## Research article

# An optimal choice Dai-Liao conjugate gradient algorithm for unconstrained optimization and portfolio selection 

Jamilu Sabi'u ${ }^{1}$, Ibrahim Mohammed Sulaiman ${ }^{2,3, *}$, P. Kaelo ${ }^{4}$, Maulana Malik ${ }^{5}$ and Saadi Ahmad Kamaruddin ${ }^{2, *}$<br>${ }^{1}$ Department of Mathematics, Yusuf Maitama Sule University Kano, Nigeria<br>${ }^{2}$ Institute of Strategic Industrial Decision Modelling, School of Quantitative Sciences, Universiti Utara Malaysia, Sintok 06010, Malaysia<br>${ }^{3}$ Faculty of Education and Arts, Sohar University, Sohar 311, Oman<br>${ }^{4}$ Department of Mathematics, University of Botswana, Private Bag UB00704, Gaborone, Botswana<br>${ }^{5}$ Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia

* Correspondence: Email: i.mohammed.sulaiman@uum.edu.my, s.ahmad.kamaruddin@uum.edu.my.


#### Abstract

In this research, we propose an optimal choice for the non-negative constant in the DaiLiao conjugate gradient formula based on the prominent Barzilai-Borwein approach by leveraging the nice features of the Frobenius matrix norm. The global convergence of the new modification is demonstrated using some basic assumptions. Numerical comparisons with similar algorithms show that the new approach is reliable in terms of the number of iterations, computing time, and function evaluations for unconstrained minimization, portfolio selection and image restoration problems.


Keywords: unconstrained optimization; BB approach; descent property; global convergence Mathematics Subject Classification: 90C26, 90C30

## 1. Introduction

This paper is interested in unconstrained optimization model of the form:

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} f(x) \tag{1.1}
\end{equation*}
$$

where $f$ is a smooth nonlinear function, such that $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is continuously differentiable. This topic has several applications in finance, engineering, security, and scientific computing [1-7]. As a
result, reliable and efficient numerical procedures for obtaining the solution of (1.1), such as Newtontype procedures, spectral gradient methods and conjugate gradient (CG) algorithms, have been widely investigated in the literature, see [8-13]. Of all these mentioned methods used for the solution of (1.1), the CG algorithms are the most extensively used because of their nice convergence properties in addition to less memory requirements [14]. Given the starting guess, $x_{0} \in \mathbb{R}^{n}$, the CG algorithm recursively produces its iterative points via

$$
\begin{equation*}
x_{k+1}=x_{k}+\alpha_{k} d_{k}, \tag{1.2}
\end{equation*}
$$

where $\alpha_{k}$ is the step size calculated based on either exact or inexact line search strategies. The vector $d_{k}$ is the CG search direction with the formula

$$
\begin{equation*}
d_{0}=-g_{0}, \quad d_{k+1}=-g_{k+1}+\beta_{k} d_{k}, \quad k=0,1, \cdots . \tag{1.3}
\end{equation*}
$$

Here, $\beta_{k}$ is the CG parameter and the gradient $g_{k}:=\nabla f\left(x_{k}\right)$. This parameter measures the efficiency and reliability of various CG methods [8]. Hestenes and Stiefel [9] (HS) proposed one of the essential CG parameters, namely,

$$
\beta_{k}^{H S}=\frac{g_{k+1}^{T} y_{k}}{d_{k}^{T} y_{k}},
$$

in which $y_{k}=g_{k+1}-g_{k}$. The direction $d_{k}$ of HS satisfies the conjugacy condition $d_{k+1}^{T} y_{k}=0, \forall k \geq 0$, irrespective of the line search procedure employed. Dai and Liao [15] (DL) introduced a new CG parameter

$$
\begin{equation*}
\beta_{k}^{D L}=\frac{g_{k+1}^{T} y_{k}}{d_{k}^{T} y_{k}}-t \frac{g_{k+1}^{T} s_{k}}{d_{k}^{T} y_{k}} \tag{1.4}
\end{equation*}
$$

which is widely considered as an extension of HS, where $t$ is defined as a nonnegative scalar parameter. The parameter (1.4) satisfies an extended conjugacy condition $d_{k+1}^{T} y_{k}=-t g_{k+1}^{T} s_{k}$, and it is easy to see that the parameter (1.4) reduces to $\beta_{k}^{H S}$ for $t=0$. Some efficient adaptive versions of (1.4) have also been presented by Hager and Zhang in [16] and Dai and Kou in [17]. Andrei [18] highlighted that the appropriate choice for $t$ in DL method remains an open issue in this subject. This inspired BabaieKafaki and Ghanbari $[19,20]$ to use the beauty of the eigenvalue and singular values to offer some optimum alternatives for $t$ as

$$
t_{k 1}^{*}=\frac{\left\|y_{k}\right\|}{\left\|s_{k}\right\|}, \quad \text { and } \quad t_{k 2}^{*}=\frac{s_{k}^{T} y_{k}}{\left\|y_{k}\right\|^{2}}+\frac{\left\|y_{k}\right\|}{\left\|s_{k}\right\|} .
$$

The authors also offered an additional optimal solution for $t$ by minimizing the distance between the search direction of DL method and a three-term CG algorithm presented by Zhang et al. [21], as well as the search direction matrix's Frobenius condition number [22]. Zhang et al. [23] proposed an optimal value for $t$ by clustering all singular values and minimizing the upper bound of the $d_{k}$ matrix's spectral condition number, given as

$$
t_{k 3}^{*}=\frac{\left\|y_{k}\right\|^{2}}{s_{k}^{T} y_{k}}-\frac{s_{k}^{T} y_{k}}{4\left\|s_{k}\right\|^{2}} .
$$

Furthermore, for information on other DL methods and their variants, we recommend the reader to [24-30] and the references therein.

In this article, we propose an optimal choice for $t$ in the DL CG parameter based on the well-known Barzilai-Borwein (BB) approach [31]. In Section 2, we provide our choice for $t$ based on the BB technique. Using the recommended choices for parameter $t$, we explore the global convergence of the DL method and is presented in Section 3. Section 4 presents numerical comparisons and Section 5 present the application of the new algorithm on portfolio selection and image restoration problems. Finally, in Section 6, we give the conclusions.

## 2. An optimal choice based on BB approach

This section presents an optimal choice for the DL CG method based on the prominent BB approach. Rewriting the search direction of the DL algorithm, we have

$$
d_{k+1}=-H_{k+1} g_{k+1},
$$

where

$$
H_{k+1}=I-\frac{s_{k} y_{k}^{T}}{y_{k}^{T} s_{k}}+t_{k} \frac{s_{k} s_{k}^{T}}{y_{k}^{T} s_{k}} .
$$

Among the excellent scaling parameters used in the spectral residual methods are ones proposed by Barzilai-Borwein [31] given by

$$
\theta_{k}^{1}=\frac{s_{k}^{T} s_{k}}{y_{k}^{T} s_{k}} \quad \text { and } \quad \theta_{k}^{2}=\frac{s_{k}^{T} y_{k}}{y_{k}^{T} y_{k}} .
$$

Now, our aim is to propose another non-negative optimal choice parameter of the DL algorithm by utilizing the prominent features of the Barzilai-Borwein [31] approach, that is, by considering the minimization problem

$$
\begin{equation*}
\min _{t}\left\|H_{k+1}-\theta_{k} I\right\|_{F}^{2}, \tag{2.1}
\end{equation*}
$$

where $\|.\|_{F}^{2}$ denotes the norm of the Frobenius matrix, and

$$
\theta_{k}=\max \left\{\theta_{\min }, \min \left\{\theta_{k}^{1}, \theta_{k}^{2}, \theta_{\max }\right\}\right\},
$$

with $0<\theta_{\text {min }}<\theta_{\text {max }}<\infty$.
If we let $D_{k+1}=H_{k+1}-\theta_{k} I$ and also by utilizing the beautiful properties of the Frobenius matrix norm, the minimization problem (2.1) is equivalent to minimizing trace ( $D_{k+1}^{T} D_{k+1}$ ). Now, using

$$
D_{k+1}=\left(1-\theta_{k}\right) I-\frac{s_{k} y_{k}^{T}}{y_{k}^{T} s_{k}}+t \frac{s_{k} s_{k}^{T}}{y_{k}^{T} s_{k}},
$$

and simple algebra, by minimizing

$$
\operatorname{trace}\left(D_{k+1}^{T} D_{k+1}\right)=t^{2} \frac{\left\|s_{k}\right\|^{4}}{\left(y_{k}^{T} s_{k}\right)^{2}}-2 t \theta_{k} \frac{\left\|s_{k}\right\|^{2}}{y_{k}^{T} s_{k}}+\psi,
$$

where $\psi$ represents terms independent of $t$, we derive another optimal choice parameter for the DL CG method as

$$
\begin{equation*}
t_{k}^{*}=\theta_{k} \frac{y_{k}^{T} s_{k}}{s_{k}^{T} s_{k}} \tag{2.2}
\end{equation*}
$$

Notice here that when $\theta_{k}=1$, then we have the MDL3 method by Saman and Ghanbari [22]. Moreover, since the study considered the condition from strong Wolfe line search, then, $d_{k}^{T} y_{k} \geq-(1-\sigma) d_{k}^{T} g_{k}>0$, and in this situation $t_{k}^{*}=\theta_{k} \frac{{ }_{k}^{T} s_{k}^{T} s_{k}}{s_{k}^{T} s_{k}}>0$.

The following algorithm demonstrates the computational process of the proposed method under strong Wolfe conditions.

```
Algorithm 1: Algorithm for DLBB method under strong Wolfe conditions.
    Input : Initializing \(x_{0} \in \mathbb{R}^{n}\), and \(0<\epsilon<1\) as tolerance.
    Step 1: To control the process, check if \(\left\|g_{k}\right\|=0\), then
        terminate.
    end
    Step 2: if \(k=0\), then
        set \(d_{k}:=-g_{k}\);
    else
        Calculate the new \(d_{k}\) as:
                        \(d_{k}=-g_{k}+\beta_{k} d_{k-1}\).
```

        where \(\beta_{k}\) is the CG coefficient defined by (1.4) with the new optimal parameter \(t\) calculated
        via (2.2).
    end
    Step 3 : Obtain \(\alpha_{k}\) based on the following conditions of the strong Wolfe (SWP) strategies
    $$
\begin{align*}
& f\left(x_{k}+\alpha_{k} d_{k}\right) \leq f\left(x_{k}\right)+\delta \alpha_{k} g_{k}^{T} d_{k},  \tag{2.3}\\
& \left|g\left(x_{k}+\alpha_{k} d_{k}\right)^{T} \quad d_{k}\right| \leq \sigma\left|g_{k}^{T} d_{k}\right|, \tag{2.4}
\end{align*}
$$

where $0<\delta<\sigma<1$.
Step 4: Calculate the next iterative point by (1.2).
Step 5 : Restart the process from Step 1 with $k:=k+1$.

## 3. Convergence analysis

This section will discuss the convergence analysis of the new choice parameter $t$ for the DL method defined by (2.2).

To achieve the convergence of the proposed formula using the new choice parameter $t$, the assumptions defined below in addition to the Zoutendijk condition would be needed.

## Assumption A.

(1) Given a starting point $x_{0} \in \mathbb{R}^{n}$, the level set $\Omega=\left\{x \in \mathbb{R}^{n} \mid f(x) \leq f\left(x_{0}\right)\right\}$ of $f(x)$ is bounded.
(2) $f$ is a smooth function in some neighborhood $N$ of $\Omega$ and the gradient $g(x)$ is Lipschitz continuous on an open convex set $N$ containing $\Omega$, in such a way that a constant $L>0$ exists and satisfies

$$
\|g(x)-g(y)\| \leq L\|x-y\|, \quad \forall x, y \in N
$$

For the function $f$, this assumption implies that there exists a constant $\gamma>0$ satisfying

$$
\|g(x)\| \leq \gamma \quad \forall x \in N
$$

It is important to note here that the sufficient descent condition

$$
\begin{equation*}
d_{k}^{T} g_{k} \leq-c\left\|g_{k}\right\|^{2}, \quad c>0, \tag{3.1}
\end{equation*}
$$

for a DL method (1.4) with $t=t_{k}^{*}$ cannot always be guaranteed, in which case the steepest descent direction $d_{k}=-g_{k}$ is used. The result that follows is very important in the analysis of CG formulas and was presented by Zoutendijk [32].

Lemma 3.1. Let Assumption A hold. Then, for any iteration scheme of the form (1.2) and (1.3), where $d_{k}$ is a descent direction and the step size is computed using the Wolfe strategies,

$$
\sum_{k=0}^{\infty} \frac{\left(g_{k}^{T} d_{k}\right)^{2}}{\left\|d_{k}\right\|^{2}}<+\infty
$$

Proof. From (2.4), if the curvature condition

$$
g_{k+1}^{T} d_{k} \geq \sigma g_{k}^{T} d_{k}, \sigma<1,
$$

holds, then, using the Lipschitz condition, we obtain that

$$
-(1-\sigma) g_{k}^{T} d_{k} \leq d_{k}^{T}\left(g_{k+1}-g_{k}\right) \leq L \alpha_{k}\left\|d_{k}\right\|^{2}
$$

This implies that

$$
\begin{equation*}
\alpha_{k} \geq \frac{(1-\sigma)\left|g_{k}^{T} d_{k}\right|}{L\left\|d_{k}\right\|^{2}} . \tag{3.2}
\end{equation*}
$$

And from the Armijo condition (2.3), we get that

$$
\frac{\delta(1-\sigma)}{L} \frac{\left(g_{k}^{T} d_{k}\right)^{2}}{\left\|d_{k}\right\|^{2}} \leq-\delta \alpha_{k} g_{k}^{T} d_{k} \leq f\left(x_{k}\right)-f\left(x_{k+1}\right),
$$

which on summing over $k$, and using the fact that $f$ is bounded from below, gives

$$
\sum_{k=0}^{\infty} \frac{\left(g_{k}^{T} d_{k}\right)^{2}}{\left\|d_{k}\right\|^{2}}<+\infty
$$

Now, from the strong Wolfe conditions, (3.1) and (3.2), we conclude that there exists a constant $\bar{\alpha}>0$ such that

$$
\alpha_{k} \geq \bar{\alpha}, \forall k \geq 0 .
$$

For strong Wolfe line search conditions, we have the following important results for conjugate gradient methods.

Lemma 3.2. [33] Let Assumption A hold. Then, for any iteration scheme of the form (1.2) and (1.3), where $d_{k}$ satisfies the descent condition (3.1), with the step length computed using the SWP strategies (2.3) and (2.4), either

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{\left\|g_{k}\right\|^{4}}{\left\|d_{k}\right\|^{2}}<+\infty \tag{3.3}
\end{equation*}
$$

or

$$
\liminf _{k \rightarrow \infty}\left\|g_{k}\right\|=0
$$

Consequently, the following lemma follows.
Lemma 3.3. Let Assumption A hold. Then, for any CG process in the form (1.2) and (1.3), where the step size $\alpha_{k}$ is computed using SWP conditions (2.3) and (2.4), and $d_{k}$ satisfies the descent property (3.1), if

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{\left\|d_{k}\right\|^{2}}=\infty \tag{3.4}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\liminf _{k \rightarrow \infty}\left\|g_{k}\right\|=0 \tag{3.5}
\end{equation*}
$$

Proof. We prove this by contradiction. That is, we assume (3.5) is not true. Then there exists a constant $r>0$ such that $\left\|g_{k}\right\| \geq r$ for all $k \geq 0$. From Lemma 3.2, we have that (3.3) holds. Hence

$$
\sum_{k=0}^{\infty} \frac{1}{\left\|d_{k}\right\|^{2}} \leq \frac{1}{r^{4}} \sum_{k=0}^{\infty} \frac{\left\|g_{k}\right\|^{4}}{\left\|d_{k}\right\|^{2}}<\infty
$$

which contradicts (3.4). Thus, (3.5) holds true.
By Cauchy-Schwarz inequality, we have that

$$
t_{k}^{*} \leq \theta_{k} \frac{\left\|s_{k}\right\|\left\|y_{k}\right\|}{\left\|s_{k}\right\|^{2}} \leq L \theta_{\max }
$$

and therefore, the norm of $d_{k}$ generated by (1.4) can be proved to be bounded above for uniformly convex functions. Thus, we have the following theorem.

Theorem 3.1. Suppose Assumption A holds. Let the CG method be defined by (1.2) and (1.3), where $\beta_{k}$ follows from (1.4) and $t=t_{k}^{*}$. If $f$ is uniformly convex on $N$, that is, there exists a constant $\mu>0$ such that

$$
(\nabla f(x)-\nabla f(y))^{T}(x-y) \geq \mu\|x-y\|^{2}, x, y \in N
$$

the descent condition (3.1) holds and $\alpha_{k}>0$ is computed using the SWP strategies (2.3) and (2.4), then the new formula converges such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|g_{k}\right\|=0 \tag{3.6}
\end{equation*}
$$

Proof. Suppose that $g_{k} \neq 0$ for all $k$. By the uniformly convex property of $f$, we have

$$
d_{k-1}^{T} y_{k-1} \geq \mu \alpha_{k-1}\left\|d_{k-1}\right\|^{2}
$$

Using the triangle and Cauchy-Schwarz inequalities, it follows that

$$
\begin{aligned}
\left|\beta_{k}\right| & =\left|\frac{g_{k}^{T} y_{k-1}}{d_{k-1}^{T} y_{k-1}}-t^{*} \frac{g_{k}^{T} s_{k-1}}{d_{k-1}^{T} y_{k-1}}\right| \\
& \left.\leq\left|\frac{g_{k}^{T} y_{k-1}}{d_{k-1}^{T} y_{k-1}}\right|+\left|t^{*}\right|\left|\frac{g_{k}^{T} s_{k-1}}{d_{k-1}^{T} y_{k-1}}\right| \right\rvert\, \\
& \leq \frac{\left\|g_{k}\right\|\left\|y_{k-1}\right\|}{\mu \alpha_{k-1}\left\|d_{k-1}\right\|^{2}}+t^{*} \frac{\left\|g_{k}\right\|}{\mu\left\|d_{k-1}\right\|} \\
& \leq \frac{L\left\|g_{k}\right\|\left\|d_{k-1}\right\|}{\mu\left\|d_{k-1}\right\|^{2}}+t^{*} \frac{\left\|g_{k}\right\|}{\mu\left\|d_{k-1}\right\|} \\
& \leq \frac{L}{\mu}\left(1+\theta_{\max }\right) \frac{\left\|g_{k}\right\|}{\left\|d_{k-1}\right\|} .
\end{aligned}
$$

As a result, we obtain that

$$
\begin{align*}
\left\|d_{k}\right\| & \leq\left\|g_{k}\right\|+\mid \beta_{k}\| \| d_{k-1} \| \\
& \leq \frac{L}{\mu}\left(1+\theta_{\max }\right)\left\|g_{k}\right\| \| \\
& =\tilde{\gamma}\left\|g_{k}\right\| \leq \tilde{\gamma} \gamma, \tag{3.7}
\end{align*}
$$

which implies (3.4) holds and hence (3.5) is true, which is equivalent to (3.6) for uniformly convex functions.

Note that if the parameter $\beta_{k}^{D L B B}$ is modified as

$$
\beta_{k}^{D L}=\max \left\{\frac{g_{k}^{T} y_{k-1}}{d_{k-1}^{T} y_{k-1}}, 0\right\}-t^{*} \frac{g_{k}^{T} s_{k-1}}{d_{k-1}^{T} y_{k-1}},
$$

with $t_{k}^{*}$ defined by (2.2), and $d_{k}$ satisfies the descent condition (3.1), then, Theorem 3.6 of Dai and Liao [15] ensures the global convergence of the algorithm for general nonlinear functions.

## 4. Numerical results

This section demonstrates the numerical efficiency of the proposed DLBB method by comparing its performance with other existing algorithms of the same class under the strong Wolfe conditions. The forty-nine (49) benchmark problems employed for this analysis (see Table 1) are taken from [34]. For each problem, different initial points are used and the dimensions considered range from 2 up to 100,000 . The efficiency of the methods are measured based on the following metrics: number of iterations (NOI), Number of function evaluations (NOF), and CPU time. For the comparison, we considered the following methods

- The classical Dai-Liao method in [15].
- The DLHZ method in [16].
- The MDL3 and MDL4 methods in [22].
- The EJHJ and MEJHJ methods in [6] with $\delta=0.0001$ and $\sigma=0.99$.

Table 1. List of Test Functions.

| No | Function | No | Function |
| :--- | :--- | :--- | :--- |
| F1 | Extended Penalty | F26 | Diagonal 4 |
| F2 | Extended Maratos | F27 | Diagonal 7 |
| F3 | Diagonal 5 | F28 | Diagonal 8 |
| F4 | Trecanni | F29 | Diagonal 9 |
| F5 | Extended quadratic penalty QP1 | F30 | DENSCHNA |
| F6 | Extended quadratic penalty QP2 | F31 | DENSCHNC |
| F7 | Quadratic QF1 | F32 | Extended Block-Diagonal |
| F8 | Quadratic QF2 | F33 | HIMMELBH |
| F9 | POWER | F34 | DQDRTIC |
| F10 | Zettl | F35 | QUARTICM |
| F11 | Diagonal 2 | F36 | Linear Perturbed |
| F12 | Test | F37 | Tridiagonal White \& Holst |
| F13 | Sum Squares | F38 | ENGVAL1 |
| F14 | Shallow | F39 | ENGVAL8 |
| F15 | Quartic | F40 | DENSCHNF |
| F16 | Matyas | F41 | ARWHEAD |
| F17 | Diagonal 1 | F42 | Six hump |
| F18 | Hager | F43 | Price 4 |
| F19 | Zirilli or Aluffi-Pentini's | F44 | Extended Himmelblau |
| F20 | Raydan 1 | F45 | Rotated Ellipse |
| F21 | Raydan 2 | F46 | El-Attar-Vidyasagar-Dutta |
| F22 | FLETCHCR | F47 | Extended Hiebert |
| F23 | Diagonal 3 | F48 | Extended Tridiagonal 1 |
| F24 | Extended DENSCHNB | F49 | Three hump |
| F25 | Diagonal 6 |  |  |

The codes used for this experiment are coded in MATLAB R2019b software and ran on a core i5 Windows 10 PC with 8GB RAM. The stopping criteria is set as $\left\|g_{k}\right\| \leq 10^{-6}$ or as number of maximum iterations, i.e., 2,000 . If any of these conditions does not hold, we represent that point as failure and denote it by "*". The detailed presentation of the numerical results is presented in Tables 2-6.

To graphically interpret the performance of the obtained numerical results, we employed a performance profile tool introduced by [35]. Based on the performance profile, each algorithm is represented by a curve for comparison purpose. The algorithm with the best performance has its curve lying above all other algorithms implying that it solved more number of the test problems considered in Table 1. The experimental results for all the methods are graphed in Figure 1 (NOI), Figure 2 (NOF), and Figure 3 (CPU time) under strong Wolfe line search (2.3) and (2.4) with parameter values given as $\delta=0.0001$ and $\sigma=0.0002$.
Table 2. Numerical comparison of DLBB algorithm versus DL, DLHZ, MDL3, MDL4, EJHJ, and MEJHJ algorithms.

| Function | DIM | DLBB |  |  | DL |  |  | DLHZ |  |  | MDL3 |  |  | MDL4 |  |  | EJHJ |  |  | MEJHJ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | NOI | NOF | CPU |
| F1 | 100 | 3 | 4 | 0.002082 | 3 | 4 | 0.001972 | 4 | 5 | 0.021215 | 3 | 4 | 0.028434 | 3 | 4 | 0.002023 | 7 | 8 | 0.002013 | 6 | 7 | 0.047884 |
| F1 | 10000 | 3 | 4 | 0.002613 | 22 | 23 | 0.002565 | * | * | * | 3 | 4 | 0.00296 | 3 | 4 | 0.00256 | 7 | 8 | 0.003086 | * | * | * |
| F1 | 20000 | 14 | 15 | 0.00388 | 20 | 21 | 0.003333 | * | * | * | 4 | 5 | 0.003144 | 3 | 4 | 0.003638 | * | * | * | * | * | * |
| F2 | 2 | 16 | 17 | 0.003618 | 16 | 17 | 0.001621 | 16 | 17 | 0.001623 | 29 | 30 | 0.002237 | 29 | 30 | 0.001559 | 34 | 35 | 0.14608 | 31 | 32 | 0.00174 |
| F2 | 20 | 16 | 17 | 0.001804 | 16 | 17 | 0.00152 | 16 | 17 | 0.001533 | * | * | * | * | * | * | 42 | 43 | 0.004562 | 32 | 33 | 0.001812 |
| F3 | 10 | 2 | 3 | 0.40622 | 2 | 3 | 0.007599 | * | * | * | 2 | 3 | 0.006907 | 2 | 3 | 0.027818 | 2 | 3 | 16.8813 | 2 | 3 | 2.7997 |
| F3 | 50000 | 2 | 3 | 0.60107 | 2 | 3 | 0.45496 | * | * | * | 2 | 3 | 0.41073 | 2 | 3 | 0.26647 | 2 | 3 | 0.72594 | 2 | 3 | 19.8002 |
| F3 | 100000 | 2 | 3 | 1.1023 | 4 | 5 | 2.1626 | * | * | * | 2 | 3 | 0.80044 | 2 | 3 | 0.58837 | 2 | 3 | 1.099 | 2 | 3 | 0.55087 |
| F4 | 2 | 4 | 5 | 0.001863 | 4 | 5 | 0.001937 | 4 | 5 | 0.002585 | 4 | 5 | 0.002097 | 5 | 6 | 0.001784 | 8 | 9 | 0.021197 | 7 | 8 | 0.005167 |
| F4 | 2 | 4 | 5 | 0.002285 | 4 | 5 | 0.001721 | 4 | 5 | 0.002246 | 5 | 6 | 0.00224 | 5 | 6 | 0.001938 | 7 | 8 | 0.012456 | 6 | 7 | 0.003696 |
| F5 | 4 | 6 | 7 | 0.26128 | 6 | 7 | 0.011473 | 6 | 7 | 0.009658 | 6 | 7 | 0.010866 | 6 | 7 | 0.072683 | 10 | 11 | 5.996 | 7 | 8 | 0.75079 |
| F5 | 100 | 4 | 5 | 0.007224 | 4 | 5 | 0.01019 | 4 | 5 | 0.008486 | 5 | 6 | 0.014262 | 5 | 6 | 0.01008 | 16 | 17 | 0.034523 | 8 | 9 | 0.010091 |
| F5 | 10000 | 4 | 5 | 0.085455 | 4 | 5 | 0.079038 | 4 | 5 | 0.10045 | * | * | * | * | * | * | * | * | * | 10 | 11 | 0.56667 |
| F6 | 500 | 19 | 20 | 0.43971 | 52 | 53 | 0.43716 | * | * | * | * | * | * | * | * | * | 5 | 6 | 8.4535 | 3 | 4 | 0.9851 |
| F6 | 50000 | 31 | 32 | 11.7492 | 100 | 101 | 38.8894 | * | * | * | * | * | * | * | * | * | 5 | 6 | 0.73796 | * | * | * |
| F6 | 100000 | 32 | 33 | 24.9882 | 104 | 105 | 83.7568 | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * |
| F7 | 10 | 5 | 6 | 0.057091 | 5 | 6 | 0.022205 | 5 | 6 | 0.021445 | 19 | 20 | 0.055992 | 21 | 22 | 0.077409 | 39 | 40 | 0.46801 | 41 | 42 | 0.62606 |
| F7 | 50 | 5 | 6 | 0.012991 | 5 | 6 | 0.017794 | 5 | 6 | 0.01924 | * | * | * | 4 | 5 | 0.017261 | 450 | 451 | 5.0906 | 29 | 30 | 0.21465 |
| F8 | 50 | 2 | 3 | 0.056291 | 2 | 3 | 0.011572 | * | * | * | 2 | 3 | 0.005114 | 2 | 3 | 0.011223 | 4 | 5 | 0.1411 | 2 | 3 | 5.9251 |
| F8 | 1000 | 1 | 2 | 0.021703 | 1 | 2 | 0.006631 | 1 | 2 | 0.006328 | 1 | 2 | 0.00642 | 1 | 2 | 0.006966 | 4 | 5 | 0.036183 | 2 | 3 | 0.043514 |
| F8 | 5000 | 1 | 2 | 0.010908 | 1 | 2 | 0.010132 | 1 | 2 | 0.009809 | 1 | 2 | 0.011596 | 1 | 2 | 0.00976 | 4 | 5 | 0.14749 | 2 | 3 | 0.65248 |
| F9 | 2 | 2 | 3 | 0.004275 | 2 | 3 | 0.001598 | 2 | 3 | 0.002571 | 2 | 3 | 0.002307 | 2 | 3 | 0.002439 | 15 | 16 | 0.003946 | 6 | 7 | 0.00187 |
| F9 | 2 | 2 | 3 | 0.00182 | 2 | 3 | 0.001466 | 2 | 3 | 0.001776 | 2 | 3 | 0.002199 | 2 | 3 | 0.002205 | 17 | 18 | 0.001761 | 6 | 7 | 0.002644 |
| F10 | 2 | 9 | 10 | 0.001705 | 9 | 10 | 0.001563 | 9 | 10 | 0.001638 | 10 | 11 | 0.002207 | 10 | 11 | 0.002038 | 17 | 18 | 0.001817 | 12 | 13 | 0.001891 |
| F10 | 2 | 10 | 11 | 0.001459 | 10 | 11 | 0.002217 | 10 | 11 | 0.001977 | 10 | 11 | 0.002033 | 10 | 11 | 0.001944 | 25 | 26 | 0.00147 | 11 | 12 | 0.001913 |

Table 3. Numerical comparison of DLBB algorithm versus DL, DLHZ, MDL3, MDL4, EJHJ, and MEJHJ algorithms.

| Function | DIM | DLBB |  |  | DL |  |  | DLHZ |  |  | MDL3 |  |  | MDL4 |  |  | EJHJ |  |  | MEJHJ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | NOI | NOF | CPU |
| F11 | 1000 | 156 | 157 | 0.37457 | 157 | 158 | 0.30382 | 159 | 160 | 0.31832 | 175 | 176 | 0.38061 | 163 | 164 | 0.36371 | 167 | 168 | 0.56639 | 170 | 171 | 0.63796 |
| F11 | 10000 | 543 | 544 | 9.3228 | 522 | 523 | 8.6765 | 527 | 528 | 8.7013 | 531 | 532 | 9.3352 | 471 | 472 | 8.0788 | 519 | 520 | 7.0927 | 532 | 533 | 6.71 |
| F11 | 50000 | 849 | 850 | 37.0818 | 944 | 945 | 41.8829 | 940 | 941 | 39.7494 | 867 | 868 | 37.194 | 851 | 852 | 33.9035 | 943 | 944 | 30.2434 | 864 | 865 | 28.3961 |
| F11 | 100000 | 1136 | 1137 | 84.0919 | 1137 | 1138 | 84.9251 | 1102 | 1103 | 80.7658 | 1073 | 1074 | 81.954 | 1046 | 1047 | 76.436 | 1084 | 1085 | 57.0639 | 1140 | 1141 | $60.357$ |
| F12 | 3 | 7 | 8 | 0.29255 | 7 | 8 | 0.011095 | 7 | 8 | 0.018001 | 7 | 8 | 0.009686 | 15 | 16 | 0.012199 | 186 | 187 | 0.99943 | 32 | 33 | 0.74133 |
| F12 | 3 | 14 | 15 | 0.01374 | 14 | 15 | 0.014908 | 14 | 15 | 0.012858 | 14 | 15 | 0.013591 | 13 | 14 | 0.014882 | 163 | 164 | 0.74828 | 23 | 24 | 0.01652 |
| F13 | 1000 | 2 | 3 | 0.003455 | 2 | 3 | 0.002583 | 3 | 4 | 0.002433 | 3 | 4 | 0.001936 | 3 | 4 | 0.002753 | 13 | 14 | 0.002226 | 3 | 4 | 0.003722 |
| F13 | 2000 | 2 | 3 | 0.001785 | 3 | 4 | 0.001774 | 3 | 4 | 0.002129 | 3 | 4 | 0.002387 | 3 | 4 | 0.002308 | 12 | 13 | 0.002049 | 12 | 13 | 0.002049 |
| F13 | 5000 | 3 | 4 | 0.002086 | 4 | 5 | 0.001825 | * | * | * | 4 | 5 | 0.002595 | 4 | 5 | 0.002513 | 35 | 36 | 0.002027 | 35 | 36 | 0.00212 |
| F14 | 1000 | 13 | 14 | 0.002143 | 13 | 14 | 0.001551 | 14 | 15 | 0.001538 | 14 | 15 | 0.002418 | 6 | 7 | 0.002228 | 36 | 37 | 0.047245 | 13 | 14 | 0.002278 |
| F14 | 10000 | 10 | 11 | 0.002464 | 10 | 11 | 0.0024 | 10 | 11 | 0.002398 | 10 | 11 | 0.002467 | 12 | 13 | 0.003339 | 22 | 23 | 0.002798 | 12 | 13 | 0.002942 |
| F15 | 100 | 2 | 3 | 0.25068 | 2 | 3 | 0.009905 | * | * | * | 2 | 3 | 0.007711 | 2 | 3 | 0.011959 | 3 | 4 | 6.5038 | 2 | 3 | 0.23952 |
| F15 | 1000 | 2 | 3 | 0.038562 | 2 | 3 | 0.055482 | * | * | * | 2 | 3 | 0.022114 | 2 | 3 | 0.033326 | 3 | 4 | 0.026792 | 2 | 3 | 0.032356 |
| F15 | 5000 | 2 | 3 | 0.098152 | 2 | 3 | 0.093159 | * | * | * | 2 | 3 | 0.053293 | 2 | 3 | 0.089636 | 3 | 4 | 0.19136 | 3 | 4 | 0.29064 |
| F15 | 10000 | 2 | 3 | 0.16931 | 2 | 3 | 0.1498 | * | * | * | 2 | 3 | 0.087874 | 2 | 3 | 0.15005 | 3 | 4 | 0.29881 | 3 | 4 | 0.85874 |
| F16 | 2 | 1 | 2 | 0.002498 | 1 | 2 | 0.002839 | 1 | 2 | 0.002672 | 1 | 2 | 0.001838 | 1 | 2 | 0.002479 | 1 | 2 | 0.004095 | 1 | 2 | 0.004131 |
| F16 | 2 | 1 | 2 | 0.002051 | 1 | 2 | 0.00195 | 1 | 2 | 0.001895 | 1 | 2 | 0.002302 | 1 | 2 | 0.002194 | 1 | 2 | 0.00227 | 1 | 2 | 0.003331 |
| F17 | 10 | 187 | 188 | 0.17229 | 202 | 203 | 0.14512 | 211 | 212 | 0.17735 | 31 | 32 | 0.026652 | 25 | 26 | 0.02554 | 188 | 189 | 0.42002 | 252 | 253 | 0.44903 |
| F17 | 20 | 34 | 35 | 0.031242 | 34 | 35 | 0.029411 | 34 | 35 | 0.023777 | * | * | * | 33 | 34 | 0.027544 | 380 | 381 | 0.24289 | 524 | 525 | 1.6553 |
| F18 | 10 | 12 | 13 | 0.003568 | 12 | 13 | 0.001906 | 12 | 13 | 0.001653 | 12 | 13 | 0.002073 | 13 | 14 | 0.002361 | 61 | 62 | 0.002506 | 100 | 101 | 0.003088 |
| F18 | 50 | 21 | 22 | 0.002019 | 21 | 22 | 0.001668 | 21 | 22 | 0.002151 | 21 | 22 | 0.001571 | 21 | 22 | 0.002088 | 71 | 72 | 0.001667 | 188 | 189 | 0.00158 |
| F18 | 100 | 25 | 26 | 0.002085 | 25 | 26 | 0.001425 | 25 | 26 | 0.001662 | 25 | 26 | 0.001399 | 25 | 26 | 0.001524 | 89 | 90 | 0.001687 | 245 | 246 | 0.002405 |
| F19 | 2 | 4 | 5 | 0.002613 | 4 | 5 | 0.002506 | 3 | 4 | 0.001684 | 5 | 6 | 0.001794 | 5 | 6 | 0.00233 | 13 | 14 | 0.00362 | 7 | 8 | 0.001507 |
| F19 | 2 | 4 | 5 | 0.001958 | 4 | 5 | 0.001889 | 4 | 5 | 0.001669 | 4 | 5 | 0.002055 | 4 | 5 | 0.002231 | 5 | 6 | 0.001606 | 5 | 6 | 0.001408 |
| F20 | 50 | 47 | 48 | 0.08585 | 47 | 48 | 0.033502 | 47 | 48 | 0.038457 | 47 | 48 | 0.036282 | 47 | 48 | 0.042629 | 48 | 49 | 1.2978 | 48 | 49 | 2.2839 |

Table 4. Numerical comparison of DLBB algorithm versus DL, DLHZ, MDL3, MDL4, EJHJ, and MEJHJ algorithms.

| Function | DIM | DLBB |  |  | DL |  |  | DLHZ |  |  | MDL3 |  |  | MDL4 |  |  | EJHJ |  |  | MEJHJ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | NOI | NOF | CPU |
| F20 | 100 | 66 | 67 | 0.068643 | 67 | 68 | 0.068507 | 67 | 68 | 0.046007 | 66 | 67 | 0.062822 | 66 | 67 | 0.057604 | 70 | 71 | 0.073953 | 69 | 70 | 0.64725 |
| F21 | 10 | 3 | 4 | 0.048289 | 2 | 3 | 0.009501 | 3 | 4 | 0.01164 | 3 | 4 | 0.008351 | 3 | 4 | 0.015991 | 4 | 5 | 0.45318 | 4 | 5 | 0.16934 |
| F21 | 100 | 3 | 4 | 0.012193 | 3 | 4 | 0.01107 | 3 | 4 | 0.01186 | 3 | 4 | 0.008298 | 3 | 4 | 0.018361 | 4 | 5 | 0.006429 | 4 | 5 | 0.041784 |
| F21 | 500 | 3 | 4 | 0.018414 | 3 | 4 | 0.013309 | 3 | 4 | 0.023495 | 3 | 4 | 0.01357 | 3 | 4 | 0.023755 | 4 | 5 | 0.079332 | 4 | 5 | 0.031636 |
| F22 | 10 | 1 | 2 | 0.001553 | 1 | 2 | 0.001709 | 1 | 2 | 0.001836 | 1 | 2 | 0.002269 | 1 | 2 | 0.001762 | 2 | 3 | 0.001523 | 2 | 3 | 0.071092 |
| F22 | 100 | 2 | 3 | 0.001811 | 2 | 3 | 0.002085 | 3 | 4 | 0.002022 | 2 | 3 | 0.002514 | 2 | 3 | 0.001658 | 3 | 4 | 0.040838 | 2 | 3 | 0.002063 |
| F22 | 50000 | 2 | 3 | 0.008696 | 2 | 3 | 0.006917 | 3 | 4 | 0.00673 | 2 | 3 | 0.008065 | 2 | 3 | 0.006787 | 3 | 4 | 0.00859 | 2 | 3 | 0.012971 |
| F23 | 2 | 6 | 7 | 0.11424 | 7 | 8 | 0.010821 | 6 | 7 | 0.008038 | 6 | 7 | 0.009378 | 4 | 5 | 0.015246 | 10 | 11 | 1.109 | 7 | 8 | 0.64014 |
| F23 | 10 | 26 | 27 | 0.032245 | 26 | 27 | 0.031144 | 26 | 27 | 0.022413 | 27 | 28 | 0.02499 | 17 | 18 | 0.026918 | 26 | 27 | 0.043 | 28 | 29 | 0.058172 |
| F24 | 100 | 5 | 6 | 0.003361 | 5 | 6 | 0.002423 | 5 | 6 | 0.002421 | 5 | 6 | 0.001869 | 6 | 7 | 0.002389 | 7 | 8 | 0.002766 | 5 | 6 | 0.001882 |
| F24 | 5000 | 5 | 6 | 0.002653 | 5 | 6 | 0.002498 | 5 | 6 | 0.002428 | 5 | 6 | 0.002184 | 7 | 8 | 0.002676 | 9 | 10 | 0.002392 | 6 | 7 | 0.003724 |
| F24 | 10000 | 5 | 6 | 0.003532 | 5 | 6 | 0.002512 | 5 | 6 | 0.002467 | 5 | 6 | 0.00262 | 7 | 8 | 0.003565 | 9 | 10 | 0.002443 | 6 | 7 | 0.004075 |
| F25 | 1000 | 2 | 3 | 0.046142 | 2 | 3 | 0.031495 | 4 | 5 | 0.20147 | 2 | 3 | 0.023518 | 2 | 3 | 0.029136 | 2 | 3 | 1.4834 | 2 | 3 | 0.6707 |
| F25 | 10000 | 2 | 3 | 0.042843 | 2 | 3 | 0.02976 | 4 | 5 | 0.189 | 2 | 3 | 0.02586 | 2 | 3 | 0.03183 | 2 | 3 | 0.019227 | 2 | 3 | 0.072281 |
| F25 | 50000 | 2 | 3 | 0.16702 | 2 | 3 | 0.089995 | 4 | 5 | 0.82203 | 2 | 3 | 0.083256 | 2 | 3 | 0.097889 | 2 | 3 | 0.070062 | 2 | 3 | 0.38721 |
| F26 | 1000 | 2 | 3 | 0.11593 | 2 | 3 | 0.007491 | 2 | 3 | 0.006241 | 2 | 3 | 0.007295 | 2 | 3 | 0.007518 | 2 | 3 | 0.93448 | 2 | 3 | 0.19509 |
| F26 | 10000 | 2 | 3 | 0.0248 | 2 | 3 | 0.019749 | 2 | 3 | 0.013343 | 2 | 3 | 0.01258 | 2 | 3 | 0.016336 | 2 | 3 | 0.011617 | 2 | 3 | 0.037871 |
| F26 | 100000 | 2 | 3 | 0.077709 | 2 | 3 | 0.072823 | 2 | 3 | 0.083059 | 2 | 3 | 0.091154 | 2 | 3 | 0.086951 | 2 | 3 | 0.10359 | 2 | 3 | 0.37038 |
| F27 | 10 | 2 | 3 | 0.032315 | 2 | 3 | 0.008507 | 3 | 4 | 0.011977 | 2 | 3 | 0.008077 | 2 | 3 | 0.010768 | 3 | 4 | 0.21185 | 3 | 4 | 0.16647 |
| F27 | 50 | 2 | 3 | 0.011376 | 2 | 3 | 0.008613 | 3 | 4 | 0.014438 | 2 | 3 | 0.007457 | 2 | 3 | 0.009927 | 3 | 4 | 0.1075 | 3 | 4 | 0.082605 |
| F27 | 100 | 3 | 4 | 0.013874 | 2 | 3 | 0.006445 | 3 | 4 | 0.014155 | 2 | 3 | 0.009471 | 2 | 3 | 0.01267 | 3 | 4 | 0.007769 | 3 | 4 | 0.027418 |
| F28 | 100 | 1 | 2 | 0.22493 | 1 | 2 | 0.006581 | 1 | 2 | 0.006465 | 1 | 2 | 0.007197 | 1 | 2 | 0.007419 | 3 | 4 | 0.38604 | 3 | 4 | 0.65344 |
| F28 | 500 | 1 | 2 | 0.008501 | 1 | 2 | 0.037526 | 1 | 2 | 0.006499 | 1 | 2 | 0.008196 | 1 | 2 | 0.008411 | 3 | 4 | 0.033907 | 3 | 4 | 0.41581 |
| F29 | 2 | 4 | 5 | 0.015505 | 4 | 5 | 0.00844 | 4 | 5 | 0.007445 | 5 | 6 | 0.011989 | 5 | 6 | 0.012143 | * | * | * | 8 | 9 | 0.79735 |
| F29 | 4 | 789 | 790 | 0.31359 | 807 | 808 | 0.29147 | 799 | 800 | 0.2885 | 799 | 800 | 0.27431 | 825 | 826 | 0.29676 | * | * | * | 34 | 35 | 0.13938 |
| F30 | 3000 | 8 | 9 | 0.002562 | 8 | 9 | 0.002317 | 11 | 12 | 0.002474 | 8 | 9 | 0.003166 | 8 | 9 | 0.00243 | 21 | 22 | 0.003976 | 12 | 13 | 0.007792 |
| F30 | 15000 | 8 | 9 | 0.004427 | 8 | 9 | 0.005997 | 12 | 13 | 0.004529 | 8 | 9 | 0.004839 | 10 | 11 | 0.004595 | 23 | 24 | 0.005713 | 12 | 13 | 0.005194 |
| F31 | 1000 | 2 | 3 | 0.002385 | 2 | 3 | 0.001798 | 2 | 3 | 0.001698 | 2 | 3 | 0.001677 | 2 | 3 | 0.00185 | * | * | * | * | * | * |

Table 5. Numerical comparison of DLBB algorithm versus DL, DLHZ, MDL3, MDL4, EJHJ, and MEJHJ algorithms.

| Function | DIM | DLBB |  |  | DL |  |  | DLHZ |  |  | MDL3 |  |  | MDL4 |  |  | EJHJ |  |  | MEJHJ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | NOI | NOF | CPU |
| F31 | 10000 | 2 | 3 | 0.003632 | 2 | 3 | 0.003086 | 2 | 3 | 0.003001 | 2 | 3 | 0.003832 | 2 | 3 | 0.003383 | * | * | * | * | * | * |
| F32 | 5000 | 24 | 25 | 0.002402 | 24 | 25 | 0.002241 | * | * | * | 24 | 25 | 0.002387 | 26 | 27 | 0.002556 | * | * | * | * | * | * |
| F32 | 10000 | 24 | 25 | 0.00303 | 24 | 25 | 0.002894 | * | * | * | 25 | 26 | 0.003042 | 26 | 27 | 0.003124 | * | * | * | * | * | * |
| F32 | 100000 | 24 | 25 | 0.01429 | 24 | 25 | 0.014204 | * | * | * | 26 | 27 | 0.014435 | 26 | 27 | 0.015171 | * | * | * | * | * | * |
| F33 | 1000 | 5 | 6 | 0.00196 | 5 | 6 | 0.002274 | 5 | 6 | 0.001888 | 5 | 6 | 0.001835 | 5 | 6 | 0.003088 | 12 | 13 | 0.001721 | 7 | 8 | 0.003875 |
| F33 | 10000 | 5 | 6 | 0.003956 | 5 | 6 | 0.004327 | 5 | 6 | 0.003827 | 5 | 6 | 0.002893 | * | * | * | * | * | * | * | * | * |
| F34 | 100 | 48 | 49 | 0.001669 | 52 | 53 | 0.001499 | 53 | 54 | 0.001825 | 55 | 56 | 0.001861 | 53 | 54 | 0.001837 | 146 | 147 | 0.0017 | 146 | 147 | 0.002156 |
| F34 | 100 | 38 | 39 | 0.002672 | 52 | 53 | 0.002667 | 46 | 47 | 0.002722 | 49 | 50 | 0.002783 | 49 | 50 | 0.002956 | 151 | 152 | 0.003422 | 151 | 152 | 0.003006 |
| F34 | 1000 | 50 | 51 | 0.007253 | * | * | * | 149 | 150 | 0.008002 | 155 | 156 | 0.007963 | 135 | 136 | 0.007901 | 203 | 204 | 0.008946 | 203 | 204 | 0.008931 |
| F34 | 10000 | 52 | 53 | 0.013424 | * | * | * | * | * | * | 151 | 152 | 0.014574 | 153 | 154 | 0.014971 | 235 | 236 | 0.017104 | 235 | 236 | 0.016468 |
| F35 | 1000 | 2 | 3 | 0.003461 | 2 | 3 | 0.002088 | * | * | * | 2 | 3 | 0.003086 | 2 | 3 | 0.002744 | 4 | 5 | 0.004868 | 2 | 3 | 0.00575 |
| F35 | 10000 | 2 | 3 | 0.004953 | 2 | 3 | 0.003822 | * | * | * | 2 | 3 | 0.003883 | 2 | 3 | 0.004316 | 4 | 5 | 0.00414 | 2 | 3 | 0.010784 |
| F36 | 5000 | 2 | 3 | 0.003767 | 2 | 3 | 0.002376 | 2 | 3 | 0.003648 | 3 | 4 | 0.00268 | 3 | 4 | 0.00283 | 2 | 3 | 0.005402 | 2 | 3 | 0.004779 |
| F36 | 10000 | 2 | 3 | 0.003017 | 2 | 3 | 0.008692 | * | * | * | 3 | 4 | 0.002533 | 3 | 4 | 0.003363 | 3 | 4 | 0.002746 | 3 | 4 | 0.004451 |
| F36 | 20000 | 2 | 3 | 0.003975 | 2 | 3 | 0.004488 | * | * | * | 3 | 4 | 0.00305 | 3 | 4 | 0.003265 | 3 | 4 | 0.004136 | 3 | 4 | 0.009098 |
| F37 | 2 | 20 | 21 | 0.001562 | 20 | 21 | 0.00149 | 20 | 21 | 0.001496 | 27 | 28 | 0.001449 | 27 | 28 | 0.00146 | 74 | 75 | 0.002809 | 34 | 35 | 0.002226 |
| F37 | 2 | 13 | 14 | 0.001544 | 13 | 14 | 0.001977 | 13 | 14 | 0.00299 | 14 | 15 | 0.001398 | 13 | 14 | 0.002218 | 36 | 37 | 0.003506 | 82 | 83 | 0.001485 |
| F38 | 50 | 21 | 22 | 0.001422 | 21 | 22 | 0.001443 | 20 | 21 | 0.001494 | 19 | 20 | 0.001545 | 18 | 19 | 0.001491 | 24 | 25 | 0.029472 | 31 | 32 | 0.021539 |
| F38 | 100 | 20 | 21 | 0.001669 | 20 | 21 | 0.002106 | 20 | 21 | 0.001564 | 18 | 19 | 0.001507 | 19 | 20 | 0.001519 | 25 | 26 | 0.004604 | 30 | 31 | 0.002157 |
| F39 | 4 | 18 | 19 | 0.001423 | 13 | 14 | 0.001382 | 15 | 16 | 0.001684 | 17 | 18 | 0.001476 | 17 | 18 | 0.001476 | 30 | 31 | 0.001735 | 34 | 35 | 0.003387 |
| F39 | 4 | 22 | 23 | 0.001545 | 20 | 21 | 0.001991 | 21 | 22 | 0.001611 | 21 | 22 | 0.001971 | 21 | 22 | 0.001514 | 32 | 33 | 0.16558 | 32 | 33 | 0.003419 |
| F40 | 1000 | 7 | 8 | 0.001932 | 7 | 8 | 0.001765 | 7 | 8 | 0.001901 | 7 | 8 | 0.001911 | 7 | 8 | 0.002212 | 17 | 18 | 0.029741 | 13 | 14 | 0.001656 |
| F40 | 10000 | 8 | 9 | 0.004509 | 8 | 9 | 0.004515 | 8 | 9 | 0.003447 | 8 | 9 | 0.003617 | 9 | 10 | 0.003618 | 17 | 18 | 0.004225 | 13 | 14 | 0.003624 |
| F40 | 50000 | 8 | 9 | 0.011006 | 8 | 9 | 0.010437 | 8 | 9 | 0.013075 | 8 | 9 | 0.013968 | 9 | 10 | 0.011325 | 17 | 18 | 0.012575 | 13 | 14 | 0.011708 |

Table 6. Numerical comparison of DLBB algorithm versus DL, DLHZ, MDL3, MDL4, EJHJ, and MEJHJ algorithms.

| Function | DIM | DLBB |  |  | DL |  |  | DLHZ |  |  | MDL3 |  |  | MDL4 |  |  | EJHJ |  |  | MEJHJ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | NOI | NOF | CPU |
| F41 | 10 | 8 | 9 | 0.001436 | 9 | 10 | 0.001396 | 3 | 4 | 0.001869 | 5 | 6 | 0.00219 | 5 | 6 | 0.001886 | * | * | * | * | * | * |
| F41 | 100 | 8 | 9 | 0.001502 | 8 | 9 | 0.002027 | 3 | 4 | 0.002411 | 5 | 6 | 0.00154 | 5 | 6 | 0.001541 | * | * | * | * | * | * |
| F41 | 500 | 8 | 9 | 0.001661 | 7 | 8 | 0.00143 | 3 | 4 | 0.0022 | 5 | 6 | 0.001631 | 5 | 6 | 0.001638 | * | * | * | * | * | * |
| F42 | 2 | 8 | 9 | 0.002203 | 8 | 9 | 0.001591 | 8 | 9 | 0.002335 | 9 | 10 | 0.00209 | 8 | 9 | 0.002082 | 16 | 17 | 0.001976 | 22 | 23 | 0.003377 |
| F42 | 2 | 7 | 8 | 0.001689 | 7 | 8 | 0.001638 | 8 | 9 | 0.001893 | 8 | 9 | 0.002071 | 8 | 9 | 0.002475 | 13 | 14 | 0.001409 | 13 | 14 | 0.003248 |
| F43 | 2 | 1 | 2 | 0.00155 | 1 | 2 | 0.001783 | 1 | 2 | 0.001823 | 1 | 2 | 0.002433 | 1 | 2 | 0.001781 | 2 | 3 | 0.003039 | 2 | 3 | 0.003729 |
| F43 | 2 | 1 | 2 | 0.0022 | 1 | 2 | 0.002418 | 1 | 2 | 0.004698 | 1 | 2 | 0.002684 | 1 | 2 | 0.001875 | 2 | 3 | 0.00159 | 2 | 3 | 0.003413 |
| F44 | 500 | 10 | 11 | 0.091278 | 25 | 26 | 0.26935 | 3 | 4 | 0.04364 | 10 | 11 | 0.1027 | 12 | 13 | 0.12931 | 67 | 68 | 0.92586 | 67 | 68 | 0.20985 |
| F44 | 1000 | 13 | 14 | 0.12685 | * | * | * | 5 | 6 | 0.055475 | * | * | * | 33 | 34 | 0.35887 | 56 | 57 | 0.1184 | 60 | 61 | 0.24304 |
| F44 | 2000 | 31 | 32 | 0.6616 | * | * | * | * | * | * | * | * | * | * | * | * | 57 | 58 | 0.3918 | 61 | 62 | 0.21142 |
| F45 | 2 | 17 | 18 | 0.001599 | 17 | 18 | 0.001592 | * | * | * | 17 | 18 | 0.001454 | 17 | 18 | 0.002174 | * | * | * | * | * | * |
| F45 | 2 | 17 | 18 | 0.001667 | 16 | 17 | 0.001678 | * | * | * | 17 | 18 | 0.001429 | 17 | 18 | 0.001588 | * | * | * | * | * | * |
| F46 | 2 | 6 | 7 | 0.001748 | 6 | 7 | 0.002564 | 6 | 7 | 0.001737 | 6 | 7 | 0.002211 | 7 | 8 | 0.002229 | 7 | 8 | 0.019176 | 13 | 14 | 0.003363 |
| F46 | 2 | 10 | 11 | 0.002122 | 10 | 11 | 0.002052 | 11 | 12 | 0.001615 | 10 | 11 | 0.002234 | 10 | 11 | 0.002088 | 17 | 18 | 0.002347 | 18 | 19 | 0.003298 |
| F47 | 2 | 25 | 26 | 0.001749 | 25 | 26 | 0.001467 | 27 | 28 | 0.002065 | 20 | 21 | 0.001554 | 20 | 21 | 0.001611 | 80 | 81 | 0.001574 | * | * | * |
| F47 | 2 | 18 | 19 | 0.001741 | 19 | 20 | 0.001509 | 18 | 19 | 0.001462 | 26 | 27 | 0.001716 | 17 | 18 | 0.001558 | 70 | 71 | 0.00154 | * | * | * |
| F48 | 100 | 4 | 5 | 0.001749 | 4 | 5 | 0.002168 | 4 | 5 | 0.00174 | 9 | 10 | 0.002174 | 12 | 13 | 0.001538 | 528 | 529 | 0.001867 | 8 | 9 | 0.004559 |
| F48 | 500 | 4 | 5 | 0.001972 | 4 | 5 | 0.002258 | 5 | 6 | 0.001659 | 9 | 10 | 0.002005 | 12 | 13 | 0.001834 | 724 | 725 | 0.001968 | 8 | 9 | 0.002194 |
| F49 | 2 | 7 | 8 | 0.001624 | 10 | 11 | 0.001504 | 7 | 8 | 0.002199 | 12 | 13 | 0.001677 | 13 | 14 | 0.002154 | 14 | 15 | 0.003917 | 39 | 40 | 0.003072 |
| F49 | 2 | 15 | 16 | 0.002023 | 15 | 16 | 0.001712 | 15 | 16 | 0.001546 | 8 | 9 | 0.001998 | 4 | 5 | 0.00235 | 11 | 12 | 0.001744 | 29 | 30 | 0.001963 |



Figure 1. Performance profile according to the NOI.


Figure 2. Performance profile according to the NOF.


Figure 3. Performance profile according to the CPU time.

The curve from performance results depicted in Figures 1 and 2 show that the DLBB method obviously performed better than the DL, DLHZ, MDL3, MDL4, EJHJ and MEJHJ algorithms based on NOI and NOF. However, in terms of CPU time (see Figure 3), there was a close competition from DL, MDL3 and MDL4 methods, yet, the proposed DLBB method slightly outperforms these methods. On the other hand, it can also be seen that the performance of EJHJ and MEJHJ algorithms moves in a similar pattern. This can be attested to the fact that MEJHJ is an improvement of EJHJ. However, EJHJ, MEJHJ, and DLHZ have the highest number of failure and thus, have the curves of their algorithms lying below other curves. Based on the performance analysis, it is obvious to conclude that the new DLBB method presents the best performance since the DLBB curves are always the top performer for a large number of problems and it generated a higher number of the efficient search directions compare to DL, DLHZ, MDL3, MDL4, EJHJ and MEJHJ algorithms.

## 5. Application

This section investigate the performance of the new formula on portfolio selection and image restoration problems.

### 5.1. Portfolio selection

The analytical process of choosing and distributing a collection of investment assets is called portfolio selection. One of the well-known models for portfolio selection is the Markowitz model. Markowitz [36] proposed the mean-variance model in 1952, which calculates the expected return and risk of the generated portfolio using historical asset prices. However, in this work, we consider only the minimum variance with the simple model

$$
\left\{\begin{array}{l}
\text { minimize }: \sigma^{2}=\sum_{i=0}^{N} \sum_{j=0}^{N} w_{i} w_{j} C_{i j},  \tag{5.1}\\
\text { subject to }: \sum_{i=1}^{N} w_{i}=1,
\end{array}\right.
$$

where $w_{i}$ is the weight of each asset, $C_{i j}$ is the covariance of return between asset $i$ and $j$ and $N$ is the total number of assets.

Stock investment is one of the investment products available to support the development of financial strength [3, 7]. Stock can be seen as a person or party's capital participation sign in a limited liability company or company. The party has a claim on the income of the company as well as a claim on the company's assets by including the said capital. Therefore, we will consider investment stocks in our portfolio selection [37].

In this application, we use 5 stocks in LQ45 index, namely, Barito Pacific Tbk. (BRPT), Semen Indonesia (Persero) Tbk. (SMGR), Charoen Pokphand Indonesia Tbk. (CPIN), Waskita Karya (Persero) Tbk. (WSKT) and Unilever Indonesia Tbk. (UNVR). The data used as a reference is the closing price from June 1, 2020, to May 31, 2022 which is taken from https://finance.yahoo.com. For the data, we assume that the data follow a normal distribution, so to calculate the mean, variance and covariance using the formulas in the normal distribution.

Tables 7 and 8 present summary statistics of close prices for the five stocks. Table 7 provides the expected return and variance of the five stocks, while Table 8 provides the values of covariance among the stocks. By letting $w_{5}=1-w_{1}-w_{2}-w_{3}-w_{4}$, where $w_{1}, w_{2}, w_{3}, w_{4}$ and $w_{5}$ are proportional to CPIN,

WSKT, BRPT, SMGR, and UNVR stocks, respectively, and using the data from Table 8, we obtained the following unconstrained minimization type portfolio selection model as

$$
\begin{aligned}
& \min _{\left(w_{1}, w_{2}, w_{3}, w_{4}\right) \in \mathbb{R}^{4}}\left(w_{1}+w_{2}+w_{3}+w_{4}-1\right)\left(\left(41 w_{1}\right) / 10^{5}+w_{2} / 3125+\left(29 w_{3}\right) / 10^{5}\right. \\
& \left.+\left(41 w_{4}\right) / 10^{5}-51 / 10^{5}\right)+w_{4}\left(w_{2} / 6250-\left(3 w_{1}\right) / 10^{5}+\left(3 w_{3}\right) / 25000\right. \\
& \left.+\left(27 w_{4}\right) / 25000+1 / 10^{4}\right)+w_{1}\left(\left(29 w_{1}\right) / 10^{5}+w_{2} / 50000-w_{3} / 50000\right. \\
& \left.-\left(3 w_{4}\right) / 10^{5}+1 / 10^{4}\right)+w_{2}\left(w_{2} / 2500-\left(7 w_{1}\right) / 10^{5}+w_{3} / 25000\right. \\
& \left.+\left(7 w_{4}\right) / 10^{5}+19 / 10^{5}\right)+w_{3}\left(w_{2} / 10^{5}-\left(7 w_{1}\right) / 50000+\left(37 w_{3}\right) / 50000+11 / 50000\right) .
\end{aligned}
$$

Table 7. Expected return $(\mu)$ and variance ( $\sigma^{2}$ ).

| Stock | $\mu$ | $\sigma^{2}$ |
| :--- | :--- | :--- |
| CPIN | 0.00029 | 0.00051 |
| BRPT | 0.00145 | 0.00101 |
| SMGR | 0.00093 | 0.00059 |
| WSKT | 0.00090 | 0.00118 |
| UNVR | 0.00135 | 0.00039 |

Table 8. Covariance among the considered stocks.

| Stock | CPIN | WSKT | BRPT | SMGR | UNVR |
| :--- | :--- | :--- | :--- | :--- | :--- |
| CPIN | 0.00051 | 0.00010 | 0.00022 | 0.00019 | 0.00010 |
| WSKT | 0.00010 | 0.00118 | 0.00022 | 0.00026 | 0.00007 |
| BRPT | 0.00022 | 0.00022 | 0.00096 | 0.00023 | 0.00008 |
| SMGR | 0.00019 | 0.00026 | 0.00023 | 0.00059 | 0.00012 |
| UNVR | 0.00010 | 0.00007 | 0.00008 | 0.00012 | 0.00039 |

Now, we test the performance of all methods in solving unconstrained optimization problem defined above. By taking some initial points: P1: (0.1,0.2,0.3,0.4), P2: (0.4, 0.3,0.2,0.1), P3: (0.1,0.1, 0.1, 0.1 ), P4: $(0.5,0.1,0.2,0.2)$, P5 ( $0.5,0.5,0.5,0.5$ ), P6: $(1,1,1,1)$, P7: ( $1.5,1.5,1.5,1.5$ ), P8: ( $0.1,0.5,0.5,0.1$ ), P9: $(0.8,0.5,0.3,0.1)$ and P10: $(0.1,0.3,0.5,0.8)$, we have the numerical outcome as in Table 9.

Based on Table 9, it is obvious the proposed DLBB method presents the best performance with regards to NOI, NOF and CPU time when compare to DL, DLHZ, MDL3 and MDL4 methods for the above defined problem. By using all methods, we get the values $w_{1}=0.4334, w_{2}=0.1362, w_{3}=$ $0.0856, w_{4}=0.0972$ and $w_{5}=0.2476$. Of the total allocated funds from the formed portfolio, UNVR accounted for about $43.34 \%$ as indicated by the values of $w_{1}, \ldots, w_{5}$, while the proportion of SMGR is $13.62 \%$, the BRPT is $8.56 \%$, the WSKT is $9.72 \%$ and the CPIN is $24.76 \%$. Furthermore, we have the value of portfolio risk is $2.2397 \mathrm{e}-04$ and the expected return is 0.000824524 .

Table 9. Test result of DL, DLBB and DLHZ for portfolio selection model.

| Points | DL | DLBB | DLHZ | MDL3 | MDL4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | NOI/NOF/CPU | NOI/NOF/CPU | NOI/NOF/CPU | NOI/NOF/CPU | NOI/NOF/CPU |
| P1 | $7 / 75 / 0.0031$ | $4 / 52 / 0.0006436$ | $49 / 379 / 0.0126$ | $49 / 435 / 0.0065$ | $49 / 432 / 0.0075$ |
| P2 | $6 / 63 / 0.0011$ | $3 / 38 / 0.0007091$ | $41 / 315 / 0.0054$ | $39 / 346 / 0.0067$ | $39 / 343 / 0.0063$ |
| P3 | $12 / 120 / 0.0026$ | $4 / 52 / 0.001$ | $44 / 344 / 0.0055$ | $44 / 395 / 0.0035$ | $45 / 402 / 0.0054$ |
| P4 | $7 / 73 / 0.0009912$ | $4 / 50 / 0.0003859$ | $44 / 322 / 0.0028$ | $42 / 359 / 0.0036$ | $41 / 349 / 0.0033$ |
| P5 | $7 / 80 / 0.0005273$ | $4 / 50 / 0.0004141$ | $53 / 387 / 0.0042$ | $50 / 421 / 0.0038$ | $51 / 428 / 0.0043$ |
| P6 | $5 / 57 / 0.0007518$ | $4 / 51 / 0.0007264$ | $57 / 411 / 0.0034$ | $57 / 472 / 0.0063$ | $57 / 469 / 0.0048$ |
| P7 | $7 / 74 / 0.000945$ | $4 / 51 / 0.0003664$ | $63 / 455 / 0.0041$ | $62 / 511 / 0.0067$ | $63 / 519 / 0.0052$ |
| P8 | $9 / 100 / 0.0011$ | $4 / 51 / 0.0006875$ | $43 / 345 / 0.0033$ | $42 / 387 / 0.0035$ | $43 / 394 / 0.0038$ |
| P9 | $12 / 124 / 0.0011$ | $4 / 51 / 0.0009069$ | $51 / 377 / 0.0034$ | $50 / 424 / 0.0028$ | $50 / 424 / 0.0038$ |
| P10 | $8 / 83 / 0.0015$ | $4 / 50 / 0.0008931$ | $56 / 424 / 0.0045$ | $56 / 484 / 0.0041$ | $57 / 491 / 0.0051$ |

### 5.2. Image restoration

The Conjugate Gradient (CG) method has recently been extended to solve real-life application problems of image restoration that involve the restoring a degraded image to its original form [1,2,38]. These types of problems often require solving ill-posed inverse problems, where the image has been corrupted by noise and other factors. The CG algorithm is employed to recover the underlying clean image from these corrupted observations with best precision. In this study, the proposed DLBB CG algorithm is be extended to solve the image restoration model

$$
\min \mathcal{H}(u)
$$

and

$$
\mathcal{H}(u)=\sum_{(i, j) \in G}\left\{\sum_{(m, n) \in T_{i, j} / G} \phi_{\alpha}\left(u_{i, j}-\xi_{m, n}\right)+\frac{1}{2} \sum_{(m, n) \in T_{i, j} \cap G} \phi_{\alpha}\left(u_{i, j}-u_{m, n}\right)\right\},
$$

where $x$ is the original image with $M \times N$ pixel whose index set $G$ is given as

$$
\begin{equation*}
G=\left\{(i, j) \in Q \mid \bar{\xi}_{i j} \neq \xi_{i j}, \xi_{i j}=s_{\min } \text { or } s_{\max }\right\} . \tag{5.2}
\end{equation*}
$$

From (5.2), we have $\xi$ denoting the observed noisy image whose adaptive median filter is given as $\bar{\xi}$. The maximum and minimum of a noisy pixel are defined by $s_{\max }$ and $s_{\min }$. Also, $i, j \in Q=$ $\{1,2, \cdot, M\} \times\{1,2, \cdot, N\}$, with its neighborhood computed as $T_{i j}=\{(i, j-1),(i, j+1),(i-1, j),(i+1, j)\}$.

From the above image model (5.2), the potential edge-preserving function $\phi_{\alpha}$ in $\mathcal{H}(u)$ is defined as

$$
\begin{equation*}
\phi_{\alpha}(t)=\sqrt{t^{2}+\alpha} \tag{5.3}
\end{equation*}
$$

where $\alpha$ is a constant whose value is chosen as 1 .
To evaluate the relative accuracy of the proposed DLBB algorithm in restoring the corrupted images, the study compared its performance with some state-of-the-art algorithms including ALG 4.1 by Dai and Kou [17], CG-Descent by Hager and Zhang [16], EJHJ and MEJHJ by [6]. All comparisons are based on three metrics, being CPU time (CPUT), relative error (RelErr) and peak signal-tonoise ratio (PSNR). The corrupted images considered for restoration include Forest $(512 \times 512)$ and

Building ( $512 \times 512$ ). The performance of each algorithm in restoring the images is presented in Tables 10-12, and Figure 4.

Table 10. Image restoration outputs for DLBB, EJHJ, MEJHJ, CG DESCENT, and ALG 4.1, based on CPUT.

| METHOD |  | DLBB | EJHJ | MEJHJ | CG DESCENT | ALG 4.1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| IMAGE | NOISE | CPUT | CPUT | CPUT | CPUT | CPUT |
|  | $40 \%$ | 87.6860 | 85.0866 | 85.4401 | 87.6971 | 92.4160 |
| FOREST | $80 \%$ | 196.5231 | 166.8942 | $* * *$ | $* * *$ | $* * *$ |
|  | $40 \%$ | 86.0780 | 86.0877 | 86.4588 | 86.0191 | 88.0290 |
| BUILDING | $80 \%$ | 274.0619 | 247.9383 | $* * *$ | $* * *$ | $* * *$ |

Table 11. Image restoration outputs for DLBB, EJHJ, MEJHJ, CG DESCENT, and ALG 4.1, based on RelErr.

| METHOD |  | DLBB | EJHJ | MEJHJ | CG DESCENT | ALG 4.1 |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- |
| IMAGE | NOISE | RelErr | RelErr | RelErr | RelErr | RelErr |
| FOREST | $40 \%$ | 1.4388 | 1.3921 | 1.3940 | 1.3430 | 1.3868 |
|  | $80 \%$ | 2.7396 | 2.5712 | $* * *$ | $* * *$ | $* * *$ |
|  | $40 \%$ | 1.9220 | 2.0385 | 1.9976 | 1.9284 | 1.9320 |
|  | $80 \%$ | 5.0971 | 4.9126 | $* * *$ | $* * *$ | $* * *$ |

Table 12. Image restoration outputs for DLBB, EJHJ, MEJHJ, CG DESCENT, and ALG 4.1, based on PSNR.

| METHOD |  | DLBB | EJHJ | MEJHJ | CG DESCENT | ALG 4.1 |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- |
| IMAGE | NOISE | PSNR | PSNR | PSNR | PSNR | PSNR |
| FOREST | $40 \%$ | 26.7360 | 26.7547 | 26.7799 | 26.8930 | 26.7732 |
|  | $80 \%$ | 21.7918 | 22.1444 | $* * *$ | $* * *$ | $* * *$ |
|  | $40 \%$ | 28.1270 | 28.0919 | 27.9754 | 28.0040 | 28.0608 |
|  | $80 \%$ | 22.3129 | 22.4682 | $* * *$ | $* * *$ | $* * *$ |


(a)

(e)

(i)

(m)

(q)

(u)

(b)

(f)

(j)

(n)

(r)

(v)

(c)

(g)

(k)

(o)

(s)

(w)

(d)

(h)

(l)

(p)

(t)

(x)

Figure 4. Forest and building images corrupted by $40 \%$ salt-and-pepper noise (a), (b), and $80 \%$ noise degree (c) and (d), the restored images using DLBB: (e,f,g,h), EJHJ: (i,j,k,l), MEJHJ: (m,n,o,p), CG-Descent (q,r,s,t), ALG 4.1 (u,v,w,x).

Based on the results presented in Tables 10-12, it is obvious to see that only DLBB and EJHJ algorithms were able to generate descent directions by solving all the problems. This is because the other algorithms including MEJHJ, CG-Descent and ALG 4.1 where unable to generate descent directions when the noise degree of corrupted forest image was increased to $80 \%$. The point of failure for each metric including CPUT, RelErr and PSNR is denoted as $* * *$. These results have shown that the proposed DLBB algorithm has been able to improve the correlation in signals and further decorrelates the salt and pepper grey noise with better accuracy compared to the other algorithms used in the comparison which has further demonstrated the efficiency and robustness of our method.

## 6. Conclusions

In this paper, we investigated the performance of a novel modification of DL algorithm for solving unconstrained optimization and portfolio selection problems. The success of the proposed algorithm is attributed to the new optimal choice parameter for the modified DL CG method that derived based on the promising Barzilai-Borwein approach. Under some suitable assumptions, we discussed the convergence analysis of the proposed method. Results from computational experiments are discussed to highlight the robustness and efficiency of the new algorithm for unconstrained optimization, portfolio selection, and image restoration problems.

## Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

## Acknowledgments

This research was supported by Ministry of Higher Education (MoHE) of Malaysia through Fundamental Research Grant Scheme (FRGS/1/2021/STG06/UUM/02/4) with S/O code 20123.

## Conflict of interest

The authors declare that they have no competing interests with regards to this study.

## References

1. X. Z. Jiang, H. H. Yang, J. B. Jian, X. D. Wu, Two families of hybrid conjugate gradient methods with restart procedures and their applications, Optim. Method. Softw., 38 (2023), 947974. https://doi.org/10.1080/10556788.2023.2189718
2. X. Z. Jiang, X. M. Ye, Z. F. Huang, M. X. Liu, A family of hybrid conjugate gradient method with restart procedure for unconstrained optimizations and image restorations, Comput. Oper. Res., 159 (2023), 106341. https://doi.org/10.1016/j.cor.2023.106341
3. A. M. Awwal, I. M. Sulaiman, M. Malik, M. Mamat, P. Kumam, K. Sitthithakerngkiet, A spectral RMIL+ conjugate gradient method for unconstrained optimization with applications in portfolio selection and motion control, IEEE Access, 9 (2021), 75398-75414. https://doi.org/10.1109/ACCESS.2021.3081570
4. I. M. Sulaiman, N. A. Bakar, M. Mamat, B. A. Hassan, M. Malik, A. M. Alomari, A new hybrid conjugate gradient algorithm for optimization models and its application to regression analysis, Indones. J. Electr. Eng. Comput. Sci., 23 (2021), 1100-1109. https://doi.org/10.11591/ijeecs.v23.i2.pp1100-1109
5. I. M. Sulaiman, M. Mamat, A new conjugate gradient method with descent properties and its application to regression analysis, J. Numer. Anal. Ind. Appl. Math., 14 (2020), 25-39.
6. Z. Aminifard, S. Babaie-Kafaki, Dai-Liao extensions of a descent hybrid nonlinear conjugate gradient method with application in signal processing, Numer. Algorithm, 89 (2022), 1369-1387. https://doi.org/10.1007/s11075-021-01157-y
7. M. Malik, I. M. Sulaiman, A. B. Abubakar, G. Ardaneswari, Sukono, A new family of hybrid three-term conjugate gradient method for unconstrained optimization with application to image restoration and portfolio selection, AIMS Mathematics, 8 (2023), 1-28, https://doi.org/10.3934/math. 2023001
8. W. W. Hager, H. Zhang, A survey of nonlinear conjugate gradient methods, Pac. J. Optim., 2 (2006), 35-58.
9. M. R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bureau Stand., 49 (1952), 409-436.
10. I. M. Sulaiman, M. Malik, A. M. Awwal, P. Kumam, M. Mamat, S. Al-Ahmad, On threeterm conjugate gradient method for optimization problems with applications on COVID19 model and robotic motion control, Adv. Contin. Discret. Models, 2022 (2022), 1. https://doi.org/10.1186/s13662-021-03638-9
11. N. Aini, M. Mamat, M. Rivaie, I. S. Ibrahim, A hybrid of quasi-Newton method with CG method for unconstrained optimization, J. Phys. Conf. Ser., 1366 (2019), 012079. https://doi.org/10.1088/1742-6596/1366/1/012079 .
12. M. Maulana, M. Mamat, S. S. Abas, I. M. Sulaiman, F. Sukono, Performance analysis of new spectral and hybrid conjugate gradient methods for solving unconstrained optimization problems, IAENG Int. J. Comput. Sci., 48 (2021), 66-79.
13. P. Kaelo, P. Mtagulwa, M. V. Thuto, A globally convergent hybrid conjugate gradient method with strong Wolfe conditions for unconstrained optimization, Math. Sci. 14 (2020), 1-9.
14. N. Salihu, P. Kumam, A. M. Awwal, I. M. Sulaiman, T. Seangwattana, The global convergence of spectral RMIL conjugate gradient method for unconstrained optimization with applications to robotic model and image recovery, PLOS One, 18 (2023), e0281250. https://doi.org/10.1371/journal.pone. 0281250
15. Y. H. Dai, L. Z. Liao, New conjugacy conditions and related nonlinear conjugate gradient methods, Appl. Math. Optim., 43 (2001), 87-101, https://doi.org/10.1007/s002450010019
16. W. W. Hager, H. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM J. Optim., 16 (2005), 170-192. https://doi.org/10.1137/030601880
17. Y. H. Dai, C. X. Kou, A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search, SIAM J. Optim., 23 (2013), 296-320. https://doi.org/10.1137/100813026
18. N. Andrei, Open problems in nonlinear conjugate gradient algorithms for unconstrained optimization, Bull. Malays. Math. Sci. Soc. (2), 34 (2011), 319-330.
19. S. Babaie-Kafaki, R. Ghanbari, The Dai-Liao nonlinear conjugate gradient method with optimal parameter choices, Eur. J. Oper. Res., 234 (2014), 625-630. https://doi.org/10.1016/j.ejor.2013.11.012
20. S. Babaie-Kafaki, R. Ghanbari, A descent family of Dai-Liao conjugate gradient methods, Optim. Method. Softw., 29 (2014), 583-591. https://doi.org/10.1080/10556788.2013.833199
21. L. Zhang, W. J. Zhou, D. H. Li, Some descent three-term conjugate gradient methods and their global convergence, Optim. Method. Softw., 22 (2007), 697-711. https://doi.org/10.1080/10556780701223293
22. S. Babaie-Kafaki, R. Ghanbari, Two optimal Dai-Liao conjugate gradient methods, Optimization, 64 (2015), 2277-2287. https://doi.org/10.1080/02331934.2014.938072
23. K. Zhang, H. Liu, Z. Liu, A new Dai-Liao conjugate gradient method with optimal parameter choice, Numer. Funct. Anal. Optim., 40 (2019), 194-215. https://doi.org/10.1080/01630563.2018.1535506
24. U. A. Yakubu, M. Mamat, M. A. Mohamad, M. Rivaie, J. Sabi'u, A recent modification on DaiLiao conjugate gradient method for solving symmetric nonlinear equations, Far East J. Math. Sci. (FJMS), 103 (2018), 1961-1974. http://doi.org/10.17654/MS103121961
25. M. Y. Waziri, K. Ahmed, J. Sabi'u, A. S. Halilu, Enhanced Dai-Liao conjugate gradient methods for systems of monotone nonlinear equations, SeMA J., 78 (2021), 15-51. https://doi.org/10.1007/s40324-020-00228-9
26. J. Sabi'u, A. Shah, M. Y. Waziri, A modified Hager-Zhang conjugate gradient method with optimal choices for solving monotone nonlinear equations, Int. J. Comput. Math., 99 (2021), 332-354. https://doi.org/10.1080/00207160.2021.1910814
27. J. Sabi'u, A. Shah, M. Y. Waziri, K. Ahmed, Modified Hager-Zhang conjugate gradient methods via singular value analysis for solving monotone nonlinear equations with convex constraint, Int. J. Comput. Method., 18 (2020), 2050043, https://doi.org/10.1142/S0219876220500437
28. J. Sabi'u, A. Shah, M. Y. Waziri, Two optimal Hager-Zhang conjugate gradient methods for solving monotone nonlinear equations, Appl. Numer. Math., 153 (2020), 217-233. https://doi.org/10.1016/j.apnum.2020.02.017
29. M. Y. Waziri, K. Ahmed, J. Sabi'u, A Dai-Liao conjugate gradient method via modified secant equation for system of nonlinear equations, Arab. J. Math., 9 (2020), 443-457. https://doi.org/10.1007/s40065-019-0264-6
30. M. Y. Waziri, K. A. Hungu, J. Sabi'u, Descent Perry conjugate gradient methods for systems of monotone nonlinear equations, Numer. Algorithms, 85 (2020), 763-785. https://doi.org/10.1007/s11075-019-00836-1
31. J. Barzilai, J. M. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal., 8 (1988), 141-148. https://doi.org/10.1093/imanum/8.1.141
32. G. Zoutendijk, Nonlinear programming computational methods, In: Integer and nonlinear programming, Amsterdam: North-Holland, 1970, 37-86.
33. Y. Dai, J. Han, D. Sun, H. Yin, Y. X. Yuan, Convergence properties of nonlinear conjugate gradient methods, SIAM J. Optim., 10 (2000), 345-358. https://doi.org/10.1137/S10562349426844.
34. N. Andrei, An unconstrained optimization test functions collection, Adv. Model. Optim., 10 (2008), 147-161.
35. E. D. Dolan, J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), 201-213, https://doi.org/10.1007/s101070100263
36. H. Markowitz, Portfolio selection, J. Finance, 7 (1952), 77-91. https://doi.org/10.2307/2975974
37. H. Mayo, Investments: An introduction, 12 Eds., Cengage Learning EMEA, 2016.
38. X. Wu, H. Shao, P. Liu, Y. Zhang, Y. Zhuo, An efficient conjugate gradient-based algorithm for unconstrained optimization and its projection extension to large-scale constrained nonlinear equations with applications in signal recovery and image denoising problems, J. Comput. Appl. Math., 422 (2023), 114879. https://doi.org/10.1016/j.cam.2022.114879

AIMS Press
© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

