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1. Introduction

One of the main areas of system science research is the control of nonlinear systems [1, 2]. There
have been several potential nonlinear system control methods over the years, such as sliding mode-
based controls and backstepping design-based controls [3–8]. Additionally, the backstepping control
method is one of the best methods for designing a controller for nonlinear systems. The backstepping
algorithm is based on the idea that a complex nonlinear system can be broken down into several
smaller subsystems, each of which is given a virtual controller and a Lyapunov function until the
design process for the entire controller is complete [9]. The backstepping technique has been used
successfully to achieve several notable accomplishments. It should be noted that these works assume
that nonlinearities are either directly restricted by constant variables or known functions, or are a linear
combination of unknown parameters or known functions.

Fortunately, these assumptions can be removed because of the universal approximation of fuzzy
logic systems (FLSs) and neural networks (NNs), which offer useful tools for developing control
schemes of uncertain nonlinear systems because of their effectiveness of nonlinear approximation
(see, [10, 11]). For instance, for a strict-feedback nonlinear system, an adaptive fuzzy controller has
been reported in [12] by using a fuzzy system and a backstepping process. For a class of nonlinear
strict-feedback systems, an adaptive fuzzy tracking control approach has been proposed in [13] based
on an observer. An adaptive neural control strategy has been investigated for nonlinear systems with
nonstrict feedback that are exposed to input delay [14]. There has been an analysis of a fixed-time
adaptive control problem for a class of uncertain nonstrict nonlinear systems [15]. For switched
nonlinear systems, a fixed-time fault-tolerant control problem has been addressed in [16]. An NN-
based finite-time adaptive control problem for switched nonlinear systems with time-varying delay has
been presented in [17]. Furthermore, for switched stochastic nonlinear systems utilizing time-varying
delay, a fault-tolerant control problem has been developed in [18].

However, implementing backstepping becomes more challenging as the order of states rises,
leading to the explosion of complexity problems caused by the calculation of the derivative of
virtual controllers [19]. Dynamic surface control (DSC), which is applicable as a first-order filter
to the virtual signal to avoid its repeated differentiations, was introduced to deal with the complexity
explosion. The DSC can also be easily combined with NNs or FLSs approximation techniques to
address nonlinear systems tracking problems. The DSC, however, ignores the issue of filtering errors
produced by a filtering procedure, which may negatively affect system performance [20]. Following
that, the command-filtered backstepping approach, one of the major nonlinear control innovations,
was developed to address the same problem. It not only solves the complexity explosion issue, but it
also provides an error compensation method to compensate for filter errors. Subsequently, numerous
novel adaptive command filter control techniques have been put forth for nonlinear systems including
switched nonlinear systems, nonlinear multi-agent systems, and stochastic nonlinear systems [21, 22].
An observer-based adaptive fuzzy output feedback control scheme has been developed using the
command filter technique [23]. For a class of multi-input multi-output (MIMO) nonlinear systems
with an unknown control direction and input saturation, a command-filtered adaptive neural tracking
control approach has been presented in [24]. A command-filtered adaptive finite-time control for
nonlinear systems using immersion and invariance has been presented in [25]. For nonlinear systems
with quantized input signals through a command filter, a control issue has been reported in [26].
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Many real-world systems, including electrical power systems, piezoelectric actuators and bilateral
teleoperation systems, exhibit backlash-like hysteresis as one type of input nonlinearity [27]. It’s
vital to note that the nonlinear hysteresis input reduces system performance and can potentially make
the systems unstable [28]. To mitigate the effects of unidentified hysteresis, there are two distinct
approaches. The first approach involves building an inverse model of hysteresis to eliminate the effects
of hysteresis in controller design. The other approach is to use a differential equation to model the
hysteresis and then consider the effects as a bounded disturbance [29]. Therefore, a lot of effort
has been put into the analysis of the backlash-like hysteresis. An adaptive control technique for a
nonlinear system has been reported with backlash-like hysteresis without designing the inverse of the
hysteresis [30]. An adaptive fuzzy control problem has been identified for stochastic nonlinear systems
with unmeasured states and unknown backlash-like hysteresis [31]. An adaptive finite-time control
strategy is suggested for switched nonlinear systems with hysteresis that approximates backlash [32].
The neural approximation has been employed to report a finite-time adaptive controller for nonlinear
systems with unknown backlash-like hysteresis [33].

Inspired by the above discussions, an adaptive neural control problem via the command filter
technique is presented in this paper for a class of nonlinear systems with unknown backlash-like
hysteresis. The primary contribution of this work is summed up as follows:

• In contrast to previous findings [2, 4, 6], the nonstrict-feedback nonlinear system with unknown
hysteresis input is taken into consideration in this study. Additionally, differently from previous
findings [8–10], the influence of the unknown hysteresis input is compensated by estimating an
intermediate variable, and this method can avoid the singularity problem.
• The explosion of the complexity problem with the traditional backstepping design is resolved

using command filters and error compensation signals, suggesting that command filter control is
more suitable in some real applications.
• For the controller design, the associated adaptive parameters are reduced to only one, which could

reduce the computational load and improve the control performance. Based on the Lyapunov
stability theory, the suggested control strategy assures that all of the signals in closed-loop systems
are bounded and that the tracking error varies close to the origin within a small region.

The rest of the paper is structured as follows: The problem formulation and preliminaries are
presented in section two. The controller design process and stability analysis are presented in section
three. A simulation example is provided in section four to demonstrate the viability of the proposed
approach. The conclusion is shown in section five.

2. Problem formulation and preliminaries

Consider the following nonlinear systems in nonstrict-feedback form
ζ̇i = fi(ζ) + gi(ζ)ζi+1 + di(t), i = 1, . . . , n − 1,
ζ̇n = fn(ζ) + gn(ζ)u + dn(t),
y = ζ1,

(2.1)

where ζ represents the state vector, with ζ = [ζ1, ζ2, . . . , ζn]T , fi(·) is an unknown nonlinear function,
gi(·) represents the known nonlinear function, di(t) represents unknown bounded disturbances, y ∈ R

AIMS Mathematics Volume 9, Issue 1, 959–973.



962

represents the system output and u ∈ R represents the system input. The output of the unknown
backlash-like hysteresis is described as

du
dt

= m |
dv
dt
| (γv − u) + c

dv
dt
, (2.2)

where v denotes the input of the backlash-like hysteresis, m and c denote the unknown constants, and
γ > 0 represents the slope of the lines with γ ≥ c.

As mentioned in reference [28], (2.2) can be expressed as

u(v) = γv(t) + d(v), (2.3)

where

d(v) =[u0 − γv0]e−m(v−v0) sgn v̇ + e−uv sgn v̇
∫ v

v0

(c − γ) em(sgn v̇)dη,

where v0 = v(0), u0 = u(0) are the initial conditions of u and v and d(v) is bounded, which has been
proved in [27] such that |d(v)| ≤ D with D being a constant.
Control objective. In this work, the control objective is to design an adaptive control scheme that
ensures the system output y tracks a reference signal ζd while ensuring that all signals remain bounded
within the closed-loop system. Additionally, the goal is to ensure that the tracking error e1 = y − ζd

converges to a bounded set.
In the process of designing a controller, a radial basis function’s NN [15] is used to model a

continuous nonlinear function f (X) : Rn → R, which is represented as

f (X) = WT P(X), (2.4)

where, X ∈ ΩX ⊂ R
q represents the input vector, W = [W1, . . . ,Wl]T is the weight vector with l > 1

being the number of nodes, and P(X) = [pi(X), ..., pl(X)]T ∈ Rl is the radial basis function vector with
pi(X) selected as a Gaussian function defined as

pi(X) = exp
(
−

(X − κi)T (X − κi)
η2

)
, (2.5)

where κi = [κi1, . . . , κiq]T represents the centers of the receptive field and η represents the width
parameter of the Gaussian function.

As described in [15], for any given constant ε > 0 and continuous function f (X), there exists a NN
W∗T P(X) such that

f (X) = W∗T P(X) + δ(X), ∀X ∈ ΩX, (2.6)

where W∗ represents the ideal weight vector defined as

W∗ = arg min
W∈Rl

sup
X∈ΩX

∣∣∣ f (X) −WT P(X)
∣∣∣ , (2.7)

where δ(X) is the approximation error with |δ(X)| < ε. The following assumptions are considered:

Assumption 1. [4] For i = 1, . . . , n, the desired signal ζd and its ith order time derivatives ζ(i)
d are

continuous and bounded.
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Assumption 2. [6] The disturbance di(t) satisfies |di(t)| ≤ d̄i for constants d̄i.

Assumption 3. [8] Let Ωd ∈ R
n be an open set containing the origin, initial condition ζ0 and reference

signal ζd. Within system (1), fi and gi are bounded within in Ω̄d. There are positive constants bm and
bM such that 0 ≤ bm ≤ |gi| ≤ bM. Without loss of generality, suppose that gi > 0.

Remark 1. It’s important to highlight that Assumption 3 specifies that gi is away from zero. Moreover,
as demonstrated in [8], such an assumption is both reasonable and commonly accepted.

Lemma 1. (Young’s Inequality) [34]. For all (x, y) ∈ R2, one has

xy ≤
1
m
|x|m +

1
n
|y|n, (2.8)

where m > 1, n > 1 and (m − 1)(n − 1) = 1.

3. Controller design and stability analysis

In this section, an adaptive control method is presented for nonlinear systems (2.1) using NNs and
the backsepping method via the command filter. Now, define the tracking error variable as e1 = ζ1 − ζd

and ei = ζi − ζi,c for i = 2, 3, . . . , n. Moreover, the virtual controller αi−1 is introduced to represent
the control input of the command filters and χi is the output of these command filters. From [35], the
command filters can be expressed as follows:

χ̇1 = ωnχ2, (3.1)
χ̇2 = −2τωnχ2 − ωn(χ1 − αi), (3.2)

for i = 1, 2, . . . , n − 1. The initial conditions of each filter are given by χ1(0) = αi(0) and χ2(0) = 0.
Furthermore, we can choose the parameters ωn > 0 and τ ∈ (0, 1] such that |χ1 − αi| ≤ µ, with µ > 0.

Remark 2. It is important to emphasize that the use of the filtering command may introduce errors,
thereby adding complexity to achieving good tracking performance. To address this concern, an error
compensation mechanism is designed to reduce the errors (ζi+1,c − αi) that arise during the filtering
process.

The compensating signals ξi (i = 1, . . . , n) are defined as:

ξ1 = −k1ξ1 + g1ξ2 + g1(ζ2,c − α1), (3.3)
ξ̇i = −kiξi − gi−1ξi−1 + giξi+1 + gi(ζi+1,c − αi), (3.4)
ξ̇n = −knξn − gn−1ξn−1, (3.5)

where ki > 0 is given constants and ξ(0) = 0. Also from [36], ||ξi|| is bounded with limt→∞ ||ξi|| ≤
µρ

2ko
,

where k0 = 1/2 min{ki}. Define the compensated tracking errors as νi = ei − ξi. To achieve the control
objective, the virtual control signals and controller are constructed as follows:

α1 =
1
g1

−k1e1 − ν1 + ζ̇d −
ν1θ̂PT

1 P1

2a2
1

 , (3.6)
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αi =
1
gi

−kiei − νi + gi−1ei−1 + ζ̇i,c −
νiθ̂PT

i Pi

2a2
i

 , (3.7)

v =
1

gnγ

(
−knen − νn + gn−1en−1 + ζ̇n,c −

νnθ̂PT
n Pn

2a2
n

)
, (3.8)

where ki > 0 and ai > 0 are constants, γ is defined in (2.3) and θ̂ denotes the estimation of the unknown
parameter θ, where θ is defined as θ = max(‖Wi‖

2; i = 1, 2, . . . , n) with Wi being the weight vector.
Step 1. Let V1 = 1

2ν
2
1 be a Lyapunov function. Differentiating V1 yields

V̇1 = ν1

(
f1(ζ) + g1(ζ)ζ2 + d1(t) − ζ̇d − ξ̇1

)
. (3.9)

Using the approximating ability of radial basis function NNs, one can approximate the unknown
function f1. Thus, for any ε1 > 0, there always exists WT

1 P1(X) NNs such that f1 can be approximated
as

f1 = WT
1 P1(X) + δ1, (3.10)

with δ1 representing the approximation error and |δ1| ≤ ε1.
By applying Young’s inequality, we find that

ν1 f1 ≤
1

2a2
1

ν2
1||W1||

2PT
1 P1 +

1
2

a2
1 +

1
2
ν2

1 +
1
2
ε2

1 , (3.11)

ν1d1 ≤
1
2
ν2

1 +
1
2

d̄2
1. (3.12)

Substituting (3.3), (3.6), (3.11) and (3.12) into (3.9) yields

V̇1 ≤ −k1ν
2
1 +

1
2l2

1

ν2
1

(
‖W1‖

2 − θ̂
)

PT
1 P1 +

1
2

a2
1 +

1
2
ε2

1 +
1
2

d̄2
1) + g1(ζ)ν1ν2. (3.13)

Step k (k = 2, 3, . . . , n − 1). Consider the Lyapunov candidate function as

Vk = Vk−1 +
1
2
ν2

k , (3.14)

then, based on the definition of the tracking error variable ei and the compensating tracking error
variable νi, the derivative of Vk is given by

V̇k = V̇k−1 + νkν̇k = V̇k−1 + νk(ėk − ξ̇k)

≤ −

k−1∑
i=1

kiν
2
i +

k−1∑
i=1

1
2a2

i

ν2
i

(
‖Wi‖

2 − θ̂
)

PT
i Pi

+
1
2

k−1∑
i=1

(a2
i + ε2

i + d̄2
i ) + gk−1νk−1νk + νk( fk) + gkxk+1 + dk(t) − ζ̇k,c − ξ̇k. (3.15)
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By using the approximating ability of radial basis function NNs, one can approximate the unknown
function fk to design the virtual control signal. Thus, for any εk > 0, there always exists WT

k Pk(X))
NNs such that fk can be approximated as

fk = WT
k Pk(X) + δk, (3.16)

with |δk| ≤ εk.
By applying Young’s inequality, we find that

νk fk ≤
1

2a2
k

ν2
k ||Wk||

2PT
k Pk +

1
2

a2
k +

1
2
ν2

k +
1
2
ε2

k , (3.17)

νkdk ≤
1
2
ν2

k +
1
2

d̄2
k . (3.18)

By substituting equations (3.4), (3.7), (3.17) and (3.18) into (3.15), we have

V̇k ≤ −

k∑
i=1

kiν
2
i +

k∑
i=1

1
2a2

i

ν2
i

(
‖Wi‖

2 − θ̂
)

PT
i Pi +

1
2

k∑
i=1

(a2
i + ε2

i + d̄2
i ) + gkνkνk+1. (3.19)

Step n. Consider the following Lyapunov function

Vn = Vn−1 +
1
2
ν2

n. (3.20)

The time derivative of Vn follows as:

V̇n ≤ −

n−1∑
i=1

kiν
2
i +

n−1∑
i=1

1
2a2

i

ν2
i

(
‖Wi‖

2 − θ̂
)

PT
i Pi +

1
2

n−1∑
i=1

1
n

(l2
i + ε2

i + d̄2
i )

+ gn−1νn−1νn + νn

(
fn + gn(γv(t) + d(v)) + dn(t) − ζ̇n,c − ξ̇n

)
. (3.21)

Similarly, for a given εn > 0, we have

fn(ζ) = WT
n Pn(X) + δn (3.22)

with |δn| < εn.
Furthermore, one has

νn fn ≤
1

2a2
n
ν2

n||Wn||
2PT

n Pn +
1
2

a2
n +

1
2
ν2

n +
1
2
ε2

n , (3.23)

and
νndn ≤

1
2
ν2

n +
1
2

d̄2
n, (3.24)

νnd(v) ≤
1
2
ν2

n +
1
2

D2. (3.25)

Substituting Eqs (3.5), (3.8) and (3.23)–(3.25) into (3.21), one has

V̇n ≤ −

n∑
i=1

kiν
2
i +

n∑
i=1

1
2a2

i

ν2
i

(
‖Wi‖

2 − θ̂
)

PT
i Pi +

1
2

n∑
i=1

(a2
i + ε2

i + d̄2
i ) +

1
2

D2. (3.26)
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Design a parameter θ̃ as θ̃ = θ − θ̂ and choose a Lyapunov function as

V = Vn +
1

2β
θ̃T θ̃, (3.27)

where β > 0 is a design parameter.
By using (3.26) and taking the time derivative of V defined in (3.27), one has

V̇ ≤ −
n∑

i=1

kiν
2
i +

1
2

n∑
i=1

(a2
i + ε2

i + d̄2
i ) +

1
β
θ̃

 n∑
i=1

1
2a2

i

βν2
i PT

i Pi −
˙̂θ

 +
1
2

D2. (3.28)

Define the adaptive law as
˙̂θ =

n∑
i=1

1
2a2

i

βν2
i PT

i Pi − %θ̂, (3.29)

where ai > 0, % > 0 and β > 0 are the design parameters.

Theorem 1. Consider the nonlinear system (2.1) with an unknown hysteresis input (2.2), assuming
that the system (2.1) satisfies Assumptions 1–3. Under the virtual controllers (3.6) and (3.7), real
controller (3.8) and adaptive law (3.29), the following outcomes can be affirmed: (i) The boundedness
of all signals within the closed-loop system can be assured; (ii) the system output y can closely track
the reference signal ζd.

Proof. By utilizing (3.29), we rewrite (3.28) as

V̇ ≤ −
n∑

i=1

kiν
2
i +

1
2

n∑
i=1

(a2
i + ε2

i + d̄2
i ) +

%

β
θ̃T θ̂+

1
2

D2. (3.30)

Applying Young’s inequality, it is evident that

θ̃T θ̂ ≤ −
1
2
θ̃2 +

1
2
θ2. (3.31)

Consequently, we can conclude that

V̇ ≤ −
n∑

i=1

kiν
2
i +

1
2

n∑
i=1

(a2
i + ε2

i + d̄2
i ) −

%

2β
θ̃2 +

%

2β
θ2+

1
2

D2 ≤ −aV + b, (3.32)

where a = min{2k1, . . . , 2kn, %} and b = 1
2

∑n
i=1(a2

i + ε2
i + d̄2

i ) +
%

2βθ
2+1

2 D2,
then, based on Eq (3.32) one has

V(t) ≤
(
V(t0) −

b
a

)
e−a(t−t0) +

b
a
≤ V(t0) +

b
a
,∀t ≥ t0. (3.33)

It is evident that νi and θ̃ are bounded for i = 1, 2, . . . , n. Since θ is a constant, θ̂ is bounded in
probability. The norm ‖ξi‖ is bounded, and with ei = νi + ξi we can ascertain that the signal ei is
also bounded. Consequently, both ζ(t) and all control signals remain bounded over any time interval.
By [36], we can conclude that a solution exists for t ∈ [0,∞). Therefore, it can be established that

lim
t→∞
|e1| ≤

√
2b
a

+
µρ

2k0
. (3.34)

�
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Remark 3. It is clear from inequality (3.34) and the definitions of a and b that the design parameters
ki, % and ai have an impact on the tracking error e1 = y − ζd. The tracking error will be significantly
reduced by increasing ki and % while simultaneously decreasing ai.

4. Simulation results

This section gives an example to demonstrate the viability of the proposed control approach.
Example 1. (Single-link robot manipulator system application) Consider the following single-link
robot system [37] as depicted in Figure1:

Mq̈ +
1
2

m1gl sin(q) = u, y = q, (4.1)

where M stands for the moment of inertia with a value of 0.5 kg ·m2, l represents the length of one m,
m1 is the mass with a weight of one kg, q denotes the angle between the link and the horizontal ground,
g stands for the acceleration due to gravity at 9.8 m/s2 and u represents the input torque.

Figure 1. Architecture of single-link robot manipulator system.

Furthermore, (4.1) can be expressed as
ζ̇1 = ζ2,

ζ̇2 = 1
M u − 1

2M m1gl sin(ζ1) + sin(t),
y = ζ1,

(4.2)

where f1 = 0, f2 = − 1
2M m1gl sin(ζ1), g1 = 1, g2 = 1

M , d1 = 0, d2 = sin(t) and u represents the output
of a backlash-like hysteresis described in (2.2) with m = 1, γ = 4.125 and c = 0.432. The reference
signal is represented as ζd = 0.5 sin(2t).

The system (4.2) is subjected to control using the command-filtering neural controller proposed in
this paper. Error definitions are provided as follows: e1 = ζ1 − ζd and e2 = ζ2 − ζ2,c. The virtual control
law is designed as

α1 =
1
g1

−k1e1 − ν1 + ζ̇d −
ν1θ̂PT

1 P1

2a2
1

 . (4.3)
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Compensating signals are designed as

ξ̇1 = −k1ξ1 + ξ2 + (ζ1,c − α1), (4.4)

ξ̇2 = −k2ξ2 − ξ1 + ξ3 + (ζ2,c − α2). (4.5)

The compensated error signals are denoted as νi = ei − ξi for i = 1, 2, and the control law v is given by

v =
1

g2γ

−k2e2 − ν2 + g1e1 + ζ̇2,c −
ν2θ̂PT

2 P2

2a2
2

 . (4.6)

The adaptive law is designed as

˙̂θ =

n∑
i=1

βν2
i PT

i Pi
1

2a2
i

− %θ̂, i = 1, 2. (4.7)

The initial conditions are chosen as ζ1(0) = 0.5, ζ2(0) = 0, and θ̂(0) = 0. The design parameters are
chosen by using a trial and error method as k1 = 10, k2 = 10, a1 = 1, a2 = 1, % = 0.5 and β = 2.

The simulation results are presented in Figures 2–7. Figures 2 and 3 display the comparative
simulation results obtained using the proposed method and the existing control method described
in [20], respectively. Observing Figures 2 and 3, it becomes evident that while the control method
outlined in [20] yields good tracking performance, the proposed control method exhibits a slight
improvement in tracking performance over the existing method [20]. Specifically, the tracking error
of the proposed control method is slightly better than that of the existing method in [20], ensuring a
more accurate and controlled trajectory for the tracked signal. Furthermore, Figure 4 offers insights
into the system state ζ2. The behavior of the adaptive law θ̂ is illustrated in Figures 5 and 6 for both the
proposed control method and the existing control method detailed in [20], demonstrating its bounded
nature. The system input u and the control signal v are depicted in Figure 7. These simulation results
make it evident that the proposed control method not only ensures the boundedness of all closed-loop
signals in the system (4.2), but also achieves impressive tracking performance.
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Figure 2. Tracking Performance. ζd is the reference signal and yProposed and yExisting are the
system outputs by using the proposed control method and existing control method in [20],
respectively.
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Figure 3. Tracking error e1. e1(Proposed) and e1(Existing) represent the tracking error by
using the proposed control method and existing proposed method in [20], respectively.
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Figure 4. The state variable ζ2 .
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Figure 5. The response of adaptive law θ̂ by using the proposed method.
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Figure 6. The response of adaptive law θ̂1 and θ̂2 by using the existing control method in [20].
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Figure 7. Trajectory of v and u.

5. Conclusions

This paper addressed the adaptive neural control problem for nonstrict-feedback nonlinear systems
with unknown backlash-like hysteresis and bounded disturbance. By using the approximation abilities
of radial basis function neural networks (RBFNN), the command filter method and the backstepping
technique, an adaptive controller was designed, which effectively ensures boundedness of all signals in
the closed-loop system. The feasibility of this approach was demonstrated via a single-link manipulator
example. Future research will examine the inclusion of state variables that are not directly measurable,
improving the applicability for real industrial systems.
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