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Abstract: In recent years, the application of variable-order (VO) fractional differential equations
for describing complex physical phenomena ranging from biology, hydrology, mechanics and
viscoelasticity to fluid dynamics has become one of the most hot topics in the context of scientific
modeling. An interesting aspect of VO operators is their capability to address the behavior of scientific
and engineering systems with time and spatially varying properties. The VO fractional diffusion
equation is a fundamental model that allows transitions among sub-diffusive, diffusive and super-
diffusive behaviors without altering the underlying governing equations. In this paper, we considered
the two-dimensional fractional diffusion equation with the Caputo time VO derivative, which is
essential for describing anomalous diffusion in real-world complex systems. A new Crank-Nicolson
(C-N) difference scheme and an efficient explicit decoupled group (EDG) method were proposed to
solve the problem under consideration. The proposed EDG method is based on a skewed difference
scheme in conjunction with a grouping procedure of the solution grid points. Special attention was
devoted to investigating the stability and convergence of the proposed methods. Three numerical
examples with known exact analytical solutions were provided to illustrate our considerations. The
proposed methods were shown to be stable and convergent theoretically as well as numerically. In
addition, a comparative study was done between the EDG method and the C-N difference scheme. It
was found that the proposed methods are accurate in simulating the considered problem, while the
EDG method is superior to the C-N difference method in terms of Central Processing Unit (CPU)
timing, verifying the efficiency of the former method in solving the VO problem.
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Nomenclature

VO: Variable-order.
CO: Constant-order.
C-N: Crank-Nicolson.
EDG: Explicit decoupled group.
CPU: Central processing unit.
VO-TFDE: Variable-order time fractional diffusion equation.

Symbols

M1: Number of spatial steps in the x-direction.
M2: Number of spatial steps in the y-direction.
N: Number of temporal steps.
∆x: Length of spatial step along x-direction.
∆y: Length of spatial step along y-direction.
τ: Temporal step size.
T : Final time.
K1: Diffusion coefficient.
K2: Diffusion coefficient.
α: Fractional order.

1. Introduction

A plethora of problems in engineering applications can be described by integer-order differential
equations [1]. On the other hand, fractional differential equations have numerous applications in
many sciences, which makes them one of the most prominent tools of fractional calculus that have
attracted the interest of scholars and researchers in recent years. For instance, Lozynskyy et al. [2]
applied the Caputo-Fabrizio operator to describe the elastic moment in a long shaft and produced an
enhanced mathematical model in the form of a fractional ordinary differential equation for a two-
mass system with concentrated parameters. Asjad et al. [3] successfully described the convection
heat transfer in clay nanofluid by utilizing a Maxwell model. The authors used the newly developed
hybrid fractional derivative in [4] to generalize the classical Maxwell model to the novel fractional one.
Liu et al. [5] established a new Green-Ampt model containing a Caputo fractional derivative to describe
an important phenomenon in geotechnical engineering; that is, the infiltration process in slopes. The
researchers argued that the outcomes of their model were better than those of Chen and Young’s model
and very close to the actual experimental results. Kumar et al. [6] provided an opportunity for a better
understanding of climate change by introducing a fractional-order model that describes the plankton-
oxygen dynamics based on the Liouville-Caputo fractional derivative. Mustafa Inc et al. [7] considered
a novel Covid-19 model based on the Caputo fractional operator to study the dynamics of the disease
spread. The results of the numerical simulations were in good match with the real data and showed the
advantages of the fractional derivative. Shen et al. [8] got more insight into the case where a patient
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has two infections at the same time by considering a fractional co-infection model under the Caputo
fractional derivative.

Differential equations with constant-order (CO) fractional derivatives have been considered as
powerful instruments for characterizing the long memory of dynamic processes and real-world
phenomena. This means modeling the case in which the current state of the system depends on all
its historical states rather than only some recent ones. More theoretical and comprehensive discussions
of fractional calculus can be found in [9–14]. In recent years, many researchers have found systems
exhibiting variable memory that cannot be described adequately by CO fractional operators. This fact
led to the generalization of the CO fractional calculus to the so-called variable-order (VO) fractional
calculus, where the derivatives of fractional operators are functions of time and/or space variables.
Sun et al. [15] introduced an important comparative study between constant and VO operators in
describing the memory property of systems. It was Samko and Ross [16] who gave the definitions
of VO derivatives for the first time in 1993. Later, Lorenzo and Hartley [17, 18] and Coimbra [19]
constructed the mathematical framework of VO operators and discussed some of their potential
applications in mechanics. These works paved the way for the development of new definitions,
which served as a springboard for the field of VO fractional calculus. The list of the definitions in
the literature includes: Riemann-Liouville, Caputo, Grunwald-Letnikov, Hadamard, Caputo-Fabrizio,
Atangana-Baleanu and more. These definitions are reported to describe complex dynamic problems
effectively. Consequently, with the extension of CO fractional models to their counterparts, VO models
have grown in a remarkable manner. Examples are the diffusion equation [20], reaction-diffusion
equation [21], Burgers equation citer21, telegraph equation [23], mobile/immobile equation [24],
Schrödinger equation [25] and more. For more details about the VO fractional calculus, the interested
reader is referred to [26–28].

In the last few years, VO fractional differential equations have achieved tremendous success in
modeling physical problems of evolutionary nature-type. The reason for this is the ability of VO
operators to adjust the system’s order based on its present or even its previous response effectively.
For example, Sweilam et al. [29] proposed a VO fractional model to simulate the healing process of
the cancer disease in biological systems. The established model involved VO Caputo derivatives with
two control variables to reduce the number of cancer cells. Xiang and others [30] made use of the
VO Caputo derivative and came up with a novel fractional model for describing the stress responses
of glassy polymers. The authors noticed a relationship between the varying order and the behavior
of microstructures, which opens up a new avenue for manufacturing new polymers with enhanced
properties. Liu et al. [31] suggested a fractional damage creep model to depict the mechanical behavior
of creep, i.e., the time-dependent behavior under constant stress. Their model relied on the Caputo
derivative of the VO function, which is related to the relaxation time of the rheological model. In
another study, Fei et al. [32] developed a Maxwell model with VO fractional derivative to describe
the creep phenomenon of a salt rock. A fractional model with a VO time derivative for an economic
system was proposed and analyzed in [33]. Fan et al. [34] constructed a VO fractional model and
showed its superiority over the Anand model in reporting the mechanical properties of sintered nano-
silver particles. To get more insight into the applications of VO fractional calculus, the interested
reader is referred to the valuable works [35, 36].

Fractional diffusion equations are among the most important models of fractional calculus that are
applied to describe the anomalous diffusion phenomena in complex systems. Until date, a plethora
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of numerical methods have been developed to handle the diffusion models with CO fractional
derivatives [37–46]. However, real data has revealed that the mean square displacement scales as
a function of time and/or space variables, which cannot be characterized by CO fractional diffusion
models [35]. As a result, fractional diffusion equations with variable orders were introduced to deal
with the aforementioned issue. It is worth mentioning that solving variable-order fractional diffusion
equations analytically is highly complex and cannot be achieved in many cases due to the variable
exponent. This stimulated numerical researchers to design efficient approximation methods for solving
these equations, namely, finite difference methods [47–49], finite element methods [20, 50], wavelet
methods [51], collocation methods [52, 53], reproducing kernel methods [54] and others.

Due to the nonlocal property of VO operators, standard numerical schemes lead to costly
simulations, particularly when a high-dimensional problem or mesh refinement is considered. Explicit
group difference methods are combinations of finite difference schemes and grouping strategies
on standard and skewed grids. In fact, explicit group difference methods can efficiently reduce
the spectral radius of the iteration matrix and increase the convergence rates of the approximation
methods. Besides, these methods can be implemented on parallel computers, which makes them very
advantageous in practice. In the past few years, several researchers have successfully extended the
explicit group difference methods from solving integer-order differential equations to handling various
types of CO fractional differential equations [55–60]. For more details, the interested reader can refer
to the cited studies. However, to the best of our knowledge, there have been no trials to utilize explicit
group difference methods to determine numerical solutions of differential equations in the frame of VO
fractional derivatives. In this line of reasoning, this article aims to provide a grouping-based numerical
method to deal with the two-dimensional VO time fractional diffusion equation (VO-TFDE) of the
following form:

C
0 Dα(x,y,t)

t u(x, y, t) = K1
∂2u(x, y, t)

∂x2 + K2
∂2u(x, y, t)

∂y2 + f (x, y, t), (x, y, t) ∈ Ω × (0,T ], (1.1)

u(x, y, t) = h(x, y, t), (x, y, t) ∈ ∂Ω × (0,T ], (1.2)
u(x, y, 0) = g(x, y), (x, y) ∈ Ω ∪ ∂Ω, (1.3)

where Ω = [0, L]× [0, L] is a closed subset in R2 representing the solution domain, ∂Ω is its boundary,
K1 and K2 are positive constants denoting the diffusion coefficients, f (x, y, t), h(x, y, t) and g(x, y) are
known smooth functions and u(x, y, t) is the unknown function. 0 < α(x, y, t) < 1, C

0 Dα(x,y,t)
t u(x, y, t) is

the VO Caputo derivative defined as

C
0 Dα(x,y,t)

t u(x, y, t) =

 1
Γ(1−α(x,y,t))

∫ t

0
(t − ξ)−α(x,y,t) ∂u(x,y,ξ)

∂ξ
dξ, 0 < α(x, y, t) < 1,

∂u(x,y,t)
∂t , α(x, y, t) = 1.

The above definition of the Caputo derivative has received a great deal of interest in the field of
applications since it allows the traditional initial and boundary conditions that have solid physical
interpretations to be imposed in the fractional models. The aim of this study is to construct a new
grouping-based numerical method, namely, the explicit decoupled group (EDG) method for the two-
dimensional VO-TFDE (1.1). We start by introducing a Crank-Nicolson (C-N) finite difference
method, which serves as a reference scheme to examine the efficiency of the proposed method.
Thereafter, the EDG method is developed based on a new difference scheme that is derived by rotating
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the standard grid and applying the Taylor series expansion. The resulting method is computationally
advantageous since it considers only half of the mesh points in the iteration process at each time level,
which means the numerical solutions can be computed in a short time. The stability, convergence
and numerical implementations of the proposed methods are also presented in this work. As far as
we know, explicit group difference methods with stability and convergence analyses for VO fractional
models have not appeared in the literature.

The rest of this paper is as follows: The next section presents a C-N finite difference scheme to solve
the two-dimensional VO-TFDE (1.1). In section three, we propose the EDG method for the mentioned
equation. The stability and convergence analyses are included in sections four and five, respectively.
Some numerical experiments are reported in section six to validate the efficiency and accuracy of the
presented methods. Finally, a brief conclusion is expressed in section seven.

2. The C-N difference scheme

In this section, we present a C-N numerical scheme for solving the VO-TFDE (1.1). Such a
discretization scheme will reduce the considered problem into a system of simultaneous algebraic
equations, which can be solved by a proper numerical technique. To this end, we let xi = i∆x,
0 ≤ i ≤ M1, y j = j∆y, 0 ≤ j ≤ M2, tk = kτ, 0 ≤ k ≤ N, where M1, M2 and N are some positive integers.
Here, ∆x = L/M1, ∆y = L/M2 and τ = T/N represent the spatial and temporal step sizes, respectively.
For simplicity, define uk

i, j as the numerical approximation at the point (xi, y j, tk) and f (xi, y j, tk) = f k
i, j.

Then, the discretization of the second order space derivatives is expressed as:

∂2u(xi, y j, tk+1/2)
∂x2 =

1
2

uk+1
i+1, j − 2uk+1

i, j + uk+1
i−1, j

(∆x)2 +
uk

i+1, j − 2uk
i, j + uk

i−1, j

(∆x)2


+ O(τ2 + (∆x)2) + (∆y)2), (2.1)

∂2u(xi, y j, tk+1/2)
∂y2 =

1
2

uk+1
i, j+1 − 2uk+1

i, j + uk+1
i, j−1

(∆y)2 +
uk

i, j+1 − 2uk
i, j + uk

i, j−1

(∆y)2


+ O(τ2 + (∆x)2) + (∆y)2). (2.2)

For the approximation of the Caputo time VO derivative, we utilize the following discretization
scheme [61]:

C
0 Dαi, j,k+1/2

t u(xi, y j, tk+1/2)

= σi, j,k
[
W

i, j,k
1 uk

i, j −

k−1∑
s=1

(
W

i, j,k
k−s −W

i, j,k
k−s+1

)
us

i, j −W
i, j,k
k u0

i, j +
uk+1

i, j − uk
i, j

21−αi, j,k+1/2

]
+ rk+1/2,

(2.3)

where 0 < α(x, y, t) < 1, αi, j,k+1/2 = α(xi, y j, tk+1/2) and

σi, j,k =
1

Γ(2 − αi, j,k+1/2)ταi, j,k+1/2 ,

Wi, j,k
s =(s + 1/2)1−αi, j,k+1/2

− (s − 1/2)1−αi, j,k+1/2
.
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The local error term has the following bound,

|rk+1/2| ≤ Cτ.

Now, setting Eqs (2.1), (2.2) and (2.3) into (1.1), we get the following,

σi, j,k
[
W

i, j,k
1 uk

i, j −

k−1∑
s=1

(
W

i, j,k
k−s −W

i, j,k
k−s+1

)
us

i, j −W
i, j,k
k u0

i, j +
uk+1

i, j − uk
i, j

21−αi, j,k+1/2

]
=

K1

2

uk+1
i+1, j − 2uk+1

i, j + uk+1
i−1, j

(∆x)2 +
uk

i+1, j − 2uk
i, j + uk

i−1, j

(∆x)2


+

K2

2

uk+1
i, j+1 − 2uk+1

i, j + uk+1
i, j−1

(∆y)2 +
uk

i, j+1 − 2uk
i, j + uk

i, j−1

(∆y)2


+ f k+1/2

i, j + O(τ + (∆x)2) + (∆y)2).

(2.4)

By omitting the local error terms and replacing uk
i, j with its approximation Uk

i, j, the desired result of the
C-N difference scheme is obtained as



(Ai, j,k + 2B1 + 2B2)Uk+1
i, j = B1(Uk+1

i+1, j + U
k+1
i−1, j + U

k
i+1, j + U

k
i−1, j)

+B2(Uk+1
i, j+1 + U

k+1
i, j−1 + U

k
i, j+1 + U

k
i, j−1) + (Ai, j,k − σi, j,kW i, j,k

1 − 2B1 − 2B2)Uk
i, j

+σi, j,k ∑k−1
s=1

(
W

i, j,k
k−s −W

i, j,k
k−s+1

)
Us

i, j + σ
i, j,kW

i, j,k
k U

0
i, j + f k+1/2

i, j ,

1 ≤ i ≤ M1 − 1, 1 ≤ j ≤ M2 − 1, 0 ≤ k ≤ N − 1,
Ai, j,k = σi, j,k

21−αi, j,k+1/2 , B1 =
K1

2(∆x)2 , B2 =
K2

2(∆y)2 .

The initial and boundary conditions are
U0

i, j = g(xi, y j), 0 ≤ i ≤ M1, 0 ≤ j ≤ M2,

Uk
i, j|∂Ω= h(xi, y j, tk), 0 ≤ k ≤ N.

(2.5)

Let

Uk = [U1,1,U1,2, . . . ,U1,M2−1,U2,1,U2,2, . . . ,U2,M2−1, . . . ,UM1−1,1,UM1−1,2, . . . ,UM1−1,M2−1]T ,

f k = [ f1,1, f1,2, . . . , f1,M2−1, f2,1, f2,2, . . . , f2,M2−1, . . . , fM1−1,1, fM1−1,2, . . . , fM1−1,M2−1]T .

The above difference scheme can be represented in matrix form as,

 AU1 = BU0 + f 1/2, k = 0,
AUk+1 = BUk + σ

∑k−1
m=1 (Wk−mWk−m+1) Um + σWkU0 + f k, k ≥ 1.
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Here, A and B are pentadiagonal matrices given by

A =



Mi, j,k . . . −B1 . . . −B2 . . . 0
... Mi, j,k . . . −B1 . . . −B2

...

−B1
. . . Mi, j,k . . .

. . .
. . .

...
. . .

. . .
. . .

. . . −B2

−B2 −B1
. . .

. . .
. . .

...
... −B2

. . .
. . .

. . . −B1
. . .

. . .
. . .

...

0 . . . −B2 . . . −B1 . . . Mi, j,k



,

B =



Ni, j,k . . . B1 . . . B2 . . . 0
... Ni, j,k . . . B1 . . . B2

...

B1
. . . Ni, j,k . . .

. . .
. . .

...
. . .

. . .
. . .

. . . B2

B2 B1
. . .

. . .
. . .

...
... B2

. . .
. . .

. . . B1
. . .

. . .
. . .

...

0 . . . B2 . . . B1 . . . Ni, j,k



,

where

M
i, j,k = Ai, j,k + 2B1 + 2B2, N

i, j,k = Ai, j,k − σi, j,kW
i, j,k
1 − 2B1 − 2B2.

From the structure of the above matrices, it’s evident that the matrix A is a strictly diagonally dominant
matrix. Hence, we deduce that the C-N difference scheme (2.5) is uniquely solvable. In the next
section, the EDG method is proposed.

3. The fractional EDG method

The EDG method was first introduced by Abdullah [62] as an efficient and reliable Poisson
solver. The success of the EDG technique in handling the Poisson equation has initiated interest
in its application to solving various types of differential equations under the frame of integer-order
and CO fractional derivatives. Here, we extend the formulation of the EDG method for solving the
two-dimensional VO-TFDE (1.1). In this endeavor, another discretization scheme derived by rorating
the standard grid 45 clockwise is necessitated to approximate Eq (1.1). Thus, the rotated C-N finite
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difference approximation can be written as follows,

σi, j,k
[
W

i, j,k
1 uk

i, j −

k−1∑
s=1

(
W

i, j,k
k−s −W

i, j,k
k−s+1

)
us

i, j −W
i, j,k
k u0

i, j +
uk+1

i, j − uk
i, j

21−αi, j,k+1/2

]
=

K1

2

uk+1
i+1, j−1 − 2uk+1

i, j + uk+1
i−1, j+1

2(∆x)2 +
uk

i+1, j−1 − 2uk
i, j + uk

i−1, j+1

2(∆x)2


+

K2

2

uk+1
i+1, j+1 − 2uk+1

i, j + uk+1
i−1, j−1

2(∆y)2 +
uk

i+1, j+1 − 2uk
i, j + uk

i−1, j−1

2(∆y)2


+ f k+1/2

i, j + O(τ + (∆x)2) + (∆y)2).

(3.1)

By dropping the local error terms and replacing uk
i, j with its approximation Uk

i, j, the following
expression is obtained,

(Ai, j,k + 2C1 + 2C2)Uk+1
i, j = C1(Uk+1

i+1, j−1 + U
k+1
i−1, j+1 + U

k
i+1, j−1 + U

k
i−1, j+1)

+ C2(Uk+1
i+1, j+1 + U

k+1
i−1, j−1 + U

k
i+1, j+1 + U

k
i−1, j−1) + (Ai, j,k − σi, j,kW i, j,k

1 − 2C1 − 2C2)Uk
i, j

+ σi, j,k
k−1∑
s=1

(
W

i, j,k
k−s −W

i, j,k
k−s+1

)
U

s
i, j + σ

i, j,kW
i, j,k
k U

0
i, j + f k+1/2

i, j ,

(3.2)

where C1 = K1/(4(∆x)2) and C2 = K2/(4(∆y)2).
Consider the location points (i, j), (i+1, j+1), (i+1, j) and (i, j+1). The application of Eq (3.2) to

any group of these four points will lead to the (4 × 4) system of equation represented in the following
matrix form (see [62] for extra details),

D1 −C2 0 0
−C2 D2 0 0

0 0 D3 −C1

0 0 −C1 D4



Uk+1

i, j

Uk+1
i+1, j+1

Uk+1
i+1, j

Uk+1
i, j+1

 =


rhsi, j

rhsi+1, j+1

rhsi+1, j

rhsi, j+1

 , (3.3)

where

D1 = A
i, j,k + 2C1 + 2C2, D2 = A

i+1, j+1,k + 2C1 + 2C2,

D3 = A
i+1, j,k + 2C1 + 2C2, D4 = A

i, j+1,k + 2C1 + 2C2,

and

rhsi, j =C1(Uk+1
i+1, j−1 + U

k+1
i−1, j+1 + U

k
i+1, j−1 + U

k
i−1, j+1) + C2(Uk+1

i−1, j−1

+ Uk
i+1, j+1 + U

k
i−1, j−1) + (Ai, j,k − σi, j,kW

i, j,k
1 − 2C1 − 2C2)Uk

i, j

+ σi, j,k
k−1∑
s=1

(
W

i, j,k
k−s −W

i, j,k
k−s+1

)
U

s
i, j + σ

i, j,kW
i, j,k
k U

0
i, j + f k+1/2

i, j ,

rhsi+1, j+1 =C1(Uk+1
i+2, j + U

k+1
i, j+2 + U

k
i+2, j + U

k
i, j+2) + C2(Uk+1

i+2, j+2 + U
k
i+2, j+2

+ Uk
i, j) + (Ai+1, j+1,k − σi, j,kW

i+1, j+1,k
1 − 2C1 − 2C2)Uk

i+1, j+1
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+ σi+1, j+1,k
k−1∑
s=1

(
W

i+1, j+1,k
k−s −W

i+1, j+1,k
k−s+1

)
U

s
i+1, j+1

+ σi+1, j+1,kW
i+1, j+1,k
k U

0
i+1, j+1 + f k+1/2

i+1, j+1,

rhsi+1, j =C1(Uk+1
i+2, j−1 + U

k
i+2, j−1 + U

k
i, j+1) + C2(Uk+1

i+2, j+1 + U
k+1
i, j−1

+ Uk
i+2, j+1 + U

k
i, j−1) + (Ai+1, j,k − σi+1, j,kW

i+1, j,k
1 − 2C1

− 2C2)Uk
i+1, j + σ

i+1, j,k
k−1∑
s=1

(
W

i+1, j,k
k−s −W

i+1, j,k
k−s+1

)
U

s
i+1, j

+ σi+1, j,kW
i+1, j,k
k U

0
i+1, j + f k+1/2

i+1, j ,

rhsi, j+1 =C1(Uk+1
i−1, j+2 + U

k
i+1, j + U

k
i−1, j+2) + C2(Uk+1

i+1, j+2 + U
k+1
i−1, j

+ Uk
i+1, j+2 + U

k
i−1, j) + (Ai, j+1,k − σi, j+1,kW

i, j+1,k
1 − 2C1

− 2C2)Uk
i, j+1 + σ

i, j+1,k
k−1∑
s=1

(
W

i, j+1,k
k−s −W

i, j+1,k
k−s+1

)
U

s
i, j+1

+ σi, j+1,kW
i, j+1,k
k U

0
i, j+1 + f k+1/2

i, j+1 .

The last (4×4) system of equations can be decoupled into two (2×2) systems whose explicit forms
are as follows, [

Uk+1
i, j

Uk+1
i+1, j+1

]
= L1

[
−D2 −C2

−C2 −D1

] [
rhsi, j

rhsi+1, j+1

]
(3.4)

and [
Uk+1

i+1, j

Uk+1
i, j+1

]
= L2

[
−D4 −C1

−C1 −D3

] [
rhsi+1, j

rhsi, j+1

]
, (3.5)

where

L1 =
1

C2
2 −D1D2

, L2 =
1

C2
1 −D3D4

.

Figure 1 sheds the light on the grid shape of the EDG method. From the figure, the grid points
of the discretized solution domain are branched into two distinct types, namely, black filled diamonds
and white filled diamonds. One can easily verify that the implementation of Eq (3.4) involves only
points of type ♦, while the implementation of Eq (3.5) requires only points of type ♢. As a result, the
computations of Eqs (3.4) and (3.5) can be performed independently.

By keeping these observations into consideration, the EDG method can be completed in two steps.
First, the solution values on one type of points are evaluated iteratively by utilizing either Eq (3.4) or
Eq (3.5). Second, after convergence is achieved in the first step, the solution values on the residual
grid points are computed directly once using Eq (2.5). In this way, the computational cost is reduced
effectively as only half of the grid points are involved in the iterative process, which ultimately reduces
the execution time of the whole computation process. The application of the EDG method for solving
the VO-TFDE will result in a linear system of algebraic equations. Following a similar manner in
section two, it can be easily verified that the coefficient matrix is a strictly diagonally dominant matrix
and, hence, the resulting system is uniquely solvable.
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Figure 1. Computational molecule for the EDG method with M1 = M2 = 10.

4. Stability analysis

In this section, we analyze the stability of the proposed finite difference approximations via the
von-Neumann method. The stability of numerical schemes is one of the most important issues in the
realm of numerical analysis that must be addressed. We start by introducing the following lemma that
will be utilized in the stability analysis,

Lemma 1. The coefficientsWi, j,k
s , 0 ≤ i ≤ M1−1, 0 ≤ j ≤ M2−1 defined in Eqs (2.5) and (3.2) satisfy

the following properties [61],

(i)Wi, j,k
s ≥ W

i, j,k
s+1 , 1 ≤ s ≤ k = 1, 2, . . . ,N − 1.

(ii)
∑k−1

s=1

(
W

i, j,k
k−s −W

i, j,k
k−s+1

)
=W

i, j,k
1 −W

i, j,k
k .

Let Ûk
i, j and Ūk

i, j represent the numerical solutions of Eqs (2.5) and (3.2), respectively, then the errors
can be defined as:

ξk
i, j = U

k
i, j − Û

k
i, j, 0 ≤ i ≤ M1, 0 ≤ j ≤ M2, 1 ≤ k ≤ N, (4.1)

εk
i, j = U

k
i, j − Ū

k
i, j, 0 ≤ i ≤ M1, 0 ≤ j ≤ M2, 1 ≤ k ≤ N. (4.2)

Next, by setting (4.1) into (2.5), we obtain

(Ai, j,k + 2B1 + 2B2)ξk+1
i, j −B1(ξk+1

i+1, j + ξ
k+1
i−1, j) −B2(ξk+1

i, j+1 + ξ
k+1
i, j−1) =

B1(ξk
i+1, j + ξ

k
i−1, j) +B2(ξk

i, j+1 + ξ
k
i, j−1) + (Ai, j,k − σi, j,kW

i, j,k
1 − 2B1 − 2B2)ξk

i, j

+ σi, j,k
k−1∑
s=1

(
W

i, j,k
k−s −W

i, j,k
k−s+1

)
ξs

i, j + σ
i, j,kW

i, j,k
k ξ0

i, j.

(4.3)
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Similarly, replacing (4.2) into (3.2), we have

(Ai, j,k + 2C1 + 2C2)εk+1
i, j − C1(εk+1

i+1, j−1 + ε
k+1
i−1, j+1) − C2(εk+1

i+1, j+1 + ε
k+1
i−1, j−1) =

C1(εk
i+1, j−1 + ε

k
i−1, j+1) + C2(εk

i+1, j+1 + ε
k
i−1, j−1) + (Ai, j,k − σi, j,kW i, j,k

1 − 2C1 − 2C2)εk
i, j

+ σi, j,k
k−1∑
s=1

(
W

i, j,k
k−s −W

i, j,k
k−s+1

)
εs

i, j + σ
i, j,kW

i, j,k
k ε0

i, j.

(4.4)

Then, ξk(x, y) and εk(x, y) can be expanded in the Fourier series as

ξk(x, y) =
∞∑

Z1=−∞

∞∑
Z2=−∞

ηk(Z1,Z2)e2πI(Z1 x/L+Z2y/L),

εk(x, y) =
∞∑

Z1=−∞

∞∑
Z2=−∞

µk(Z1,Z2)e2πI(Z1 x/L+Z2y/L),

(4.5)

where I =
√
−1 and ηk and µk are given by

ηk(Z1,Z2) =
1
L2

∫ L

0

∫ L

0
ξk(x, y)e−2πI(Z1 x/L+Z2y/L)dxdy, (4.6)

µk(Z1,Z2) =
1
L2

∫ L

0

∫ L

0
εk(x, y)e−2πI(Z1 x/L+Z2y/L)dxdy. (4.7)

Based on the definition of l2 norm and the Pareval equality, we obtain

∥ξk∥2 =

 ∞∑
Z2=−∞

∞∑
Z1=−∞

|ηk(Z1,Z2)|2


1/2

,

∥εk∥2 =

 ∞∑
Z2=−∞

∞∑
Z1=−∞

|µk(Z1,Z2)|2


1/2

.

(4.8)

Suppose that the solutions of Eqs (4.3) and (4.4) can be written as

ξk
i, j = η

keI(γ1i∆x+γ2 j∆y), εk
i, j = µ

keI(γ1i∆x+γ2 j∆y), (4.9)

in which γ1 = 2πZ1/L and γ2 = 2πZ2/L.
Substituting ξk

i, j = η
keI(γ1i∆x+γ2 j∆y) into Eq (16), we get

ηk+1 =
Ai, j,k − ρ1 − ρ2 − σ

i, j,kW
i, j,k
1

Ai, j,k + ρ1 + ρ2
ηk

+
1

Ai, j,k + ρ1 + ρ2

σi, j,k
k−1∑
s=1

(
W

i, j,k
k−s −W

i, j,k
k−s+1

)
ηs + σi, j,kW

i, j,k
k η0

 , (4.10)

where

ρ1 = 4B1 sin2
(
γ1∆x

2

)
, ρ2 = 4B2 sin2

(
γ2∆y

2

)
.

Next, we prove the following result.
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Lemma 2. If ηk (1 ≤ k ≤ N) satisfies Eq (4.10) and 2 ≥ 31−αi, j,k
, then, |ηk|≤ |η0|.

Proof. We utilize mathematical induction to complete the proof. First, let k = 0, and we get∣∣∣η1
∣∣∣ = ∣∣∣∣∣∣Ai, j,k − ρ1 − ρ2

Ai, j,k + ρ1 + ρ2

∣∣∣∣∣∣∣∣∣η0
∣∣∣.

Since Ai, j,k, ρ1 and ρ2 are nonnegative numbers, then,∣∣∣η1
∣∣∣ ≤ ∣∣∣η0

∣∣∣.
Now, suppose that

∣∣∣ηm+1
∣∣∣ ≤ ∣∣∣η0

∣∣∣, m = 0, 1, 2, . . . , k − 1.We show it holds for m = k. Using Eq (4.10)
and Lemma 1, we get

∣∣∣ηk+1
∣∣∣ ≤∣∣∣∣∣∣∣A

i, j,k − ρ1 − ρ2 − σ
i, j,kW

i, j,k
1

Ai, j,k + ρ1 + ρ2

∣∣∣∣∣∣∣∣∣∣ηk
∣∣∣

+

∣∣∣∣∣ 1
Ai, j,k + ρ1 + ρ2

∣∣∣∣∣
σi, j,k

k−1∑
s=1

(
W

i, j,k
k−s −W

i, j,k
k−s+1

)
|ηs| + σi, j,kW

i, j,k
k

∣∣∣η0
∣∣∣

≤

∣∣∣∣∣∣∣A
i, j,k − ρ1 − ρ2 − σ

i, j,kW
i, j,k
1

Ai, j,k + ρ1 + ρ2

∣∣∣∣∣∣∣∣∣∣η0
∣∣∣

+
1

Ai, j,k + ρ1 + ρ2

σi, j,k
k−1∑
s=1

(
W

i, j,k
k−s −W

i, j,k
k−s+1

) ∣∣∣η0
∣∣∣ + σi, j,kW

i, j,k
k

∣∣∣η0
∣∣∣

=

∣∣∣Ai, j,k − ρ1 − ρ2 − σ
i, j,kW

i, j,k
1

∣∣∣ + σi, j,kW
i, j,k
1

Ai, j,k + ρ1 + ρ2

∣∣∣η0
∣∣∣.

If Ai, j,k − ρ1 − ρ2 − σ
i, j,kW

i, j,k
1 > 0, then∣∣∣ηk+1

∣∣∣ ≤ Ai, j,k − ρ1 − ρ2

Ai, j,k + ρ1 + ρ2

∣∣∣η0
∣∣∣ < ∣∣∣η0

∣∣∣.
If Ai, j,k − ρ1 − ρ2 − σ

i, j,kW
i, j,k
1 < 0, then

∣∣∣ηk+1
∣∣∣ ≤ −Ai, j,k + ρ1 + ρ2 + 2σi, j,kW

i, j,k
1

Ai, j,k + ρ1 + ρ2

∣∣∣η0
∣∣∣.

Here, ∣∣∣ηk+1
∣∣∣ ≤ ∣∣∣η0

∣∣∣
⇔
−Ai, j,k + ρ1 + ρ2 + 2σi, j,kW

i, j,k
1

Ai, j,k + ρ1 + ρ2
≤ 1

⇔ −Ai, j,k + ρ1 + ρ2 + 2σi, j,kW
i, j,k
1 ≤ Ai, j,k + ρ1 + ρ2

⇔ 2 ≥ 31−αi, j,k
.

□
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Now, we prove the next theorem.

Theorem 1. If 2 ≥ 31−αi, j,k
, then the finite difference scheme defined by Eq (2.5) is stable.

Proof. From Lemma 2 and the Parseval equality, we have

∥ξk∥22 =

∞∑
Z1=−∞

∞∑
Z2=−∞

∣∣∣ηk(Z1,Z2)
∣∣∣2 ≤ ∞∑

Z1=−∞

∞∑
Z2=−∞

∣∣∣η0(Z1,Z2)
∣∣∣2 = ∥ξ0∥22,

from which we get,
∥ξk∥ ≤ ∥ξ0∥.

□

Setting εk
i, j = µ

keI(γ1i∆x+γ2 j∆y) into Eq (4.4) gives

µk+1 =
Ai, j,k − κ1 − κ2 − σ

i, j,kW
i, j,k
1

Ai, j,k + κ1 + κ2
µk

+
1

Ai, j,k + κ1 + κ2

σi, j,k
k−1∑
s=1

(
W

i, j,k
k−s −W

i, j,k
k−s+1

)
µs + σi, j,kW

i, j,k
k µ0

 , (4.11)

in which

κ1 = 4C1 sin2
(
γ1∆x − γ2∆y

2

)
, κ2 = 4C2 sin2

(
γ1∆x + γ2∆y

2

)
.

Lemma 3. If µk (1 ≤ k ≤ N) satisfies Eq (4.11) and 2 ≥ 31−αi, j,k
, then, |µk|≤ |µ0|.

Proof. First, putting k = 0 in Eq (4.11), we obtain∣∣∣µ1
∣∣∣ = ∣∣∣∣∣∣Ai, j,k − κ1 − κ2

Ai, j,k + κ1 + κ2

∣∣∣∣∣∣∣∣∣µ0
∣∣∣ < ∣∣∣µ0

∣∣∣.
Next, assume that

∣∣∣µm+1
∣∣∣ ≤ ∣∣∣µ0

∣∣∣, m = 0, 1, 2, . . . , k − 1. We prove it is true for m = k. With the help of
Eq (4.11) and Lemma 1, we obtain

∣∣∣µk+1
∣∣∣ ≤∣∣∣∣∣∣∣A

i, j,k − κ1 − κ2 − σ
i, j,kW

i, j,k
1

Ai, j,k + κ1 + κ2

∣∣∣∣∣∣∣∣∣∣µk
∣∣∣

+

∣∣∣∣∣ 1
Ai, j,k + κ1 + κ2

∣∣∣∣∣
σi, j,k

k−1∑
s=1

(
W

i, j,k
k−s −W

i, j,k
k−s+1

)
|µs| + σi, j,kW

i, j,k
k

∣∣∣µ0
∣∣∣

≤

∣∣∣∣∣∣∣A
i, j,k − κ1 − κ2 − σ

i, j,kW
i, j,k
1

Ai, j,k + κ1 + κ2

∣∣∣∣∣∣∣∣∣∣µ0
∣∣∣

+
1

Ai, j,k + κ1 + κ2

σi, j,k
k−1∑
s=1

(
W

i, j,k
k−s −W

i, j,k
k−s+1

) ∣∣∣µ0
∣∣∣ + σi, j,kW

i, j,k
k

∣∣∣µ0
∣∣∣

=

∣∣∣Ai, j,k − κ1 − κ2 − σ
i, j,kW

i, j,k
1

∣∣∣ + σi, j,kW
i, j,k
1

Ai, j,k + κ1 + κ2

∣∣∣µ0
∣∣∣.
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If Ai, j,k − κ1 − κ2 − σ
i, j,kW

i, j,k
1 > 0, then∣∣∣µk+1

∣∣∣ ≤ Ai, j,k − κ1 − κ2

Ai, j,k + κ1 + κ2

∣∣∣µ0
∣∣∣ < ∣∣∣µ0

∣∣∣.
If Ai, j,k − κ1 − κ2 − σ

i, j,kW
i, j,k
1 < 0, then

∣∣∣µk+1
∣∣∣ ≤ −Ai, j,k + κ1 + κ2 + 2σi, j,kW

i, j,k
1

Ai, j,k + κ1 + κ2

∣∣∣µ0
∣∣∣.

Here, ∣∣∣µk+1
∣∣∣ ≤ ∣∣∣µ0

∣∣∣
⇔
−Ai, j,k + κ1 + κ2 + 2σi, j,kW

i, j,k
1

Ai, j,k + κ1 + κ2
≤ 1

⇔ −Ai, j,k + κ1 + κ2 + 2σi, j,kW
i, j,k
1 ≤ Ai, j,k + κ1 + κ2

⇔ 2 ≥ 31−αi, j,k
.

□

Now, Lemma 2 is employed to prove the next theorem.

Theorem 2. If 2 ≥ 31−αi, j,k
, then, the finite difference scheme defined by Eq (3.2) is stable.

Proof. From Lemma 3 and the Parseval equality, we have

∥εk∥22 =

∞∑
Z1=−∞

∞∑
Z2=−∞

∣∣∣µk(Z1,Z2)
∣∣∣2 ≤ ∞∑

Z1=−∞

∞∑
Z2=−∞

∣∣∣µ0(Z1,Z2)
∣∣∣2 = ∥ε0∥22,

which gives the desired result
∥εk∥ ≤ ∥ε0∥.

□

5. Convergence analysis

This section is devoted to analyze the convergence of the proposed methods. Let ζk
i, j be the difference

between the exact and numerical solutions at the point (xi, y j, tk), then the error can be written as,

ζk
i, j = uk

i, j − U
k
i, j, 1 ≤ i ≤ M1 − 1, 1 ≤ j ≤ M2 − 1, 1 ≤ k ≤ N. (5.1)

By setting Eq (5.1) into Eq (2.5), the error equation follows immediately as

(Ai, j,k + 2B1 + 2B2)ζk+1
i, j −B1(ζk+1

i+1, j + ζ
k+1
i−1, j) −B2(ζk+1

i, j+1 + ζ
k+1
i, j−1) =

B1(ζk
i+1, j + ζ

k
i−1, j) +B2(ζk

i, j+1 + ζ
k
i, j−1) + (Ai, j,k − σi, j,kW

i, j,k
1 − 2B1

− 2B2)ζk
i, j + σ

i, j,k
k−1∑
s=1

(
W

i, j,k
k−s −W

i, j,k
k−s+1

)
ζ s

i, j + σ
i, j,kW

i, j,k
k ζ0

i, j + Rk+1/2
i, j ,

(5.2)
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where Rk+1/2
i, j denotes the truncation error at the point (xi, y j, tk+1/2). From now on, we suppose that C is

a constant that may take different values at different locations. From Eq (2.4), we have∣∣∣∣Rk+1/2
i, j

∣∣∣∣ ≤ C(τ + (∆x)2 + (∆y)2), 1 ≤ i ≤ M1 − 1, 1 ≤ j ≤ M2 − 1, 0 ≤ k ≤ N, (5.3)

where
C = max

1≤i≤M1−1,1≤ j≤M2−1,0≤k≤N
{Ck

i, j
}
.

Next, ζk(x, y) and Rk+1/2(x, y) can be expanded in the Fourier series as

ζk(x, y) =
∞∑

Z2=−∞

∞∑
Z1=−∞

ψk(Z1,Z2)e2πI(Z1 x/L+Z2y/L),

Rk+1/2(x, y) =
∞∑

Z2=−∞

∞∑
Z1=−∞

ϕk(Z1,Z2)e2πI(Z1 x/L+Z2y/L),

such that

ψk(Z1,Z2) =
1
L2

∫ L

0

∫ L

0
ζk(x, y)e−2πI(Z1 x/L+Z2y/L)dxdy,

ϕk(Z1,Z2) =
1
L2

∫ L

0

∫ L

0
Rk+1/2(x, y)e−2πI(Z1 x/L+Z2y/L)dxdy.

Considering the definition of l2 norm and the Parseval equality, we get

∥ζk∥2 =

M2−1∑
j=1

M1−1∑
i=1

∆y∆x
∣∣∣ζk

i, j

∣∣∣2
1/2

=

 ∞∑
Z1=−∞

∞∑
Z2=−∞

∣∣∣ψk(Z1,Z2)
∣∣∣2

1/2

, (5.4)

∥Rk+1/2∥2 =

M2−1∑
j=1

M1−1∑
i=1

∆y∆x
∣∣∣∣Rk+1/2

i, j

∣∣∣∣2
1/2

=

 ∞∑
Z1=−∞

∞∑
Z2=−∞

∣∣∣ϕk(Z1,Z2)
∣∣∣2

1/2

. (5.5)

Suppose the solutions of Eq (5.2) are as follows:

ζk
i, j = ψ

keI(γ1i∆x+γ2 j∆y), Rk+1/2
i, j = ϕk+1/2eI(γ1i∆x+γ2 j∆y). (5.6)

Substitute Eq (5.6) into Eq (5.2) and simplify to emerge with the following expression,

ψk+1 =
Ai, j,k − ρ1 − ρ2 − σ

i, j,kW
i, j,k
1

Ai, j,k + ρ1 + ρ2
ψk

+
1

Ai, j,k + ρ1 + ρ2

σi, j,k
k−1∑
s=1

(
W

i, j,k
k−s −W

i, j,k
k−s+1

)
ψs + σi, j,kW

i, j,k
k ψ0 + ϕk+1/2

 , (5.7)

where ρ1 and ρ2 are as defined in Eq (4.10).

Lemma 4. If ψk (1 ≤ k ≤ N) satisfies Eq (5.7), then, we have

∣∣∣ψk+1
∣∣∣ ≤ C(k + 1)τ

∣∣∣ϕ1/2
∣∣∣.
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Proof. From Eq (5.5), there is a positive constant C such that∣∣∣ϕk+1/2
∣∣∣ ≤ Cτ

∣∣∣ϕ1/2
∣∣∣, 0 ≤ k ≤ N − 1.

We complete the proof by mathematical induction. First, setting k = 0 in Eq (5.7) and noticing that
ψ0 = 0, we obtain ∣∣∣ψ1

∣∣∣ = 1
Ai, j,k + ρ1 + ρ2

∣∣∣ϕ1/2
∣∣∣ ≤ ∣∣∣ϕ1/2

∣∣∣ ≤ Cτ
∣∣∣ϕ1/2

∣∣∣.
Next, assume that ∣∣∣ψm+1

∣∣∣ ≤ C(m + 1)τ
∣∣∣ϕ1/2

∣∣∣, m = 0, 1, 2, . . . , k − 1.

Putting m = k in Eq (5.7) and using Lemma 1, we get

∣∣∣ψk+1
∣∣∣ ≤∣∣∣∣∣∣∣A

i, j,k − ρ1 − ρ2 − σ
i, j,kW

i, j,k
1

Ai, j,k + ρ1 + ρ2

∣∣∣∣∣∣∣∣∣∣ψk
∣∣∣

+

∣∣∣∣∣ 1
Ai, j,k + ρ1 + ρ2

∣∣∣∣∣
σi, j,k

k−1∑
s=1

(
W

i, j,k
k−s −W

i, j,k
k−s+1

)
|ψs| + σi, j,kW

i, j,k
k

∣∣∣ψ0
∣∣∣ + ∣∣∣ϕk+1/2

∣∣∣
≤

∣∣∣Ai, j,k − ρ1 − ρ2 − σ
i, j,kW

i, j,k
1

∣∣∣
Ai, j,k + ρ1 + ρ2

Ckτ
∣∣∣ϕ1/2

∣∣∣
+

1
Ai, j,k + ρ1 + ρ2

σi, j,kCkτ
∣∣∣ϕ1/2

∣∣∣  k−1∑
s=1

(
W

i, j,k
k−s −W

i, j,k
k−s+1

)
+W

i, j,k
k

 +Cτ
∣∣∣ϕ1/2

∣∣∣
=

∣∣∣Ai, j,k − ρ1 − ρ2 − σ
i, j,kW

i, j,k
1

∣∣∣ + σi, j,kW
i, j,k
1

Ai, j,k + ρ1 + ρ2
Ckτ

∣∣∣ϕ1/2
∣∣∣

+
1

Ai, j,k + ρ1 + ρ2
Cτ

∣∣∣ϕ1/2
∣∣∣

=


∣∣∣Ai, j,k − ρ1 − ρ2 − σ

i, j,kW
i, j,k
1

∣∣∣ + σi, j,kW
i, j,k
1

Ai, j,k + ρ1 + ρ2
k +

1
Ai, j,k + ρ1 + ρ2

Cτ
∣∣∣ϕ1/2

∣∣∣.
If Ai, j,k − ρ1 − ρ2 − σ

i, j,kW
i, j,k
1 > 0, then

∣∣∣ψk+1
∣∣∣ ≤ [
Ai, j,k − ρ1 − ρ2

Ai, j,k + ρ1 + ρ2
k +

1
Ai, j,k + ρ1 + ρ2

]
Cτ

∣∣∣ϕ1/2
∣∣∣

≤ C(k + 1)τ
∣∣∣ϕ1/2

∣∣∣.
If Ai, j,k − ρ1 − ρ2 − σ

i, j,kW
i, j,k
1 < 0, then

∣∣∣ψk+1
∣∣∣ ≤ −Ai, j,k + ρ1 + ρ2 + 2σi, j,kW

i, j,k
1

Ai, j,k + ρ1 + ρ2
k +

1
Ai, j,k + ρ1 + ρ2

Cτ
∣∣∣ϕ1/2

∣∣∣.
Here, ∣∣∣ψk+1

∣∣∣ ≤ C(k + 1)τ
∣∣∣ϕ1/2

∣∣∣
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⇔
−Ai, j,k + ρ1 + ρ2 + 2σi, j,kW

i, j,k
1

Ai, j,k + ρ1 + ρ2
≤ 1

⇔ −Ai, j,k + ρ1 + ρ2 + 2σi, j,kW
i, j,k
1 ≤ Ai, j,k + ρ1 + ρ2

⇔ 2 ≥ 31−αi, j,k
.

Therefore, under the above condition we have∣∣∣ψk+1
∣∣∣ ≤ C(k + 1)τ

∣∣∣ϕ1/2
∣∣∣.

□

We utilize Lemma 4 to prove the next result.

Theorem 3. If 2 ≥ 31−αi, j,k
, then the finite difference scheme defined by Eq (2.5) is l2 convergent with

convergence order O(τ + (∆x)2 + (∆y)2).

Proof. With the help of Lemma 4 and Eqs (5.4) and (5.5), we obtain

∥ζk∥22 =

∞∑
Z1=−∞

∞∑
Z2=−∞

∣∣∣ψk(Z1,Z2)
∣∣∣2 ≤ ∞∑

Z1=−∞

∞∑
Z2=−∞

C2(k + 1)2τ2
∣∣∣ϕ1/2(Z1,Z2)

∣∣∣2
= C2(k + 1)2τ2∥R1/2∥22.

Taking Eq (5.3) into consideration leads to

∥ζk∥2 ≤ C(k + 1)τ∥R1/2∥2 ≤ C(k + 1)τ(τ + (∆x)2 + (∆y)2)
≤ C∗(τ + (∆x)2 + (∆y)2),

where C∗ = CT as (k + 1)τ ≤ T . □

Theorem 4. If 2 ≥ 31−αi, j,k
, then the finite difference scheme defined by Eq (3.2) is l2 convergent with

convergence order O(τ + (∆x)2 + (∆y)2).

Proof. The proof can be established in analogous way to Theorem 3. □

Theorems 3 and 4 indicate the convergence of the numerical schemes (2.5) and (3.2), respectively.
This means that as the spatial and temporal step sizes approach zero, the numerical solutions approach
to the exact solution of the considered problem. These considerations will be verified in the next
section.

6. Numerical experiments and discussion of results

6.1. Numerical experiments

After the construction and analysis of the C-N and EDG solution methods in the previous sections,
we turn our attention to simulating the two-dimensional VO-TFDE (1.1) using the aforementioned
numerical schemes. In this endeavor, three numerical examples are chosen to illustrate the capability,
accuracy and efficiency of the presented methods. The exact analytical solution of each example
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is known and is utilized for comparison with the evaluated numerical solutions. Unless otherwise
specified, the solution domain is set to be [0, 1] × [0, 1] × (0, 1]. Furthermore, we assume that
∆x = ∆y = h throughout numerical experiments. All computations are carried out using the Julia
Programming Language and run on a PC with the configuration: Intel(R) Core(TM) i7-8550U CPU
2.00 GHz 8 GB RAM and the Windows 10 (64-bit) operating system. Matlab is also employed for
generating some figures. The computational cost and the accuracy of the proposed methods will be
reported based on the criteria of CPU time (in seconds) and the maximum absolute error (MAE),
respectively. The numerical outcomes of these criteria are attained for different values of mesh
sizes and various VO functions. Finally, we include some graphical representations to facilitate the
discussion of our results.

The MAE between the exact solution and the numerical solution is given by

MAE = max
1≤i≤M1−1,1≤ j≤M2−1,1≤k≤N

u(xi, y j, tk) − Uk
i, j.

To compute the convergence order (CO), we use

CO =
ln (MAE(τ, h1)/MAE(τ, h2))

ln (h1/h2)
.

Example 1. Consider the following two-dimensional VO-TFDE:

C
0 Dα(x,y,t)

t u(x, y, t) =
∂2u(x, y, t)

∂x2 +
∂2u(x, y, t)

∂y2 +
6t3−a(x,y,t)

Γ(4 − a(x, y, t))
(1 − x2)2(1 − y2)2

− 4t3((1 − y2)2(3x2 − 1) + (1 − x2)2(3y2 − 1))

with the initial and boundary conditions

u(x, y, 0) = 0,
u(x, 0, t) = t3(1 − x2)2, u(x, 1, t) = t3(1 − x2)2,

u(0, y, t) = t3(1 − y2)2, u(1, y, t) = t3(1 − y2)2,

and the exact analytical solution is given by

u(x, y, t) = t3(1 − x2)2(1 − y2)2.

Tables 1 gives the CPU times and the numerical errors of the proposed methods for a variety of
mesh sizes (1/6, 1/12, 1/18, 1/24) with fixed τ = 0.01 and various values of α(x, y, t). In view of this
table, it can be seen that the C-N and EDG methods produce accurate results in solving Example 1.
Furthermore, as the mesh size increases, the observed maximum errors for all chosen VO derivatives
α(x, y, t) decrease. Figure 2 sketches the CPU time of the C-N and EDG methods according to different
sizes of space steps with α(x, y, t) = 10−(xyt)3

80 and α(x, y, t) = 9−x5+t3
120 . We can see that the EDG method

significantly outperforms the C-N method in terms of CPU timing. The time reduction percentage
of the EDG method compared to the C-N method is (52.74-79.44)%. For instance, Table 1 shows
that we need to take h = 1/24 in order to obtain the maximum error of 2.4740E-4 using the C-N
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method with α(x, y, t) = 10−(xyt)3

80 , which costs 44.8959 seconds. On the other hand, the EDG method
with h = 1/24 achieves a maximum error of 3.4746E-4 and the corresponding computing time is
only 11.4655 seconds. These results and comparisons justify our effort to establish the EDG method.
Figure 3 shows a comparison of the numerical solutions of the proposed methods and the exact solution
of Example 1 for h = 1/24, τ = 0.01, x = 0.5, α(x, y, t) = 11−cos(xt)2

11 and T = 0.25, 0.5, 0.75, 1. One can
observe from this figure that the behavior of the numerical solutions is the same as that of the exact
solution. Figure 4 displays 3D surface plots of the numerical solutions and the maximum errors for the
C-N and EDG methods at h = 1/24, τ = 0.01 and α(x, y, t) = 15+sin(yt)5

16 . It follows that the numerical
solutions of the C-N and EDG methods are in good agreement with the exact solutions, which illustrate
the accuracy and effectiveness of the proposed methods.

Table 1. The CPU times and maximum errors for Example 1 at T = 1, τ = 0.01.

C-N method EDG method
α(x, y, t) h CPU time MAE CPU time MAE

10−(xyt)3

80

1/6 0.2499 4.1038E-03 0.0937 7.0379E-03
1/12 3.7891 1.0223E-03 0.8840 1.6246E-03
1/18 16.3650 3.3934E-04 4.0260 6.7900E-04
1/24 44.8959 2.4740E-04 11.4655 3.4746E-04

5yt−3

1/6 0.4966 4.1265E-03 0.1284 7.0739E-03
1/12 4.9944 1.0522E-03 1.2802 1.6364E-03
1/18 18.8372 3.6115E-04 5.0190 6.8719E-04
1/ 24 51.9460 2.5265E-04 13.7734 3.4547E-04

11−cos(xt)2

11

1/6 0.1588 3.7833E-03 0.0630 6.5721E-03
1/12 1.7410 9.5964E-04 0.4935 1.5089E-03
1/18 5.9911 3.3693E-04 1.6087 6.3153E-04
1/24 17.5482 1.8718E-04 4.5734 3.0326E-04

15+sin(yt)5

16

1/6 0.2364 3.7776E-03 0.1117 6.5633E-03
1/12 2.5489 9.5797E-04 0.8056 1.5115E-03
1/18 12.0167 3.3706E-04 3.0428 6.4030E-04
1/24 39.0032 1.8076E-04 8.0181 3.0591E-04

9−x5+t3
120

1/6 0.3455 4.1132E-03 0.0837 7.0528E-03
1/12 3.6123 1.0282E-03 1.1557 1.6213E-03
1/18 15.4070 3.5013E-04 4.1639 7.0226E-04
1/24 43.8414 2.5438E-04 13.8434 3.3037E-04

15−sin(xyt)4

16

1/6 0.3609 3.7780E-03 0.1149 6.5638E-03
1/12 2.9381 9.5677E-04 1.0479 1.5113E-03
1/18 11.8527 3.3380E-04 2.9980 6.3989E-04
1/24 31.7521 1.8077E-04 8.2564 3.0450E-04
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Figure 2. The CPU time comparison of the C-N and EDG methods for Example 1.
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Figure 3. Numerical comparison for Example 1 between the exact solution and the numerical
solutions obtained using the C-N and EDG methods with h = 1/24, τ = 0.01, x = 0.5 and
α(x, y, t) = 11−cos(xt)2

11 .
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Figure 4. The numerical solutions and maximum errors of the C-N and EDG methods with
h = 1/24, τ = 0.01 and α(x, y, t) = 15+sin(yt)5

16 for Example 1.

Example 2. In this example, we consider the following two-dimensional VO-TFDE:

C
0 Dα(x,y,t)

t u(x, y, t) =
∂2u(x, y, t)

∂x2 +
∂2u(x, y, t)

∂y2 +
2t2−a(x,y,t)

Γ(3 − a(x, y, t))
sin(x2 + y2)

+ 2t2(2x2 sin(x2 + y2) + 2y2 sin(x2 + y2) − 2 cos(x2 + y2)),

subject to the initial and boundary conditions

u(x, y, 0) = 0,
u(x, 0, t) = t2 sin(x2), u(x, 1, t) = t2 sin(x2 + 1),
u(0, y, t) = t2 sin(y2), u(1, y, t) = t2 sin(y2 + 1),

with the exact analytical solution written as

u(x, y, t) = t2 sin(x2 + y2).

We now utilize the C-N and EDG methods to solve the given problem in Example 2. The CPU times
and the maximum errors for several mesh sizes (1/4, 1/10, 1/16, 1/22) with fixed τ = 0.01 and various
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values of α(x, y, t) are shown in Table 2. Figure 5 depicts the CPU times of the proposed methods
against different values of spatial step sizes for α(x, y, t) = exyt+cos(xyt)

30 and α(x, y, t) = 5+(xy)3−(xt)4

50 . From
the data in these tables and figures, it’s seen that the C-N and EDG methods generate comparable results
in terms of accuracy, but the latter method results in better simulations in terms of CPU timing. From
Table 2, the improvement percentage in CPU time of the EDG method compared to the C-N method is
(40.36-83.56)%. This example clearly lends itself to a comparison similar to that of Example 1. The
numerical solutions of the proposed methods along with the exact solution of Example 2 is portrayed
in Figure 6 for h = 1/22, τ = 0.01, x = 0.5, α(x, y, t) = 16−exyt

17 and T = 0.25, 0.5, 0.75, 1. Figure 7
highlights the 3D surface plots of the numerical solutions and the maximum errors of the C-N and EDG
methods at h = 1/22, τ = 0.01 and α(x, y, t) = 3+(xy)2−(xt)3

30 . These figures demonstrate the effectiveness
of the proposed methods as the numerical solutions are found to match well with the exact analytical
solution.

Table 2. The CPU times and maximum errors for Example 2 at T = 1, τ = 0.01.

C-N method EDG method
α(x, y, t) h CPU time MAE CPU time MAE

1−(xyt)3+cos(xyt)2

10

1/4 0.0876 1.0398E-02 0.0409 2.2604E-02
1/10 3.2858 1.7702E-03 0.8188 3.3201E-03
1/16 18.4236 7.9260E-04 4.9788 1.3317E-03
1/22 63.9827 5.9961E-04 13.8950 7.6442E-04

exyt+cos(xyt)
30

1/4 0.2551 1.0465E-02 0.0497 2.2765E-02
1/10 5.3375 1.7854E-03 1.2344 3.3386E-03
1/16 25.7313 8.1088E-04 6.0432 1.3401E-03
1/22 72.5582 6.1617E-04 22.3957 7.9394E-04

16−exyt

17

1/4 0.0493 1.0000E-02 0.0294 2.1580E-02
1/10 0.9723 1.7134E-03 0.3137 3.1995E-03
1/16 5.8175 7.8225E-04 1.4358 1.2959E-03
1/22 17.8491 5.7985E-04 4.3844 7.4330E-04

3+(xy)2−(xt)3

30

1/4 0.0642 1.0449E-02 0.0227 2.2735E-02
1/10 2.3931 1.7715E-03 0.8921 3.3315E-03
1/16 14.1170 8.2971E-04 2.8375 1.3347E-03
1/22 55.0142 6.1130E-04 9.0424 7.7265E-04

5+(xy)3−(xt)4

50

1/4 0.0682 1.0448E-02 0.0291 2.2733E-02
1/10 2.7203 1.7685E-03 0.7045 3.3373E-03
1/16 15.1587 8.2983E-04 3.7406 1.3408E-03
1/22 50.2882 5.8791E-04 11.7378 7.7962E-04

1−xyt+sin(xyt)
10

1/4 0.0845 1.0447E-02 0.0325 2.2731E-02
1/10 2.9924 1.7737E-03 0.7802 3.3370E-03
1/16 17.1431 8.0822E-04 4.2529 1.3406E-03
1/22 54.7490 5.8871E-04 13.4222 7.7789E-04
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Figure 5. The CPU time comparison of the C-N and EDG methods for Example 2.
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Figure 6. Numerical comparison for Example 2 between the exact solution and the numerical
solutions obtained using the C-N and EDG methods with h = 1/22, τ = 0.01, x = 0.5 and
α(x, y, t) = 16−exyt

17 .
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Figure 7. The numerical solutions and maximum errors of the C-N and EDG methods with
h = 1/22, τ = 0.01 and α(x, y, t) = 3+(xy)2−(xt)3

30 for Example 2.

Example 3. Here, the following two-dimensional VO-TFDE is considered:

C
0 Dα(x,y,t)

t u(x, y, t) =
∂2u(x, y, t)

∂x2 +
∂2u(x, y, t)

∂y2 +

(
120t5−a(x,y,t)

Γ(6 − a(x, y, t))
+ π2t5

)
(sin(πx) + sin(πy))

2
,

with the initial and boundary conditions

u(x, y, 0) = 0,

u(x, 0, t) =
1
2

t5 sin(πx), u(x, 1, t) =
1
2

t5 sin(πx),

u(0, y, t) =
1
2

t5 sin(πy), u(1, y, t) =
1
2

t5 sin(πy),

and the exact analytical solution of the following form:

u(x, y, t) =
1
2

t5(sin(πx) + sin(πy)).

AIMS Mathematics Volume 9, Issue 1, 340–370.



364

Table 3 highlights the numerical results of solving Example 3 using CN and EDG methods with
T = 1, τ = 0.01, h−1 = 12, 24 and different VO functions. From the data in this table, it can be seen that
the numerical solutions converge to the exact solution where maximum errors decrease as mesh sizes
increase. A reduction of CPU timing and, hence, computational burden is also noted in using the EDG
method over the CN method for solving the considered problem. This can be beneficial for capturing
the long-term behavior of physical phenomena that is governed by VO fractional models. From the
previous discussion, it follows that the proposed methods are accurate and the EDG method is superior
to the C-N method in terms of CPU timing. Finally, Table 4 highlights the computational orders of
the proposed methods for solving Examples 1–3. From this table, the second order convergence of the
proposed methods can be anticipated, which is in line with the theoretical considerations.

Table 3. The CPU times and maximum errors for Example 3 at T = 1, τ = 0.01.
h−1 = 12 h−1 = 24

C-N EDG CN EDG
α(x, y, t) CPU time MAE CPU time MAE CPU time MAE CPU time MAE
10−(xyt)3

80 4.2446 2.9811E-03 0.9564 3.0869E-03 57.7629 3.7745E-04 11.7092 5.3877E-04
5yt−3 5.2871 3.0868E-03 1.2871 3.1129E-03 69.0271 5.4651E-04 16.3071 6.8800E-04
11−cos(xt)2

11 1.4539 2.4022E-03 0.4342 2.4534E-03 16.7202 3.2210E-04 5.8109 3.1297E-04
15+sin(yt)5

16 2.6672 2.4036E-03 0.8971 2.4604E-03 44.4374 3.1177E-04 8.8679 3.1733E-04
9−x5+t3

120 4.0845 3.0183E-03 1.3774 3.1207E-03 64.1056 4.3822E-04 14.0114 5.7422E-04
15−sin(xyt)4

16 2.7664 2.3978E-03 9.95E-01 2.4571E-03 36.6685 3.1184E-04 10.6867 3.0756E-04
1−(xyt)3+cos(xyt)2

10 6.5047 2.9637E-03 1.931 3.0515E-03 96.8315 3.8151E-04 24.4635 5.2750E-04
exyt+cos(xyt)

30 8.3275 3.0230E-03 2.3265 3.1152E-03 125.3629 4.5041E-04 33.0581 5.6177E-04
16−exyt

17 1.8139 2.3908E-03 0.5174 2.4595E-03 28.0809 3.1432E-04 6.7689 2.5614E-04
3+(xy)2−(xt)3

30 4.2048 3.0191E-03 1.0323 3.0820E-03 69.2202 4.1416E-04 14.2108 5.7308E-04
5+(xy)3−(xt)4

50 5.9701 3.0114E-03 1.5368 3.0890E-03 86.0504 4.0849E-04 20.5851 5.6393E-04
1−xyt+sin(xyt)

10 6.4259 3.0110E-03 1.4328 3.0912E-03 74.6506 4.0501E-04 18.0687 5.6381E-04

Table 4. Computational orders of solving Examples 1–3 at T = 1 and τ = 0.01.

C-N EDG
Example α(x, y, t) h MAE CO MAE CO

1 10−(xyt)3

80

1/4 9.0598E-03 1.8596E-02
1/8 2.4085E-03 1.91 3.7500E-03 2.31
1/16 5.0287E-04 2.25 8.7401E-04 2.10

2 16−exyt

17

1/4 1.0000E-02 2.1580E-02
1/8 2.6132E-03 1.93 5.0291E-03 2.10
1/16 7.8225E-04 1.74 1.2959E-03 1.95

3 11−cos(xt)2

11

1/4 2.3825E-02 2.6705E-02
1/8 5.8325E-03 2.03 6.0067E-03 2.15
1/16 1.1573E-03 2.33 1.2173E-03 2.30
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6.2. Discussion of results

In the previous subsection, three numerical examples were solved using the proposed methods, and
the results were illustrated in Tables 1–3 along with Figures 2–7. In view of the said tables, it can be
seen that the numerical solutions of the proposed methods approach the exact solution as the spatial step
size decreases. This is in line with our theoretical analysis. In addition, the EDG method was observed
to be computationally efficient compared to the C-N method in solving the test problems, where the
former required less CPU time compared to the latter. Such reduction in computational burden is
attributed to the smaller number of mesh points comprised in the iterative process as discussed earlier.
The experimental results are in line with the considerations of previous sections and demonstrate the
feasibility, accuracy and efficiency of the proposed methods.

7. Conclusions

The VO fractional diffusion equation and its numerical solution are of practical importance for
describing complex diffusion processes in which the system memory changes as a function of time
and/or space variables. In this paper, the two-dimensional VO-TFDE (1.1) has been considered to
account for its numerical solution. A C-N difference scheme along with an EDG method constructed
based on a skewed finite difference approximation on the rotated grid have been developed for solving
the VO fractional problem. The stability and convergence analyses have been investigated in detail.
Numerical test problems were provided to illustrate the capability and performance of the proposed
methods.

Based on the numerical simulations and the discussion of experimental results, some conclusions
are drawn.

First, both C-N and EDG methods perform well for the VO-TFDE as their numerical solutions are
found to be in good agreement with the exact analytical solutions. See Figures 3, 4, 6 and 7.

Second, the proposed methods are stable and convergent, and the maximum absolute errors are
observed to decrease as the mesh sizes increase. See Tables 1 and 2.

Third, the EDG method reduces the computational burden of solving the VO-TFDE and results in
faster simulations compared to the C-N difference method. See Figures 2 and 5.

Finally, the current work has successfully developed the C-N and EDG numerical methods to solve
the fractional diffusion equation involving the VO time derivative defined in section one. The extension
of the proposed methods to other classes of linear and nonlinear fractional differential equations with
time-invariant type VO derivative [63] is an interesting line of future research. The construction of
the proposed methods based on higher-order difference approximations for enhancing the accuracy is
another direction for further study.
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