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Abstract: Normal cancellative monoids were introduced to explore the general structure of
cancellative monoids, which are innovative and open up new possibilities. Specifically, we pointed
out that the Green’s relations in a cancellative monoid S are determined by its unitary subgroup U to a
great extent. The specific composition of egg boxes in S , derived from the general semigroup theory,
can be settled by the subgroups of U. We call a cancellative monoid normal when these subgroups are
normal and characterize it as an NCM-system. This NCM-system was created in this article and can
be obtained by combining a group and a condensed cancellative monoid. Furthermore, we introduced
the concept of torsion extension and proved that a special kind of normal cancellative monoids can
be constructed delicately by the outer automorphism groups of given groups and some simplified
cancellative monoids.

Keywords: cancellative monoids; Green’s relations; normal cancellative monoids; NCM-system
Mathematics Subject Classification: 20M10, 20M32

1. Introduction

A monoid S is called cancellative when the cancellative law holds. Precisely, for all x, y, a ∈ S , ax =
ay or xa = ya implies that x = y. The study of the structure of commutative cancellative monoids has a
long and rich history, rising from the theory of integral domains and free abelian monoids. Specifically,
factorization theory on the subject has become more and more popular in recent years (see [1–5]).
On the other hand, the general theory of non-commutative cancellative monoids has received limited
attention, except for the word problem, which is an old and celebrated problem in combinatorial algebra
and can often be reduced to the cancellative cases [6]. Baeth and Smertnig extended the classical
theory of non-unique factorization to a non-commutative setting [7]. Lawson proved that a class of
left cancellative monoids called left Rees monoids can be constructed by the Zappa-Szép product (a
generalization of the semidirect product) of a free monoid and a group using self-similar group actions
(see [8]). Wazzan defined a new consequence of the generalized general product and investigated
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some known algebraic properties, including left cancellative [9]. Attention has also been focused on
the flatness properties of S systems to study the structure of [left, right] cancellative monoids in the
past (see [10–13]).

The motivation of this paper is to make an effort in the study of general cancellative monoids,
which we have seen to be rare in the existing literature. The relations and affiliations between
different elements in cancellative monoids are not so clear as in groups. However, the Green’s
relations will reveal some for us. The structure of the paper is as follows. Section 2 provides
alternative characterizations of the Green’s relations in a cancellative monoid. We then investigate the
nature of divisibility in a special class of cancellative monoids called normal cancellative monoids
and present a novel construction method for generating such a cancellative monoid. This construction
method utilizes a generalized product structure that combines a group and a condensed cancellative
monoid, resulting in an NCM-system as described in Section 3. In Section 4, we introduce the
concept of torsion extensions, and point out that a special kind of normal cancellative monoids can be
constructed by the outer automorphism groups of given groups and some simplified cancellative
monoids.

The reader is referred to [14, 15] for notations and terminology not given in this paper.

2. Green’s relations

Green’s relations characterize the elements of a monoid S in terms of the principal ideals they
generate. For elements a and b of S , Green’s relations L, R,H andD are defined by

• aLb if, and only if, S a = S b, i.e., there exists x, y ∈ S such that a = xb and b = ya.
• aRb if, and only if, aS = bS , i.e., there exists x, y ∈ S such that a = bx and b = ay.
• aHb if, and only if, aLb and aRb.
• D is the smallest equivalence relation containing both L and R; that is, aDb if, and only if, there

exists c in S such that aLc and cRb.

These relations above are equivalences on S , so each of them yields a partition of S into equivalence
classes. The L-class of a is denoted by La (and similarly for the other relations).

Let S be a cancellative monoid with identity element 1. Denote by U(S ), or just U, the set of all
units in S ; i.e., G = {u ∈ S : (∃v ∈ S )uv = 1}. Note that uv = 1 implies vu = 1 in a cancellative
monoid. It is easy to verify that U is a subgroup of S , and we call it the unitary subgroup of S .

Proposition 2.1. The following statements are true for a cancellative monoid S :

(1) aLb if, and only if, a = gb for some g ∈ U(S );
(2) aRb if, and only if, a = bh for some h ∈ U(S );
(3) aDb if, and only if, a = gbh for some g, h ∈ U(S ).

Proof. (1) If aLb, then there exists x, y ∈ S such that a = xb and b = ya. It follows that a = xb = xya,
and so xy = 1 since S satisfies the cancellative law. This shows that x, y ∈ U(S ). Conversely, if a = gb
for some g ∈ U(S ), then b = g−1a and, hence, aLb. This proves (1).

(2) It is dual to (1).
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(3) If aDb, then there exists c ∈ S such that aLcRb. By (1) and (2), a = gc = gbh for some
g, h ∈ U. Conversely, if a = gbh for some g, h ∈ U, then by (1) and (2), aL bh Rb, i.e., aDb. This
completes the proof. □

For a ∈ S , put

Ga = {g ∈ U : ga = ah(∃h ∈ U)},
Na = {h ∈ U : ga = ah(∃g ∈ U)}.

(2.1)

It is easy to check that these are subgroups of U. The following lemma lists some of their properties.

Lemma 2.2. Let S be a cancellative monoid with a, b ∈ S , then

(1) The map fa: Ga → Na; g 7→ h, where ga = ha (g, h ∈ G) is an isomorphism;
(2) aLb⇒ Na = Nb;
(3) aRb⇒ Ga = Gb;
(4) aHb⇔ a ∈ bNa ⇔ a ∈ Gab;
(5) Da = UaU;
(6) Ha = aNa = Gaa;
(7) La = Ua = UGaa;
(8) Ra = aU = aNaU;
(9) Nag = g−1Nag for all g ∈ U;

(10) Gga = gGag−1 for all g ∈ U.

Proof. (1) According to formula (2.1) and the cancellativity of S , the map fa is well defined and a
bijection. Now, let g1, g2 ∈ Ga, then there exists h1, h2 ∈ Na such that gia = ahi with i = 1, 2. Hence,
g1g2a = g1ah2 = ah1h2, i.e., fa(g1g2) = fa(g1) fa(g2). Thus, fa is a homomorphism and an isomorphism.

(2) If aLb, there exists g′ ∈ U such that a = g′b by Proposition 2.1. For any h ∈ Na, ah = ga for
some g ∈ U. Thus, ah = g′bh = ga ⇒ bh = g′−1ga, which yields that h ∈ Nb and Na ⊆ Nb. Similarly,
we can prove Nb ⊆ Na and, thus, Na = Nb.

(3) It can be proved in the some way.
(4) aHb ⇔ a = gb = bh for some g, h ∈ U, where g ∈ Gb = Ga and h ∈ Nb = Na by (2), which is

equivalent to a ∈ bNa or a ∈ Gab.
(5–8) They can be proved by Proposition 2.1 directly.
(9,10) h ∈ Nag if, and only if, agh = g′ag for some g′ ∈ U, which gives that aghg−1 = g′a ⇔

ghg−1 ∈ Na ⇔ h ∈ g−1Nag. We can prove (10) dually. □

For r ∈ S , Dr = UrU and Hr = rNr = Grr, by noting that

Hrg = rgNrg = rg · g−1Nrg = rNrg = Grrg

for g ∈ U, we obtain that theH-classes of S containing in Rr are of the form rNrg (g ∈ U). Since S is
a cancellative monoid, rNrg and rNrh are distinct if, and only if, Nrg and Nrh are distinct right cosets
of Nr in U. This shows that the set of H-classes of S contained in Rr is in bijection with the set of
right cosets of Nr in U. Similarly, the set of H-classes of S contained in Lr is in bijection with the set
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of left cosets of Gr in U. The above results provide the specific composition of egg boxes in general
semigroup theory when S is cancellative. We use S 0 to denote the set of the non-regular (i.e., not in
U(S )) elements of S . As the application of Lemma 2.2, we have:

Proposition 2.3. The following conditions hold for a cancellative monoid S :

(1) If U is finite, |S/L| = |S/R|.

(2) If S/D is finite and S 0 , ∅, U must be infinite.

Proof. (1) We need only to prove that for all r ∈ S , the cardinal number of the set Xr of H-classes of
S in Rr is equal to the cardinal number of the set Yr ofH-classes of S in Lr. By Lemma 2.2, we have

|Xr| = |U/Nr| and |Yr| = |U/Gr|.

On the other hand, Gr is isomorphic to Nr, and |U/Gr| = |U/Nr|. Thus, |Xr| = |Yr|, as required.
(2) Assume contrarily that U is finite.

Dr = {grh : g, h ∈ U}

for all r ∈ S shows that |Dr| < +∞. Furthermore, by the hypothesis that |S/D| < +∞, S is a finite
cancellative monoid. This implies that S is a group, and S 0 = ∅. This is a contradiction, inferring that
U is infinite. □

3. Normal cancellative monoids

In this section, we consider a special class of cancellative monoids.

Definition 3.1. Let S be a cancellative monoid and r ∈ S . Gr is called a characteristic subgroup of S
in Dr if Hr = rGr = Grr and Gr is a normal subgroup of U. In this case, Dr is called a normalD-class
of S and Gr is the characteristic subgroup of Dr.

Note that the characteristic subgroup of D-class Dr is independent of the representative of the D-
class by Lemma 2.2.

Proposition 3.2. If S is a cancellative monoid and r ∈ S , then Dr is a normalD-class of S if, and only
if, Gr = Nr and Nr is a normal subgroup of U.

Proof. We need only to prove the necessity part. Now, let Dr be normal. Hr = rGr = rNr implies that
for all g ∈ Gr, there exists h ∈ Nr such that rg = rh. However, S is cancellative and g = h. Hence,
Gr ⊆ Nr. Similarly, we can prove Nr ⊆ Gr. Thus, Gr = Nr which completes the proof. □

Definition 3.3. A cancellative monoid S is called a normal cancellative monoid with characteristic
subgroup G if all non-regular D-classes of S are all normal and have the same characteristic
subgroup G.

Note that the identity of S is the only idempotent so that U = D1 is the only regular D-class, and
S 0 = S \ U is the set of non-regular elements in S . Clearly, groups and commutative cancellative
monoids are all normal cancellative monoids. The following example gives another kind of normal
cancellative monoid.
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Example 3.4. Let G be a group and M be a cancellative semigroup without an identity element. Let
M1 be a monoid with an identity adjoined and S = G × M1 be the direct product of G and M1.
U(S ) = (G, 1) is the unitary subgroup. It is easy to check that the H-, L-, R-, D-classes of S are
{(G,m) : m ∈ M1}. Hence, S is a normal cancellative monoid with characteristic subgroup U(S ).

There are also cancellative monoids that cannot be normal.

Example 3.5. Let

S =
{

M ∈ R2×2

∣∣∣∣∣∣M =
(
x z
0 y

)
, x ∈ Z+, y ∈ Z+, z ∈ Z

}
.

S forms a monoid under the matrix multiplication. For any M ∈ S , the determinant |M| > 0, M is
invertible, which keeps the law of cancellation in S . In fact, S can be embedded into the general linear
group GL(2,R). A routine calculation following Proposition 2.1 and Lemma 2.2 can check these facts
below:

• U =
{

M

∣∣∣∣∣∣M =
(
1 z
0 1

)
, z ∈ Z

}
is the unitary subgroup of S which is commutative;

•
(
x1 z1

0 y1

)
L

(
x2 z2

0 y2

)
if, and only if, x1 = x2, y1 = y2 and z1 ≡ z2 mod y1;

•
(
x1 z1

0 y1

)
R

(
x2 z2

0 y2

)
if, and only if, x1 = x2, y1 = y2 and z1 ≡ z2 mod x1;

• For any M =
(
x z
0 y

)
∈ S ,

GM =

{
G ∈ R2×2

∣∣∣∣∣∣G =
(
1 k lcm(x, y)/y
0 1

)
, k ∈ Z

}
,

NM =

{
H ∈ R2×2

∣∣∣∣∣∣H =
(
1 k lcm(x, y)/x
0 1

)
, k ∈ Z

}
,

where lcm(x, y) means the least common multiple of x and y. DM is normal if, and only if, x = y, and
in this case, the characteristic subgroup of DM is U.

Definition 3.6. Let S be a cancellative monoid, then S is called fundamental if H
⋂

(S 0 × S 0) = ιS 0

(the identity relation on S 0).

Proposition 3.7. Any fundamental cancellative monoid is normal and the characteristic subgroup
is {1}.

Proof. Let S be a fundamental cancellative monoid and r ∈ S 0, then

Grr = rNr = Hr = {r}

by Lemma 2.2(6), and
Gr = {1} = Nr

since S is cancellative. Thus, S is a normal cancellative monoid with characteristic subgroup {1}. □
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Proposition 3.8. If S is a normal cancellative monoid with characteristic subgroup G, then the relation

aρb⇔ a = gb = bh

for some g, h ∈ G is a congruence on S , such that S/ρ is a fundamental cancellative monoid with
unitary subgroup U/G and characteristic subgroup {1ρ}.

Proof. We first show that ρ is a congruence. Let xi, yi ∈ S with i = 1, 2 such that x1ρy1 and x2ρy2. We
have

x1 = g1y1 = y1h1

and
x2 = g2y2 = y2h2

for some gi, hi ∈ G. Thus,

x1x2 = g1y1g2y2 = g1uy1y2 (for some u ∈ G)
= y1h1y2h2 = y1y2vh2 (for some v ∈ G)

and, hence, x1x2ρy1y2. This proves that ρ is a congruence on S .
Furthermore, if aρ bρ = aρ cρ, then ab = acg for some g ∈ G. Hence, b = cg and bρ = cρ. This

shows that S/ρ satisfies the left cancellative law. Dually, S/ρ satisfies the right cancellative law. Thus,
S/ρ is a cancellative monoid. We can also check the fact that

U(S/ρ) = U/G.

Finally, let a, b ∈ S 0 such that aρ H bρ, then by Proposition 2.1 there exists g, h ∈ U such that
aρ = bρ gρ = hρ bρ. This means that a = bgp and a = qhb for some p, q ∈ G. Hence, aHb. On the
other hand, since Hb = Gb = Ha, we have m ∈ G such that a = mb. Thus, mb = a = qhb and m = qh
since S is cancellative. Hence, h = q−1m ∈ G and, similarly, g ∈ G. Clearly, qh ∈ G and aρ = bρ. We
have now proved that

H
⋂

((S/ρ)0 × (S/ρ)0 = ι(S/ρ)0 .

Thus, S/ρ is fundamental. □

It is easy to see that aρb ⇔ aHb when a, b ∈ S 0, by Lemma 2.2. In the remainder of this section,
we shall establish the construction theorem of normal cancellative monoids.

Consider
G: a group with identity e.
M: a fundamental cancellative monoid with identity 1.

Aut(G): the group of automorphisms of G.
φ: a mapping of M into Aut(G) defined by: m 7→ φm.

P = (pi j): a M × M-matrix with entries in G.

The above quadruple (G,M;φ, P) is called an NCM-system if the following conditions hold:

(NCM1) φ1 is the identical mapping on G.
(NCM2) for all i ∈ M, p1i = pi1 = e.
(NCM3) for all i, j, k ∈ M and g ∈ G, pi, jk(gφ jk)p jk = pi j,k(pi jφk)(gφ j◦φk).
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Given an NCM-system (G,M;φ, P), form the set

NCM = NCM(G,M;φ, P) = M ×G

and define a multiplication by
(x, g) ⋆ (y, h) = (xy, pxy(gφy)h).

Clearly, ⋆ is well defined.

Lemma 3.9. (NCM, ⋆) is a normal cancellative monoid.

Proof. Let (x, g), (y, h), (z,m) ∈ NCM, then by (NCM3),

((x, g) ⋆ (y, h)) ⋆ (z,m) = (xy, pxy(gφy)h) ⋆ (z,m)
= (xyz, pxy,z(pxy((gφy)h)φz)m)
= (xyz, pxy,z(pxyφz)(gφy◦φz)(hφz)m)
= (xyz, px,yz(gφyz)pyz(hφz)m)
= (x, g) ⋆ (yz, pyz(hφz)m)
= (x, g) ⋆ ((y, h) ⋆ (z,m)),

and ⋆ satisfies the associative law. Hence, (S , ⋆) is a semigroup. By (NCM1) and (NCM2), a routine
calculation can show that (1, e) is the identity of NCM. Thus, (NCM, ⋆) is a monoid.

Next, we prove that NCM satisfies the cancellative law. For this, let

(x, g), (y, h), (z,m) ∈ NCM.

• If
(x, g) ⋆ (y, h) = (x, g) ⋆ (z,m),

then xy = xz and
pxy(gφy)h = pxz(gφz)m.

The prior formula implies that y = z since M is a cancellative monoid. From this and the latter
formula, we have h = m since G is a group.
• If

(x, g) ⋆ (y, h) = (z,m) ⋆ (y, h),

then xy = zy and
pxy(gφy)h = pzy(mφy)h.

By the prior formula, we have x = z. Moreover, by the latter formula, we have gφy = mφy, and so
g = m since φy is an isomorphism.

This shows that NCM satisfies the cancellative law. Therefore, NCM is a cancellative monoid with

U(NCM) = U(M) ×G,

since for all
(x, g), (y, h) ∈ NCM, (x, g) ⋆ (y, h) = (xy, pxy(gφy)h) = (1, e),
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if, and only if, y = x−1 and
h = (gφx)−1 p−1

xy .

It remains to verify that {1} × G is the characteristic subgroup of Dr for all r ∈ NCM. Now, let
(x, g) ∈ NCM, where x is not a unit. Since M is a fundamental cancellative monoid, by the proof of
Proposition 3.7, we have Nx = Gx = {1} in M. For any

(m, h), (m′, h′) ∈ U(NCM),

if
(m, h) ⋆ (x, g) = (x, g) ⋆ (m′, h′), (mx, pmx(hφx)g) = (xm′, pxm′(gφm′)h′)

gives that mx = xm′, which means

m = m′ = 1, pmx = pxm′ = e, gφm′ = g

and
G(x,g) ⊂ {1} ×G

in NCM. We can also take
h′ = g−1(hφx)g

or
h = (gh′g−1)ϕ−1

x

for any h, h′ ∈ G to keep the product equality; thus,

G(x,g) = N(x,g) = {1} ×G.

On the other hand, it is easy to see that {1}×G is a normal subgroup of U(NCM). We have now proved
that NCM is a normal cancellative monoid. □

We now arrive at the main result of this section.

Theorem 3.10. If (G,M;φ, P) is an NCM-system, then NCM(G,M;φ, P) is a normal cancellative
monoid with the characteristic subgroup isomorphic to G. Conversely, any normal cancellative monoid
can be constructed in this way.

Proof. We need only to verify the second part. Let S be a normal cancellative monoid with identity 1
and the characteristic subgroup G. By Proposition 3.8, S/ρ is a fundamental cancellative monoid.
Denote by rx a fixed representative of the ρ-class of S containing x. Put

N = {rx : x ∈ S }

with r1 = 1. Define a multiplication on N by

rx ⊗ ry = rxy.

It is easy to see that (N,⊗) is a semigroup isomorphic to S/ρ.
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For all rx, ry ∈ N, we have a unique g ∈ G such that rxry = rxyg. Now, we define qrx,ry = g and form
a N × N-matrix Q = (qrx,ry) with entries qrx,ry ∈ G.

By the definition of characteristic subgroup, for all g ∈ G, there exists a unique hrx ∈ G such that
grx = rxhrx . Now, define

ψrx : G → G; g 7→ hrx .

By Lemma 2.2(1), ψrx is an isomorphism of G onto itself. Define a mapping

ψ : N → Aut(G); rx 7→ ψrx .

Now, we can form the quadruple (N,G;ψ,Q). In fact, (N,G;ψ,Q) is an NCM-system. Clearly, ψr1

is the identical mapping; that is, condition (NCM1) holds. Since rx = r1rx = rxqr1,rx , cancellativity
implies qr1,rx = 1, the identity element of G. It’s the same way to show that qrx,r1 = 1. Accordingly,
condition (NCM2) holds. Now, let rx, ry, rz ∈ N and g ∈ G, then

[(rx ⊗ ry) ⊗ rz]q(rx⊗ry),rz(qrx,ryψrz)(gψry◦ψrz) = (rx ⊗ ry)rz[(qrx,ry(gψry))ψrz]
= (rx ⊗ ry)qrx,ry(gψry)rz

= rxry(gψry)rz = rxgryrz

= rxg(ry ⊗ rz)qry,rz

= rx(ry ⊗ rz)(gψ(ry⊗rz))qry,rz

= [rx ⊗ (ry ⊗ rz)]qrx,(ry⊗rz)(gψ(ry⊗rz))qry,rz

and, thus,
q(rx⊗ry),rz(qrx,ryψrz)(gψryψrz) = qrx,(ry⊗rz)(gψ(ry⊗rz))qry,rz .

This means that condition (NCM3) is satisfied and (N,G;ψ,Q) in fact is an NCM-system.
It remains to verify that the mapping

θ : S → NCM(N,G;ψ,Q),
s 7→ (rs, hs),

where s = rshs for hs ∈ G, is a semigroup isomorphism. Undoubtedly, θ is well defined and injective.
For all (x, h) ∈ N×G, by the definition of θ, we have rxh = x and, hence, hxh = h since S is a cancellative
monoid. This means that (xh)θ = (x, h). Thus, θ is surjective. Now, let s, t ∈ S , then

(sθ) ⋆ (tθ) = (rs, hs) ⋆ (rt, ht)
= (rst, qrs,rt(hsψrt)ht)
= (rstqrs,rt(hsψrt)ht)θ
= (rsrt(hsψrt)ht)θ
= (rshsrtht)θ
= (st)θ

and θ is a homomorphism. We have now proved that θ is a semigroup isomorphism, as required. □
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Example 3.11. Let

S =
{

M ∈ R2×2

∣∣∣∣∣∣M =
(
x z
0 x

)
, x ∈ Z+, z ∈ Z

}
.

It has been pointed out in Example 3.5 that S forms a commutative cancellative monoid under the
matrix multiplication.

G =
{

M

∣∣∣∣∣∣M =
(
1 z
0 1

)
, z ∈ Z

}
is the unitary subgroup. S is a normal cancellative monoid and the characteristic subgroup is G. In

fact,
(
x1 z1

0 x1

)
H

(
x2 z2

0 x2

)
if, and only if, x1 = x2 and z1 ≡ z2 mod x1. We can construct an NCM-system

following the proof of Theorem 3.10. For any

M =
(
x a
0 x

)
∈ S ,

select

rM =

(
x mod (a, x)
0 x

)
as the fixed representative of the ρ-class of S containing M. In the semigroup (N,⊗),

N =
{

M ∈ R2×2

∣∣∣∣∣∣M =
(
x z
0 x

)
, x ∈ Z+, 0 ≤ z < x, z ∈ Z

}

and for any T =
(
y b
0 y

)
∈ S ,

rM ⊗ rT =

(
xy mod (ay + bx, xy)
0 xy

)
.

Moreover, ψrM is always the identical mapping on G since S is commutative. The entries qrM ,rT of
N × N-matrix Q = (qrM ,rT ) satisfy

rMrT = (rM ⊗ rT )qrM ,rT .

Conditions (NCM1)–(NCM3) for the NCM-system (N,G;ψ,Q) have also been checked in the proof of
Theorem 3.10. For the isomorphism θ, (M)θ = (rM, g), where we can find g ∈ G such that M = rMg
because mod (a, x) ≡ a mod x.

4. The torsion extensions

The previous section shows that the structure of a cancellative monoid S is largely determined
by its subgroup consisting of all the units, which is called the unitary subgroup of S . Two kinds of
isomorphic subgroups of the unitary subgroup are introduced to investigate the structure of the D-
classes of S . It is a difficult problem for us to make it clear how these subgroups affect the overall
structural properties of the cancellative monoid unless there are additional special conditions in place.
Specifically, when all these subgroups are completely consistent with a normal subgroup of the unitary
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subgroup, we call S a normal cancellative monoid. We can already construct a normal cancellative
monoid by combining a fundamental cancellative monoid with a group using an NCM-system and
vice versa. However, NCM-systems are complex and not intuitive enough to some extent. A new and
more simple way to characterize a normal cancellative monoid S directly is introduced in this section,
when the characteristic subgroup of S has a trivial center.

Suppose that G is a group. For each element g ∈ G, the mapping φg defined by x 7→ g−1xg from
G onto G is an inner automorphism of G. For any g, h ∈ G, φg = φh if, and only if, g = h when the
center of G is trivial. All the inner automorphisms consist of a normal subgroup of the automorphism
group Aut(G). We denote by Inn(G) the group of inner automorphisms of G. The quotient group
Aut(G)/Inn(G) is called the outer automorphism group of G. We can recall from the last section the
map fa: Ga → Na; g 7→ h, where ga = ah (g, h ∈ G) is an isomorphism.

Lemma 4.1. Let a, b ∈ S and aHb. If a, b are in a normal D-class of S with characteristic subgroup
G, then

fa = fb◦φh = φg◦ fb,

where a = gb = bh, g, h ∈ G.

Proof. It follows from Lemma 2.2 that there exists g, h ∈ G such that a = gb = bh. For any x ∈ G, we
have

a(x fa) = xa = xbh

= b(x fb)h = bhh−1(x fb)h
= a(x( fb◦φh)).

Consequently, fa = fb◦φh. Similarly, fa = φg◦ fb. □

Proposition 4.2. Let S be a normal cancellative monoid with characteristic subgroup G0, then the
mapping Ψ from S 1 = S/ρ into Aut(G0)/Inn(G0) defined by

Ψ : S 1 → Aut(G0)/Inn(G0); aρ 7→ faInn(G0)

is a homomorphism. Moreover, if a ∈ G0, in this case fa = φa.

Proof. By Lemma 4.1, it is easy to see that Ψ is well defined. Now, let a, b ∈ S , then for all g ∈ G0,

ab(g fab) = gab = a(g fa)b
= ab(g( fa◦ fb));

that is,
fab = fa◦ fb. (4.1)

Consequently,
((aρ)(bρ))Ψ = fabInn(G0)

= faInn(G0) fbInn(G0)
= (aρ)Ψ(bρ)Ψ.

The rest of the proof is trivial. □
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Next, we introduce the concept of torsion extensions. Let T be a fundamental cancellative monoid
with unitary subgroup G1. Let G0 be a group with trivial center. Denote by { fλInn(G0) : λ ∈ Λ} the
outer automorphism group Aut(G0)/Inn(G0), where fλ are fixed elements in Aut(G0) and the cosets of
Inn(G0) in Aut(G0) is indexed by Λ. We assume that the representative of the coset Inn(G0) itself is
idG0 , the identity automorphism of G0. Let Fd: T → Aut(G0)/Inn(G0) be a homomorphism. For t ∈ T
write λt for the element of Λ such that tF = fλt Inn(G0).

Additionally, we know that the identity element of Aut(G0)/Inn(G0) is Inn(G0). Put

T E = T E(T,G0; F) = T×G0

and define a multiplication on T E by

(t, g) ∗ (s, h) = (ts, n),

where n is contained in G0 such that

fλt◦φg◦ fλs◦φh ∈ fλt◦ fλs Inn(G0) = fλts Inn(G0)

and
fλt◦φg◦ fλs◦φh = fλts◦φn.

Proposition 4.3. S = (T E, ∗) is a normal cancellative monoid with unitary subgroup (G1×G0, ∗) and
characteristic subgroup (1×G0, ∗).

Proof. First, we show that (S , ∗) is a cancellative monoid. Now, we need to verify that ∗ is associative.
Let (t, g), (s, h), (x, n) ∈ S . Suppose that

((t, g) ∗ (s, h)) ∗ (x, n) = (ts, u) ∗ (x, n) = (tsx, v) (4.2)

with u, v ∈ G0 and that
(t, g) ∗ ((s, h) ∗ (x, n)) = (t, g) ∗ (sx, k) = (tsx, l) (4.3)

with k, l ∈ G0. It is sufficient for us to show that v = l. By Eq (4.2),

fλt◦φg◦ fλs◦φh = fλts◦φu (4.4)

and
fλts◦φu◦ fλx◦φn = fλtsx◦φv. (4.5)

Composing Eqs (4.4) and (4.5) , we get

fλt◦φg◦ fλs◦φh◦ fλx◦φn = fλtsx◦φv. (4.6)

On the other hand, Eq (4.3) implies that

fλs◦φh◦ fλx◦φn = fλsx◦φk

and
fλt◦φg◦ fλsx◦φk = fλtsx◦φl.
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Hence, we have
fλt◦φg◦ fλs◦φh◦ fλx◦φn = fλtsx◦φl. (4.7)

Compare Eqs (4.6) and (4.7), and we have

fλtsx◦φv = fλtsx◦φl

and φv = φl; thus v = l, as required.
Now, we show that S is cancellative. If

(t, g) ∗ (s, h) = (x, n) ∗ (s, h),

then ts = xs; hence, t = x and

fλt◦φg◦ fλs◦φh = fλx◦φn◦ fλs◦φh.

Thus, φg = φn and g = n, so that (t, g) = (x, n). This means that S is right cancellative. Dually, we can
show that (S , ∗) is also left cancellative.

We show next that (1, e) is the identity element of S , where e is the identity element of G0 and
1F = Inn(G0). Suppose that

(t, g) ∗ (1, e) = (t, u)

for some u ∈ G0, then
fλt◦φg◦ fλ1◦φe = fλt◦φu.

Hence, u = g and
(t, g) ∗ (1, e) = (t, g).

In other words, (1, e) is a left identity of S . Dually, we can prove that (1, e) is a right identity of S .
Thus, we have proved that (S , ∗) is a cancellative monoid with identity (1, e).

If
(t, g) ∗ (s, h) = (1, e),

then ts = 1 and t, s ∈ G1. Conversely, for all (u, g) ∈ G1×G0, we have

(u, g) ∗ (u−1, h−1v−1) = (1, e),

where h, v ∈ G0 such that
φg◦ fλu−1 = fλu−1 ◦φh

and
fλu◦ fλu−1 = φv ∈ Inn(G0).

Hence, G1×G0 is the unitary subgroup of S .
It remains to show that 1×G0 is the characteristic subgroup of S . For all

(s, g) ∈ S 0 = S \ (G1 ×G0),

if (u, h) ∈ N(s,g), then u ∈ Ns = {1}, showing that N(s,g) ⊂ 1×G0. Similarly, we can obtain G(s,g) ⊂ 1×G0.
Conversely, for all (1, u) ∈ 1×G0, it is easy to check that there exists (1, v) ∈ 1×G0 such that

(1, u) ∗ (s, g) = (s, g) ∗ (1, v),
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where v = g−1t and
φu◦ fλs = fλs◦φt.

That is, 1 ×G0 ⊂ G(s,g). There also exists (1, h) ∈ 1×G0 such that

(s, g) ∗ (1, u) = (1, h) ∗ (s, g),

where
φh◦ fλs = fλs◦φgug−1 .

That is, 1 ×G0 ⊂ N(s,g). Consequently, 1×G0 is the characteristic subgroup of S . □

Definition 4.4. We shall call the above semigroup (T E, ∗) the torsion extension of the fundamental
cancellative monoid T by the group G0.

We conclude this section by proving that any normal cancellative monoid whose characteristic
subgroup has a trivial center can be constructed as the torsion extension of a fundamental cancellative
monoid by a group. In the remainder of this section, we always assume that S is a normal cancellative
monoid with unitary subgroup U and characteristic subgroup G having a trivial center. Let ρ be the
same as in Proposition 3.8, in which it was shown that S/ρ is a fundamental cancellative monoid with
unitary subgroup U/G.

Recall the semigroup (N,⊗) in the proof of Theorem 3.10, where rx is a fixed representative of the
ρ-class of S containing x, N = {rx : x ∈ S } with r1 = 1, rx ⊗ ry = rxy and (N,⊗) is isomorphic to S/ρ. It
follows from Proposition 4.2 that there exists a homomorphism Ψ from N into the outer automorphism
group Aut(G)/Inn(G) such that rx 7→ frx Inn(G). We can form the the torsion extension T E(N,G;Ψ) of
N by G.

Define
Φ : T E → S ; (rx, g) 7→ rxg.

It is routine to check that Φ is a bijection by Lemma 2.2. If

(rx, g) ∗ (ry, h) = (rz, u),

we claim that rz = rxryv with some v ∈ G. Otherwise, by the definition of ∗, we have

frx◦φg◦ fry◦φh = frz◦φu.

Furthermore, for all k ∈ G,

krxgryh = rxgryh(k( frx◦φg◦ fry◦φh))
= krxryvv−1(g fry)h = krxryv · p, (here p = v−1(g fry)h)
= rxryvp(k( frx◦ fry◦φv◦φp))
= rxgryh(k( frz◦φp)
= rxgryh(k( frz◦φu).

Hence,
frz◦φp = frz◦φu and u = v−1(g fry)h.
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It follows that

rzu = ((rx, g) ∗ (ry, h))Φ
= rzv−1(g fry)h = rxry(g fry)h
= rxgryh = (rx, g)Φ(ry, h)Φ.

Thus, Φ is actually an isomorphism. Indeed, we have proved the following theorem.

Theorem 4.5. Let T be a fundamental cancellative monoid and G a group with a trivial center. If F is
a homomorphism of T into the outer automorphism group Aut(G)/Inn(G), the torsion extension
(T E(T,G; F), ∗) of T by the group G is a normal cancellative monoid. Conversely, any normal
cancellative monoid whose characteristic subgroup has a trivial center is isomorphic to the torsion
extension (T E, ∗) of a fundamental cancellative monoid and a group.

Example 4.6. The symmetric group S 4 is the group of permutations of {1, 2, 3, 4}. The alternating
group A4 is the subgroup of S n consisting of even permutations. Any 4 × 4 permutation matrix Eσ can
be obtained from identity matrix E = (e1, · · · , e4) by Eσ = (eσ(1), · · · , eσ(4)) for some σ ∈ S 4, where
{e1, · · · , e4} are the columns of E. Eσ is called even (odd) when σ is even (odd). Let

G = {Eτ|τ ∈ A4} and T = {aEσ|a > 1, a ∈ Z, σ ∈ S 4}.

It is easy to verify that S = G∪ T forms a cancellative monoid under the matrix multiplication and the
unitary subgroup U(S ) = G having a trivial center. For any

A = aEσ ∈ T, Eτ ∈ G, EτA = A · E−1
σ EτEσ = AEτ′ ,

where E−1
σ EτEσ is even and coincides with Eτ′ for some τ′ ∈ A4. This shows that S is normal and

the characteristic subgroup is G. We can choose a fixed representative of the ρ-class of S containing
A as rA = aEσA , where σA = (1) if Eσ is even and σA = (12) if Eσ is odd. S/ρ is isomorphic to the
semigroup of {1,±2,±3, · · · } under integer multiplication. For any

rB = bEσB ∈ (N,⊗), rA ⊗ rB = rAB = rabEσAσB
,

the isomorphism frA ∈ Aut(G) can be written as

(Eτ) frA = E−1
σA

EτEσA .

Let Ψ be the homomorphism from N into the outer automorphism group Aut(G)/Inn(G) derived from
Proposition 4.2, then

Ψ(rA) =

Inn(G), if EσAis even,

f(12)Inn(G), if EσAis odd,

where
(Eτ) f(12) = E−1

(12)EτE(12).

The original semigroup S can be rebuilt by the torsion extension (T E(N,G;Ψ), ∗) following
Theorem 4.5.
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5. Conclusions

We have made some new progress in the study of the structure of a cancellative monoid S . For any
a ∈ S , H-class of a can be obtained by multiplying a on the left or right side of certain subgroups of
U(S ), which is the unitary subgroup of S . When these subgroups are all the same normal subgroup
of U(S ), we can construct S under a uniform mode and we call S a normal cancellative monoid.
Furthermore, if the normal subgroup has a trivial center, S can be characterized in a natural and intuitive
way. It is worth paying attention to further related research on the use of these methods to characterize
other types of monoids. How to find the correlation between characteristic subgroups of distinct normal
D-classes when S is not normal remains an open question.
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