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Abstract: In this paper, a new-type time-varying asymmetric integral barrier function is designed
to handle the state constraint of nonlinear systems. The barrier Lyapunov function is developed by
building an integral upper limit function with respect to transformation errors over an open set to
cope with the position constraint of the robotic system. We know that the symmetric time-invariant
constraint is only a particular situation of the asymmetric time-variant constraint, and thus compared
to existing methods, it is capable of handling more general and broad practical engineering issues.
We show that under the integral barrier Lyapunov function combining a disturbance observer-based
tracking controller, the position vector tracks a desired trajectory successfully, while the constraint
boundary is never violated. It can certify the exponential asymptotic stability of the robotic tracking
system by using the given inequality relationship on barrier function and Lyapunov analysis. Finally,
the feasibility of the presented algorithm is indicated by completing the simulations.
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1. Introduction

Over the past few decades, many effective methods has been developed for the tracking control of
robotic systems. Lyapunov’s direct methods (also called Lyapunov’s second method), for instance,
were used for designing stable controllers of nonlinear systems by combining the concept of control
Lyapunov functions. Control Lyapunov functions generally have a quadratic form; however, more
sophisticated Lyapunov functions are required to be constructed for some complex control problems.
Adaptive control scheme using Lyapunov’s direct method-based two different tracking controllers
were developed to improve the convergence speed and transient response of robotic systems [1]. A
generalization of Lyapunov’s second method was introduced into the control design of nonlinear
(controlled) systems for dealing with the following control problem under non-linear and fractional
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damping [2]. In this study, we construct one new Lyapunov control structure to address practical
requirements of robots. In particular, we deal with the tracking control task for robotic systems
subject to the state constraint, from the concept that a lot of physical systems was affected by various
limitations such as safety specification, control performance requirement, actuator saturation, and
physical stoppages [3].

Recently, the methods, which solved constraint problem, include mainly the use of set invariant
notions [4], reference governors [5], barrier Lyapunov function [6–9], and prescribed performance
control [10, 11], etc. Especially, barrier Lyapunov functions (BLFs) were often applied to the
constraint control of robotic arms. A time-invariant logarithmic BLF, for example, was utilized to
prevent the destruction of the state restrictions and ensure the uniform ultimate boundedness of
closed-loop robotic systems [12]. This BLF applied to constrain the robotic system output [13].
However, time-invariant constraint control methods have limitations in practical applications.
Therefore, a time-varying logarithmic BLF was applied to handle output restricting problems of
robotic systems [14, 15]. In addition, in [16, 17], the inconstant tangent BLFs were applied to
addressing the state and output constraint of the robot, respectively. Existing logarithmic BLFs have
been utilized to constrain the states as well as track errors of various systems, and these methods were
relatively mature. In order to cope with the development of control theory, we need to explore a new
form of BLF that has the same constraint capability as the logarithmic one.

Integral BLFs can be used to constrain system states directly, however, can not deal with
transformation errors [18,19]. The advantage of this method was that it can directly handle the system
state and eliminate the conservatism of known error ranges. Neural networks and integral BLF-based
adaptive control approaches, for instance, were proposed for a kind of perturbed uncertain nonlinear
systems to guarantee the constraint boundary was never violated and address the unknown functions
in systems effectively [20]. A control method of nonlinear systems using integral BLF and
backstepping method was presented to ensure system states are located within the constraint
space [21]. In [22], a tracking strategy combining integral BLF and dynamic surface design was
proposed for nonlinear pure-feedback systems to achieve both the solving of the explosion of
complexity and the constraint requirement. In [23], integral BLFs were used to deal with full state
constraints of nonlinear strict feedback systems. Compared to other types of BLFs, the disadvantage
of integral BLF is that it cannot be used to constrain tracking errors directly. Although integral BLF
has certain advantages in directly handling system states, it still has some shortcomings in solving
some practical problems. Integral BLFs, for instance, cannot deal with the error performance
requirements of tracking systems and asymmetric constraint requirements of systems, etc.

Motivated by the above discussions, according to structures of the existing logarithmic and integral
BLFs, a new integral BLF is constructed in this paper. Aided by the backstepping design method, the
integral BLF-based tracking control strategy for a robot under the time-variant asymmetric position
limitations is studied. In view of the published literatures, the main innovations in the paper are
summed up as follows:

(I) Unlike existing integral BLFs [18–23], the BLF, which is proposed for the first time, can work
for systems with time-variant and asymmetric constraint requirements simultaneously. This integral
barrier function is similar to the logarithmic function in [15]. However, the functions proposed in this
article are more concise in structure, and the derivation of controllers based on this method is easier.

(II) Different from structures of existing control Lyapunov functions [24–28], the proposed integral
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BLF is developed cleverly by constructing an integral upper limit function with respect to
transformation errors to cope with the position constraint problem of systems.

(III) Furthermore, under the controller based on the integral BLF, the dissymmetric time-variant
position restraint situation are achieved, and all the system error signals are exponentially
asymptotically stable.

The organization of this article is as follows. The problem descriptions and preparations are shown
in Section 2. Stability analysis and controller design are explained in Section 3 utilizing the presented
BLF and disturbance observer. In order to confirm that the presented strategy is effective, the simulation
experiment is finished in Section 4. Lastly, Section 5 offers a conclusion of the complete work.

2. Problem descriptions and preparations

2.1. Modeling of an n-link robot

According to [15, 29], dynamics of an n-link robot are depicted as

M0 (q) q̈ +C0 (q, q̇) q̇ +G0 (q) = τ (t) + fs un (2.1)

where M0 (q) ∈ Rn×n, C0 (q, q̇) q̇ ∈ Rn and G0 (q) ∈ Rn denote the inertia matrix, Coriolis-centripetal
torque and gravitational matrix of the robotic system, respectively. The inertia matrix satisfies

M0 (q) = MT
0 (q) > 0.

The position, velocity and acceleration of the robotic system are represented by q, q̇ and q̈, respectively.
System inputs are denoted by τ(t). System uncertain terms are described by

fs un = −∆C (q, q̇) q̇ − ∆M (q) q̈ − ∆G (q) − JT (q) f (t) ,

∆·, JT (q) and f (t) represent the uncertain part of the system matrix, Jacobian matrix, external force,
respectively.

2.2. Basic assumption and coordinate conversion

To contribute to completing the process of control design, we perform the following coordinate
conversion. Let {

x1 = q,
x2 = q̇.

(2.2)

The dynamics of the robot (2.1) can be rewritten as
ẋ1 = x2,

ẋ2 = M−1
0 (x1) (τ (t) + fs un − Mkn) ,

y = x1,

(2.3)

where
Mkn = C0 (x1, x2) x2 +G0 (x1) .
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The control objective tries to design a tracking controller based on a new asymmetric time-varying
integral BLF such that system output

y = x1 = q =
[
q1, q2, · · · , qn

]T

tracks the reference trajectory
xd = [xd1, xd2, · · · , xdn]T

while guaranteeing that all the signals are exponentially asymptotically stable and the position
constraint boundaries are not violated, that is

klc (t) < x1 < kuc (t) , ∀t ≥ 0,

where
kuc (t) = [kuc1 (t) , kuc2 (t) , · · ·, kucn (t)]T

and
klc (t) = [klc1 (t) , klc2 (t) , · · ·, klcn (t)]T

with kuc (t) > klc (t) > 0,∀t ∈ R+, i = 1, 2, · · · , n.

Assumption 1. The uncertain term is bounded, differentiable, and slow or fast varying, and thus,
| fs un| ≤ Fm, Fm > 0 and ḟs un ≈ 0 or ḟs un < Fdt with Fdt being a positive constant hold.

Assumption 2. [15] There exist the constants Klci and Kuci such that |kuci| ≤ Kuci and |klci| ≤ Klci,
∀t ≥ 0, i = 1, 2, · · · , n. Furthermore, suppose the upper and lower limitation boundaries of xd are
respectively Xu1 and Xl1, and the conditions Xl1 > klc (t) and Xu1 < kuc (t) hold. The position and
velocity tracking errors are defined as

e1 = [e11, e12, · · · , e1n]T = x1 − xd

and
e2 = [e21, e22, · · · , e2n]T = x2 − α,

where α denotes desired velocity. Set

kl qi (t) = xdi − klci (t)

and
ku qi (t) = kuci (t) − xdi

to be the constraint boundary of the position tracking error e1i, that is −kl qi < e1i < ku qi.

Remark 1. It is easy to know that the uncertain term fs un is a function containing the variables and
their derivatives of the position and velocity. The position and velocity of the robot are bounded and
differentiable and the motion trajectory of the robot is smooth, so we make the reasonable assumption
that the uncertain term and its derivative are bounded. However, there is conservatism in Assumption 1.
In future works, we will focus on issues that do not require consideration of the boundedness of the
uncertain term and its derivatives. In addition, the purpose of Assumption 2 is to constrain the system’s
state by constraining the tracking error. Unfortunately, this method will reduce the range of feasible
spaces.
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In order to perform the constraint capability of the integral BLF designed in this paper, we perform
the following error transformation ξl qi =

e1i
kl qi(t)
, ξu qi =

e1i
ku qi(t)
,

ξqi = h1 (e1i) ξu qi + (1 − h1 (e1i)) ξl qi, i = 1, 2, · · · , n,
(2.4)

where

h1 (e1i) =
{

1, e1i > 0,
0, e1i ≤ 0.

(2.5)

Lemma 1. Inequality conditions
∣∣∣ξqi

∣∣∣ < 1 and −kl qi (t) < e1i (t) < ku qi (t) are equivalent.

Proof. Please refer to [30]. □

2.3. A time-varying asymmetric integral BLF

In view of the definition of ξqi, a new time-varying asymmetric integral BLF over the set
∣∣∣ξqi

∣∣∣ < 1 is
constructed as

V =
∫ ξqi

0

2σ
1 − σ2 dσ. (2.6)

In light of the definition of V , it is clear that V is positive continuous, differentiable, and radially
unbounded as

∣∣∣ξqi

∣∣∣→ 1 in the open set
∣∣∣ξqi

∣∣∣ < 1.

Remark 2. In terms of the definitions of ξqi in (2.4) and h1 (e1i) in (2.5), when e1i > 0, we have
h1 (e1i) = 1. Then, ξqi = ξu qi and

V =
∫ ξu qi

0

2σ
1 − σ2 dσ =

∫ ξqi

0

2σ
1 − σ2 dσ

hold. ξqi = ξl qi and

V =
∫ ξl qi

0

2σ
1 − σ2 dσ =

∫ ξqi

0

2σ
1 − σ2 dσ

are true when e1i ≤ 0 and h1 (e1i) = 0. Thus, whether e1i > 0 or e1i ≤ 0,

V =
∫ ξqi

0

2σ
1 − σ2 dσ

is always true.

Theorem 1. The BLF V in (2.6) over the set
∣∣∣ξqi

∣∣∣ < 1 satisfies the inequality

ξ2
qi

2
≤

∫ ξqi

0

2σ
1 − σ2 dσ ≤

ξ2
qi

1 − ξ2
qi

. (2.7)

Proof. Step 1. In this step, we will verify the inequality on the left side of (2.7) holds. Introducing an
auxiliary function

f
(
ξqi

)
=

∫ ξqi

0

2σ
1 − σ2 dσ −

ξ2
qi

2
. (2.8)
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Taking the derivative of (2.8) with respect to ξqi yields

d f
(
ξqi

)
dξqi

=
2ξqi

1 − ξ2
qi

− ξqi

=
ξqi

(
1 + ξ2

qi

)
1 − ξ2

qi

.

(2.9)

According to derivative of f
(
ξqi

)
, we know that

d f
(
ξqi

)
dξqi

< 0

holds, when ξqi < 0 and
d f

(
ξqi

)
dξqi

> 0

is true when ξqi > 0 in the set
∣∣∣ξqi

∣∣∣ < 1. Furthermore, f
(
ξqi

)
= 0 always holds as ξqi = 0. Thus, we can

obtain the inequality
ξ2

qi

2
≤

∫ ξqi

0

2σ
1 − σ2 dσ

always holds in the set
∣∣∣ξqi

∣∣∣ < 1.
Step 2. Similar to step 1, we introduce an auxiliary function for proving the inequality on the right

side of (2.7)

g
(
ξqi

)
=
ξ2

qi

1 − ξ2
qi

−

∫ ξqi

0

2σ
1 − σ2 dσ. (2.10)

Differentiating (2.10), we get

dg
(
ξqi

)
dξqi

=
2ξqi(

1 − ξ2
qi

)2 −
2ξqi

1 − ξ2
qi

=
2ξ3

qi(
1 − ξ2

qi

)2 .

(2.11)

In the set
∣∣∣ξqi

∣∣∣ < 1,
dg

(
ξqi

)
dξqi

< 0 and
dg

(
ξqi

)
dξqi

> 0

hold under the conditions ξqi < 0 and ξqi > 0, respectively. Then, g
(
ξqi

)
= 0 holds as ξqi = 0. Thus, it

can be inferred that ∫ ξqi

0

2σ
1 − σ2 dσ ≤

ξ2
qi

1 − ξ2
qi

is always true in the set
∣∣∣ξqi

∣∣∣ < 1. The proof of Theorem 1 is complete. □
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3. Controller design and stability analysis

In order to constrain the position of the robot, one new time-varying asymmetric integral BLF with
respect to transformation error ξqi is constructed

V1 =

n∑
i=1

∫ ξqi

0

2σ
1 − σ2 dσ. (3.1)

In light of the definition of ξqi and taking the time derivative of V1 over the set
∣∣∣ξqi

∣∣∣ < 1, we have

V̇1 =

n∑
i=1

2ξqi

1 − ξ2
qi

ξ̇qi

=

n∑
i=1

2ξqi

1 − ξ2
qi

(
h1 (e1i) ξ̇u qi + (1 − h1 (e1i)) ξ̇l qi

)
=

n∑
i=1

2h1 (e1i) ξu qi

1 − ξ2
u qi

ξ̇u qi +

n∑
i=1

2 (1 − h1 (e1i)) ξl qi

1 − ξ2
l qi

ξ̇l qi

=

n∑
i=1

2h1 (e1i) ξu qi

ku qi (t)
(
1 − ξ2

u qi

) (
ė1i − e1i

k̇u qi (t)
ku qi (t)

)

+

n∑
i=1

2 (1 − h1 (e1i)) ξl qi

kl qi (t)
(
1 − ξ2

l qi

) ė1i − e1i
k̇l qi (t)
kl qi (t)

.

(3.2)

Differentiating the position tracking error yields

ė1 = ẋ1 − ẋd

= e2 + α − ẋd,

ė1i = e2i + αi − ẋdi.

(3.3)

According to (3.3), (3.2) can be rewritten as

V̇1 =

n∑
i=1

2h1 (e1i) ξu qi

ku qi (t)
(
1 − ξ2

u qi

) (
e2i + αi − ẋdi − e1i

k̇u qi (t)
ku qi (t)

)

+

n∑
i=1

2 (1 − h1 (e1i)) ξl qi

kl qi (t)
(
1 − ξ2

l qi

) e2i + αi − ẋdi − e1i
k̇l qi (t)
kl qi (t)

. (3.4)

With the help of the backstepping method, the position control law α is devised as

α =ẋd − (K + Ku (t)) e1,

αi =ẋdi − (k1i + ku1i (t)) e1i,
(3.5)

where
K = diag (k11, k12, · · ·, k1n) , (3.6)
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Ku (t) = diag (ku11 (t) , ku12 (t) , · · ·, ku1n (t)) , (3.7)

ku1i (t) =

√(
k̇u qi (t)
ku qi (t)

)2

+

(
k̇l qi (t)
kl qi (t)

)2

+ oi, i = 1, 2, · · · , n

with oi and k1i being positive constants.
In view of (3.5), (3.4) becomes

V̇1 =

n∑
i=1

Hu1i

(
e2i − (k1i + ku1i (t)) e1i − e1i

k̇u qi (t)
ku qi (t)

)
+

n∑
i=1

Hl1i

e2i − (k1i + ku1i (t)) e1i − e1i
k̇l qi (t)
kl qi (t)


=

n∑
i=1

 2h1 (e1i)
k2

u qi (t) − e2
1i

+
2 (1 − h1 (e1i))
k2

l qi (t) − e2
1i

 e1ie2i

−

n∑
i=1

Hζi

(
k1i + ku1i (t) + h1 (e1i)

k̇u qi (t)
ku qi (t)

)
−

n∑
i=1

Hζi

(1 − h1 (e1i))
k̇l qi (t)
kl qi (t)

,

(3.8)

where

Hu1i =
2h1 (e1i) ξu qi

ku qi (t)
(
1 − ξ2

u qi

) , Hl1i =
2 (1 − h1 (e1i)) ξl qi

kl qi (t)
(
1 − ξ2

l qi

)
and

Hζi =
2ξ2

qi

1 − ξ2
qi

, i = 1, 2, · · · , n.

According to the design of parameter ku1i (t), the inequality

ku1i (t) + h1 (e1i)
k̇u qi (t)
ku qi (t)

+ (1 − h1 (e1i))
k̇l qi (t)
kl qi (t)

≥ 0

holds. Thus, (3.8) can be rewritten as

V̇1 ≤

n∑
i=1

 2h1 (e1i)
k2

u qi (t) − e2
1i

+
2 (1 − h1 (e1i))
k2

l qi (t) − e2
1i

 e1ie2i

−

n∑
i=1

2k1iξ
2
qi

1 − ξ2
qi

.

(3.9)

Taking the derivative of e2 yields

ė2 = M−1
0 (x1) (τ (t) + fs un − Mkn) − α̇. (3.10)

Inspired by [31], we design a disturbance observer to estimate the uncertain terms in (3.10) f̂s un = η f + k f M0x2,

η̇ f = −k fη f − k f (τ (t) − Mkn +k f M0x2

)
,

(3.11)
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where
k f = diag

(
k f 11, k f 22, · · ·, k f nn

)
denotes the observer parameter, η f ∈ Rn presents the observer state variable,

f̃s un = fs un − f̂s un

is the estimating error with f̂s un denoting the estimated value of fs un.
Subsequently, the second Lyapunov function candidate is selected as

V2 = V1 +
1
2

eT
2 M0e2 +

1
2

f̃ T
s un f̃s un. (3.12)

Differentiating (3.12), we have

V̇2 =

n∑
i=1

 2h1 (e1i)
k2

u qi (t) − e2
1i

+
2 (1 − h1 (e1i))
k2

l qi (t) − e2
1i

 e1ie2i

−

n∑
i=1

2k1iξ
2
qi

1 − ξ2
qi

+ eT
2 M0ė2 + f̃ T

s un
˙̃fs un.

(3.13)

According to Lyapunov stability theory, the controller is designed as

τ (t) = Mkn + M0α̇ − f̂s un − K2e2 −Con, (3.14)

where

Con =



(
2h1(e11)

k2
u q1 (t)−e2

11
+

2(1−h1(e11))
k2

l q1 (t)−e2
11

)
e11(

2h1(e12)
k2

u q2 (t)−e2
12
+

2(1−h1(e12))
k2

l q2 (t)−e2
12

)
e12

· · ·(
2h1(e1n)

k2
u qn (t)−e2

1n
+

2(1−h1(e1n))
k2

l qn (t)−e2
1n

)
e1n


(3.15)

with
K2 = diag (k21, k22, · · ·, k2n)

being the positive definite parameter matrix.
Next, we perform the stable proof of the robotic closed-loop system.

Theorem 2. Consider the robotic system (2.3) subject to Assumptions 1 and 2, with controllers (3.5)
and (3.14) and observer (3.11), and suppose the initial position meets klc (0) < q (0) < kuc (0). Then,
the properties listed below are always satisfied:

(I) The position error signals e1i, i = 1, 2, · · · , n maintain in the open set (−kl qi (t) , ku qi (t)).

(II) The position states qi, i = 1, 2, · · · , n never break their constraint boundaries, i.e., klci (t) < qi <

kuci (t) ,∀t ≥ 0.

(III) All the system error signals are exponentially asymptotically stable.
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Proof. 1) When ḟs un ≈ 0, substituting (3.10), (3.14), and ˙̂fs un into (3.13), we have

V̇2 =

n∑
i=1

 2h1 (e1i)
k2

u qi (t) − e2
1i

+
2 (1 − h1 (e1i))
k2

l qi (t) − e2
1i

 e1ie2i

−

n∑
i=1

2k1iξ
2
qi

1 − ξ2
qi

+ f̃ T
s un

˙̃fs un

+ eT
2 (τ (t) + fs un − Mkn − M0α̇)

=

n∑
i=1

 2h1 (e1i)
k2

u qi (t) − e2
1i

+
2 (1 − h1 (e1i))
k2

l qi (t) − e2
1i

 e1ie2i

−

n∑
i=1

2k1iξ
2
qi

1 − ξ2
qi

− eT
2 K2e2 − eT

2 Con

+ eT
2 f̃s un − f̃ T

s unk f f̃s un

≤ −

n∑
i=1

2k1iξ
2
qi

1 − ξ2
qi

− eT
2

(
K2 −

1
2

In×n

)
e2

− f̃ T
s un

(
k f −

1
2

In×n

)
f̃s un,

(3.16)

where In×n ∈ Rn×n is an identity matrix.
The parameters K2 and k f are set to meet the conditions

λmin

(
K2 −

1
2 In×n

)
> 0,

λmin

(
k f −

1
2 In×n

)
> 0.

(3.17)

By means of Theorem 1, (3.16) becomes

V̇2 ≤ −

n∑
i=1

2k1i

∫ ξqi

0

2σ
1 − σ2 dσ − eT

2

(
K2 −

1
2

In×n

)
e2

− f̃ T
s un

(
k f −

1
2

In×n

)
f̃s un

≤ − ρV2 ≤ 0,

(3.18)

where

ρ = min

2k1i,
2λmin

(
K2 −

1
2 In×n

)
λmax (M0)

, 2λmin

(
k f −

1
2

In×n

) . (3.19)

Seeking the solution of the differential Eq (3.18), we get

0 ≤ V2 ≤ V2 (0) e−ρt. (3.20)

In terms of (3.1) and (3.12), we have

V2 =

n∑
i=1

∫ ξqi

0

2σ
1 − σ2 dσ +

1
2

eT
2 M0e2 +

1
2

f̃ T
s un f̃s un. (3.21)

AIMS Mathematics Volume 9, Issue 1, 319–339.



329

According to (3.20), we can obtain∫ ξqi

0

2σ
1 − σ2 dσ ≤ V2 (0) e−ρt ≤ V2 (0) . (3.22)

Solving the inequality (3.22) yields

ξ2
qi ≤

(
1 − e−V2(0)

)
and

∣∣∣ξqi

∣∣∣ ≤ √(
1 − e−V2(0)).

When e1i > 0, we have
e1i

ku qi (t)
≤

√(
1 − e−V2(0)),

and then
e1i ≤ ku qi (t)

√(
1 − e−V2(0))

is true. When e1i ≤ 0,

−
e1i

kl qi (t)
≤

√(
1 − e−V2(0))

holds, and then

e1i ≥ −kl qi (t)
√(

1 − e−V2(0))
holds. We arrive at the conclusion that −kl qi (t) < e1i (t) < ku qi (t) always holds. The proof of property
(I) is completed.

Moreover, in light of e1i = x1i − xdi, we can get

xdi − kl qi (t) < x1i < ku qi (t) + xdi.

Further, according to Assumption 2, we have

klci (t) < x1i = qi < kuci (t) ,∀t ≥ 0.

The position states qi, i = 1, 2, · · · , n never exceed the constraint boundaries. The proof of property
(II) is finished.

Finally, considering (3.20), (3.21) and Theorem 1, the following inequalities hold:∣∣∣ξqi

∣∣∣ ≤ √2V2 (0) e−ρt,∣∣∣e2

∣∣∣ ≤ √
2V2(0)e−ρt
λmin(M0) ,∣∣∣ f̃s un

∣∣∣ ≤ √2V2 (0) e−ρt.

(3.23)

In view of (3.23) and the definition of ξqi, we can infer that

e1i ≤ ku qi (t)
√

2V2 (0) e−ρt

holds, when e1i > 0 and
e1i ≥ −kl qi (t)

√
2V2 (0) e−ρt

AIMS Mathematics Volume 9, Issue 1, 319–339.



330

is true when e1i ≤ 0. Therefore, all the closed-loop signals are exponentially asymptotically stable.
2) When ḟs un < Fdt, substituting (3.10), (3.14) and ˙̂fs un into (3.13), we have

V̇2 =

n∑
i=1

 2h1 (e1i)
k2

u qi (t) − e2
1i

+
2 (1 − h1 (e1i))
k2

l qi (t) − e2
1i

 e1ie2i

−

n∑
i=1

2k1iξ
2
qi

1 − ξ2
qi

+ f̃ T
s un

˙̃fs un + eT
2 (τ (t) + fs un − Mkn − M0α̇)

=

n∑
i=1

 2h1 (e1i)
k2

u qi (t) − e2
1i

+
2 (1 − h1 (e1i))
k2

l qi (t) − e2
1i

 e1ie2i

−

n∑
i=1

2k1iξ
2
qi

1 − ξ2
qi

− eT
2 K2e2 − eT

2 Con + eT
2 f̃s un + f̃ T

s un

(
ḟs un −

˙̂f s un

)
≤ −

n∑
i=1

2k1iξ
2
qi

1 − ξ2
qi

− eT
2

(
K2 −

1
2

In×n

)
e2 − f̃ T

s un

(
k f − In×n

)
f̃s un +

1
2

∣∣∣ ḟs un

∣∣∣2,

(3.24)

where In×n ∈ Rn×n is an identity matrix.
The parameters K2 and k f are set to meet the following conditions

λmin

(
K2 −

1
2 In×n

)
> 0,

λmin

(
k f − In×n

)
> 0.

(3.25)

By means of Theorem 1, (3.16) becomes

V̇2 ≤ −

n∑
i=1

2k1i

∫ ξqi

0

2σ
1 − σ2 dσ − eT

2

(
K2 −

1
2

In×n

)
e2 − f̃ T

s un

(
k f − In×n

)
f̃s un +

1
2

∣∣∣ ḟs un

∣∣∣2
≤ − ρ1V2 + ρ2,

(3.26)

where

ρ1 = min

2k1i,
2λmin

(
K2 −

1
2 In×n

)
λmax (M0)

, 2λmin

(
k f − In×n

) , ρ2 =
1
2

∣∣∣ ḟs un

∣∣∣2. (3.27)

Seeking the solution of the differential Eq (3.18), we get

0 ≤ V2 ≤ V2 (0) e−ρ1t +
ρ2

ρ1

∆
= V̄2. (3.28)

In terms of (3.1) and (3.12), we have

V2 =

n∑
i=1

∫ ξqi

0

2σ
1 − σ2 dσ +

1
2

eT
2 M0e2 +

1
2

f̃ T
s un f̃s un. (3.29)

According to (3.28), we can obtain ∫ ξqi

0

2σ
1 − σ2 dσ ≤ V̄2. (3.30)
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Solving the inequality (3.30) yields

ξ2
qi ≤

(
1 − e−V̄2

)
and

∣∣∣ξqi

∣∣∣ ≤ √(
1 − e−V̄2

)
.

When e1i > 0, we have
e1i

ku qi (t)
≤

√(
1 − e−V̄2

)
,

and then
e1i ≤ ku qi (t)

√(
1 − e−V̄2

)
is true. When e1i ≤ 0,

−
e1i

kl qi (t)
≤

√(
1 − e−V̄2

)
holds, and then

e1i ≥ −kl qi (t)
√(

1 − e−V̄2
)

holds. We arrive at the conclusion that −kl qi (t) < e1i (t) < ku qi (t) always holds. The proof of property
(I) is completed.

Moreover, in light of e1i = x1i − xdi, we can get xdi − kl qi (t) < x1i < ku qi (t)+ xdi. Further, according
to Assumption 2, we have klci (t) < x1i = qi < kuci (t) ,∀t ≥ 0. The position states qi, i = 1, 2, · · · , n
never exceed the constraint boundaries. The proof of property (II) is finished. □

Finally, considering (3.28), (3.29) and Theorem 1, the following inequalities hold:

∣∣∣ξqi

∣∣∣ ≤√
2
(
V2 (0) e−ρ1t +

ρ2

ρ1

)
,

∣∣∣e2

∣∣∣ ≤
√

2
(
V2 (0) e−ρ1t +

ρ2
ρ1

)
λmin (M0)

,

∣∣∣ f̃s un

∣∣∣ ≤√
2
(
V2 (0) e−ρ1t +

ρ2

ρ1

)
.

(3.31)

In view of (3.31) and the definition of ξqi, we can infer that

e1i ≤ ku qi (t)

√
2
(
V2 (0) e−ρ1t +

ρ2

ρ1

)
holds, when e1i > 0 and

e1i ≥ −kl qi (t)

√
2
(
V2 (0) e−ρ1t +

ρ2

ρ1

)
is true when e1i ≤ 0. Therefore, all the closed-loop signals are exponentially asymptotically stable.
This completes the proof of Theorem 2.

Remark 3. According to the proof of property (III) in 1) of Theorem 2, it can be seen that

−kl qi (t)
√

2V2 (0) e−ρt ≤ e1i ≤ ku qi (t)
√

2V2 (0) e−ρt
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always holds. Different from the existing papers [32, 33], the new time-varying asymmetric integral
BLF proposed for the first time can guarantee the boundedness and exponential asymptotic stability of
the constrained error simultaneously.

Remark 4. In this study, the tracking controller for the robot is designed based on the proposed BLF
and disturbance observer. The disturbance observer designed in this paper is inspired by [31], which
can ensure the exponential convergence of the estimation error. There are many types of observers in
control systems, such as one observer in [34] is applied to the tracking control of switched stochastic
uncertain nonlinear systems. With the help of the backstepping approach, the control strategy based
on the observer and neural fault-tolerant control is proposed to guarantee that the signal of the system
is stable in probability. There are two main methods for solving state constraints, one is the barrier
function method, and the other is called the nonlinear mapping method. The barrier function is the
most commonly used constraint method. The barrier function proposed in this article can effectively
solve the constraint issues of the robot position, but it is not intended for systems without constraint
requirements. In [35], a uniform barrier function is used to transform the original constrained nonlinear
system into an equivalent “unconstrained” one, enabling it to handle more general systems.

Remark 5. Compared to the existing literature, there are two types of integral BLFs: one is
symmetric time-invariant, and the other is symmetric time-varying. The first type is used to address
systems with symmetric time-invariant constraint requirements [18, 20–23], and the second type
works for systems with symmetric time-varying constraint requirements [19]. The proposed integral
BLF can work for systems subject to asymmetric time-varying requirements. We know that the two
existing types of integral BLFs are the property of a particular situation of the asymmetric
time-variant constraint, therefore, it has more general ability to deal with a engineering
practical problem.

4. Simulation example

In order to verify the effectiveness of the presented scheme based on the new integral barrier
function, the two-degree robot is utilized to complete the simulation example. Please refer to
papers [15, 29] for the main parameters and relevant matrices for the two-degree robot. Moreover, the
tracking controller for the two-degree robot based on logarithmic BLF in [15, 30] is used to complete
the comparative simulation.

According to Assumption 2, the joint angles’ initial values with their desired reference values
respectively are set as {

q1 (0) = 0.8, q2 (0) = 0.8,
q̇1 (0) = 0, q̇2 (0) = 0,

(4.1)

and
xd = [0.14sin (t) + 0.5, 0.14cos (t) + 0.5]T . (4.2)

The unknown terms of the system are described as

fs un = M0[0.3sin (t) , 0.3cos (t)]T +C0[0.3cos (0.5t) , 0.3sin (0.5t)]T . (4.3)

The position constraint boundaries are set as

klc = [klc1, klc2]T = [0.2 + 0.14cos (t) , 0.2 + 0.14sin (t)]T
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and
kuc = [kuc1, kuc2]T = [0.9 + 0.14cos (t) , 0.9 + 0.14sin (t)]T .

According to Assumption 2, the position error constraint boundaries are set as

kl q =
[
kl q1, kl q2

]T
= [0.3 + 0.14sin (t) − 0.14cos (t) , 0.3 + 0.14cos (t) − 0.14 sin (t)]T

and

ku q =
[
ku q1, ku q2

]T
= [0.4 + 0.14cos (t)− 0.14sin (t) , 0.4 + 0.14sin (t) − 0.14cos (t)]T .

The control parameters are set as

k11 = k12 = 2, o1 = o2 = 0.1 and K2 = diag (20, 20) .

The observer parameter is set as k f = diag (20, 20).
In the comparative simulations, the proposed BLF denotes the method used in this paper, and log-

BLF represents the control stratagy utilized in [15, 30]. In Figures 1 and 2, the red and black curves
denote the trajectories under the proposed BLF and log-BLF, respectively. Moreover, the magenta and
green curves denote the upper and lower boundaries of the position and tracking error, respectively. It
can be found from the simulation effects depicted in Figures 1–6 that both the time-varying asymmetric
integral BLF and log-BLF-based control scheme is successful in guaranteeing the robotic system tracks
the reference trajectory smoothly. However, the control accuracy under the control strategy in this
article is slightly higher than that under the comparison method. The joints’ tracking effects as well as
their tracking errors are described in Figures 1 and 2, which demonstrate that both methods one based
on integral BLF and the other on logarithmic BLF, have a satisfactory control effect. Nevertheless,
from the partially enlarged image of Figures 1 and 2, it can be seen that the convergence speed of the
proposed method is faster than that of the comparative method and in the initial stage of control, the
control effects under these two methods are relatively significantly different.
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Figure 1. The trajectories of x11 and e11.
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Figure 2. The trajectories of x12 and e12.

Although the control effects under the two control methods are similar, the integral barrier function
proposed in this article is more concise in structure compared to the log-type barrier function. Further,
the controller based on the proposed BLF is easier to obtain. Furthermore, these two barrier functions
share the same idea in handling asymmetric constraint requirements, as they both establish a piecewise
function. In addition, Figures 1 and 2 illustrate that the time-variant asymmetric constraint boundaries
klc, kuc of the positions, as well as boundaries kl q, ku q of position tracking errors, are not broken under
two controllers. This proves that both control methods can effectively achieve asymmetric constraint
control. The velocity tracking error e2 is depicted in Figure 3.
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Figure 3. The trajectories of e21 and e22.
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We can see that the overshoot of the speed error of the proposed control strategy is greater than
that of the comparison method in the initial stage to ensure that the constrained position error is better
constrained within the set area. The robotic system’s uncertain terms with their estimating values are
depicted in Figure 4. Overall, error signals e1 and e2, and f̃s un of the closed-loop system can quickly
trend to a very small neighborhood near zero. The robotic system inputs of the two schemes are shown
in Figure 5. The comprehensive effect that two joints track the desired circular trajectory is shown in
Figure 6. It can be intuitively felt from Figure 6 that, under the proposed control method, the actual
trajectory converges to the prescribed trajectory more quickly and the tracking error is smaller than
that under the comparison method.
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Figure 4. The uncertain terms.

0 5 10 15 20 25 30 35 40
−300

−200

−100

0

100

C
o
n
tr
o
li
n
p
u
tτ

1

 

 

proposed BLF
log−BLF

0 5 10 15 20 25 30 35 40
−100

−50

0

50

time(s)

C
o
n
tr
o
li
n
p
u
tτ

2

0.1 0.2 0.3

4.5
5

5.5

 

 

0 0.010.020.03
−0.6
−0.4
−0.2

0
0.2

Figure 5. The control inputs.

AIMS Mathematics Volume 9, Issue 1, 319–339.



336

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

x12

x
1
1

 

 

proposed BLF
xd

log−BLF

0.498 0.5 0.502
0.6399

0.64

0.6401

 

 

Figure 6. The phase portrait of x11 and x12.

5. Conclusions

In this study, one new time-variant dissymmetric integral BLF-based tracking control scheme of a
robot with position constraints is proposed. By using the advantages of the proposed integral BLF
addressing the constraint problems, the controller is developed with the aid of backstepping control
technology. After that, the exponential asymptotic stability of the robotic system’s errors can be
demonstrated by utilizing Lyapunov analysis, and the given Theorem 1. Finally, a simulation example
shows that time-variant dissymmetric restriction boundaries of the positions and of their tracking
errors are not violated, and the good tracking performance is obtained. In future works, the proposed
BLF will be combined with existing advanced adaptive control technologies to improve the
robustness of control strategies. In addition, the actuator saturation issue will be resolved by
incorporating saturation functions into the presented BLF.
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