines. Obviously, n, δE and δS have the most negative
sensitivity index.

Table 2. Sensitivity index for<0.

m S m m S m m S m m S m

λE 1 δA −0.833 η 1 α2 −0.9
ν 1 τ1 −0.9 δE −1 λA 0.833
δS −1 τ2 −0.9 α1 −0.9 As −0.833
n −1.3412

Figure 7. Forward sensitivity analysis for the parameters on<0.
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6. Discussion

Since the beginning of the outbreak of SARS-CoV-2 at the end of 2019, many researchers have
formulated and developed mathematical models to characterize the dynamics of the virus within the
host. Most of these models neglect the role of ACE2 receptors in the infection. In this paper, we
studied two SARS-CoV-2 infection models which describe the within-host dynamics of SARS-CoV-2
by considering the role of ACE2 receptors. The effects of humoral immunity and time delays on the
SARS-CoV-2 infection was included.

The model admits three equilibrium points, as follows:

• The uninfected equilibrium, ∆0, usually exists. Moreover, ∆0 is G.A.S when <0 ≤ 1, and it is
unstable otherwise. In this state, the number of SARS-CoV-2 particles eventually converges to 0
and the COVID-19 patient will recover. Different control strategies can be applied to realize

<0 =
e−α1τ1−α2τ2ηνλEλA

δS (AsδEδA + λAδE)
≤ 1. (6.1)

These strategies are provided for example:

(i) Reducing the parameter η as (1 − εB)η by applying treatment to block the virus binding with
drug efficacy εB ∈ [0, 1] [43].

(ii) Reducing the parameter ν as (1 − εI)ν by using treatment to inhibit the virus replication with
drug efficacy εI ∈ [0, 1] [43].

(iii) Enlarging the length of delay periods τ1 and τ2 [44].

(iv) Inhibiting the proliferation rate of ACE2 receptors, λA [27].

(v) Increasing the degradation rate of ACE2 receptors, δA [27].

We observe that model (2.1) may be seen as a nonlinear control system with drug efficacies (e.g.,
εB and εI) serving as the control inputs when medicines are used. Then, a variety of control
design techniques, including feedback control [49], model predictive control [50,51] and optimal
control [19, 48], may be applied.

• The infected equilibrium without humoral immunity, ∆1, exists when <0 > 1. Further, ∆1 is
G.A.S when <1 ≤ 1 < <0 and S > δB/%. In this case, the infection is present, but with an
inactive immune response. The reason for this is that the amount of viruses present in the body is
small, that, is S ≤ δB/%, and it may be insufficient to activate the immune system’s reaction.

• The infected equilibrium with humoral immunity, ∆2, exists and is G.A.S when <0 > 1. In this
case, the amount of viruses present in the body is sufficient to activate (i.e., S > δB/%) the immune
system’s reaction.

The main limitation of our research is that we were not able to use real data from COVID-19 patients
to estimate the values of the model’s parameters. The following are the reasons: (i) Real data from
infected people are still lacking; (ii) comparing our findings to a small number of real studies may not
be very accurate; (iii) it is challenging to collect real data from patients who are SARS-CoV-2-infected;
and (iv) conducting experiments to obtain real data is outside the scope of this study.
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7. Conclusions

In this paper, we studied two SARS-CoV-2 infection models which describe the within-host
dynamics of SARS-CoV-2 by considering the role of ACE2 receptors. The effect of humoral immunity
on the SARS-CoV-2 infection was included. Two time-delays were incorporated: (i) Delay in the
SARS-CoV-2 infection of epithelial cells, and (ii) delay in the maturation of recently released SARS-
CoV-2 virions. In the first model, we consider discrete-time delays, which are generalized in the
second model by considering distributed-time delays. We first showed the fundamental properties
of the solutions, non-negativity and boundedness. Then, we established that the models have three
equilibria. On the basis of the two threshold parameters, <0 and <1, we proved the existence and
global stability of the equilibria. We constructed suitable Lyapunov functions and used the LIP to prove
the global asymptotic stability of the three equilibria. We solved the model numerically, presented the
results graphically and found agreement between the numerical and theoretical findings. We discussed
the respective impacts of humoral immunity, time delay and ACE2 receptors on the SARS-CoV-2
dynamics. We showed that humoral immunity plays the role of controlling the infection, but it does
not ultimately clear SARS-CoV-2 particles. Further, increasing the time delay length can significantly
decrease <0 and then inhibit COVID-19 progression. This opens the door for the creation of some
treatments that will prolong the delay period. We discussed the mediated effect of the ACE2 receptors.
We found that<0 is affected by the proliferation and degradation rates of ACE2 receptors, and this may
serve as worthy insight for the development of possible receptor-targeted vaccines and drugs. Finally,
we performed the sensitivity analysis to establish how the values of the model’s parameters affect<0.

Our suggested model may be expanded in several ways by incorporating (i) latently infected
cells [6], (ii) immune response delay [10], (iii) the CTL response, the other component of the
adaptive immune response [12], (iv) stochastic interactions [52, 53], (v) reaction diffusion [16, 54] and
(vi) immunologic memory by formulation of the model using fractional differential equations [48].
By assuming that the generic functions provide the production/stimulation, infection and clearance
rates of compartments, our models can be made more widely applicable [16]. In future work, we
will examine the modeling and analysis of coinfections between two SARS-CoV-2 variants, such
as Omicron and Delta [55, 56]. It is possible to direct future research to incorporate the impact of
vaccinations and antiviral medications into the model. We also want to compare the outcomes with
data from infected patients.
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