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Abstract: The discrete Weibull model can be adapted to capture different levels of dispersion in
the count data. This paper takes into account the direct relationship between explanatory variables
and the median of discrete Weibull response variable. Additionally, it provides the Bayesian estimate
of the discrete Weibull regression model using the random walk Metropolis algorithm. The prior
distributions of the coefficient predictors were carried out based on the uniform non-informative,
normal and Laplace distributions. The performance of the Bayes estimators was also compared with
the maximum likelihood estimator in terms of the mean square error and the coverage probability
through the Monte Carlo simulation study. Meanwhile, a real data set was analyzed to show how the
proposed model and the methods work in practice.
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1. Introduction

Generalized linear models are extensions of the linear regression model to avoid the selection of
the normality response and linearity imposed by the linear regression model, which is impossible
for binary or count responses. Regression for count data is widely performed by models, such as
Poisson [1], negative binomial [2] and zero-inflated regressions [3–5]. The well-known property of a
Poisson distribution shows its mean that is equal to the variance. This situation is often unrealistic
as the distribution of counts tends to have a variance not equal to its mean. When data handles
over-dispersion, a negative binomial distribution is utilized to model count variables. Zero-inflated
models are used to model count data that have many zero counts. Moreover, the Conway-Maxwell
Poisson distribution is used to deal with under-dispersion and over-dispersion [2]. Also, the discrete
Weibull distribution is examined to handle under-dispersion and over-dispersion discrete data. This
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model was first introduced by Nakagawa and Osaki [6]. The motivation for considering the discrete
Weibull distribution stems from the vital role the that continuous Weibull distribution plays in the
survival analysis and failure time study. Similarly, the continuous Weibull distribution is widely used in
probabilistic modeling and a fatigue life prediction model [7,8]. However, there are many challenging
things about this distribution that has yet to be proposed.

The inference for parameters of the discrete Weibull regression model has been investigated in
a few studies based on a parameter affecting zero observation related to the explanatory variables
through the log-log and logit link functions. Kalktawi [9] and Englehardt and Li [10] showed how a
discrete Weibull regression model can be adapted to address over-dispersion and under-dispersion via
the log-log link function. Moreover, Klakattawi et al. [11] proposed an ability to adapt in a simple way
to different types of dispersions: Over-dispersion, under-dispersion and covariate-specific dispersion.
Peluso and Vinciotti [12] conducted a simulation study linking two parameters to inspect a discrete
Weibull regression model’s level of flexibility.

The maximum likelihood estimation of parameters is valid for an asymptotically large sample
size of data [13]. One of the most common problems occurring in the count regression model is
the maximum likelihood estimates that become unstable with larger standard errors of the estimates
that affect statistical inference when insufficiently large sample sizes manifest. To overcome the
problem, various alternatives to the maximum likelihood estimation have been proposed, and the
Bayesian estimation is one of them. However, the Bayes estimators depend on the prior distributions
of the parameters in the model. Many researchers at different periods of time worked in this area
of research proposed different prior distributions in the count regression model (see, for example,
Haselimashhadi et al. [14], Gelman et al. [15], Fu [16] and Chanialidis et al. [17]). Recently,
Chaiprasithikul and Duangsaphon [18,19] proposed the Bayesian estimation for censored data and
the zero-inflated and hurdle discrete Weibull regression models via the log-log link function for a
parameter that affects zero observation. Uniform non-informative and normal prior distributions were
used to account for the regression coefficients. It was demonstrated that this suggestion performs well
when applied to real datasets and in simulation studies. Alternatively, a regression structure for the
discrete Weibull model through the median link function was proposed by Kalktawi [9]. In addition,
there are many works that have developed the Bayesian estimation procedure for the reliability and life
testing experiments (see, for example, Ahmadini et al. [20] and Okasha et al. [21]).

In the present article, the Bayesian estimation is examined, based on the random walk Metropolis
algorithm for the median discrete Weibull regression model under the three different prior distributions:
Uniform non-informative, normal and Laplace prior distributions. A simulation study is conducted to
compare the performance of three different prior distributions and the maximum likelihood estimation
in both under-dispersion and over-dispersion cases. Moreover, a real dataset is analyzed to see how the
model works in practice.

The rest of paper is organized as follows. An overview of the median discrete Weibull regression
model is presented in section two, along with the maximum likelihood estimation, Bayesian estimation,
simulation study and real data analysis. In section three, results and discussion are explained. Finally,
this paper is concluded in section four.
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2. Materials and methods

2.1. The median discrete Weibull regression model

A discrete Weibull distribution (type one) and some properties were introduced by Nakagawa and
Osaki [6]. The cumulative distribution function and the probability mass function of a random variable
are given by

FY(y; q, β) =

1 − q(y+1)β; y = 0, 1, ...
0; otherwise,

(1)

and

pY(y; q, β) =

qyβ − q(y+1)β; y = 0, 1, ...
0; otherwise,

(2)

respectively, where 0 < q < 1 and β > 0 are the shape parameters. When y = 0, the parameter
q = 1 − pY(0; q, β), which is the probability of Y more than zero. In other words, when q is small, an
excessive zero case occurs. Parameter β indicates the skewness and controls the range of values of Y .
Moreover, Kalktawi [9] proposed the parameter β reflects the dispersion of data through the numerical
analyses; if 0 < β ≤ 1 , the data is over-dispersion, if β ≥ 2 , the data is under-dispersion and if
1 < β < 2 , the data can be either over-dispersed or under-dispersed depending on the value of q. Thus,
the discrete Weibull distribution is suitable for both over-dispersion and under-dispersion. Meanwhile,
there are the special cases of a discrete Weibull distribution: Geometric distribution, the discrete
Exponential distribution (see Sato et al. [22]), the discrete Rayleigh distribution (see Roy [23]) and
the Bernoulli distribution.

The mean and variance of a discrete Weibull distribution are no closed-form expressions, but
the numerical approximations can be obtained (see Barbiero [24]). Another property of a discrete
Weibull distribution is the quantile function Q(τ). Let’s say the τ − th (0 < τ < 1) quantile that is
the smallest value of y for which F(y) ≥ τ. The quantile Q(τ) has a closed-form expression as given by

Q(τ) =

( ln(1 − τ)
ln q

)1/β

− 1

 . (3)

The quantile formula provided in Eq (3) can be applied. The median for discrete distributions can
be defined as any value of y that F(y) ≥ 0.5, then the median can be easily obtained from the closed
form as given by

M =

(
−

ln 2
ln q

)1/β

− 1. (4)

The presence of regression analysis for count data is a statistical process to measure the relationship
between a count variable and one or more explanatory variables. Klakattawi et al. [11] showed how a
discrete Weibull regression model can be adapted to address over-dispersion and under-dispersion via
the log-log link function to the parameter q. Moreover, Haselimashhadi et al. [14] applied the logit link
function to the parameter q, which is commonly used in classification problems for probabilities that are
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bounded between zero and one. Furthermore, they performed β that depends on explanatory variables
through the log link function. The proposed discrete Weibull regression model, unlike generalized
linear models in which the conditional mean is central to the interpretation, has the advantage that
the conditional quantiles can be easily extracted from the fitted model. Moreover, the regression
coefficients can be easily interpreted in terms of changes in the conditional median. According to the
median, it has a closed-form expression and is more appropriate than the mean because of the skewness
and outliers commonly found for counting data. Kalktawi [9] performed the median link function to a
discrete Weibull regression model and used the maximum likelihood method for parameters estimation.

This study determines Yi, i = 1, 2, ..., n as a count response variable, which takes only the non-
negative integer values with the k explanatory variables, xi = (1, xi1, ..., xik) and a vector composed of
regression coefficients as α = (α0,α1, ...,αk)′. It is assumed that the parameter qi = q(xi) is related
to k explanatory variables xi via the median link function as follows

g(Mi) = xiα = α0 + α1xi1 + ... + αkxik. (5)

In the context, it is useful to assume that

g(Mi) = ln(Mi + 1). (6)

Thus,

Mi + 1 = exiα. (7)

Equation (7) is substituted to Eq (4); hence, the parameter qi can be obtained as

q(xi) = e

(
−ln2

eβxiα

)
.

(8)

The conditional probability mass function of Yi given xi can be written as

pY(yi|xi) =

e
−(ln2)( yi

exiα
)β
− e
−(ln2)( yi+1

exiα
)β

; y = 0, 1, ...
0; otherwise.

(9)

2.2. Maximum likelihood estimation

In this section, the maximum likelihood estimation for the discrete Weibull regression model
is performed by linking only parameter q. The likelihood function of the median discrete Weibull
regression is given by

L(α, β|y, x) =
n∏

i=1

(e
−(ln2)( yi

exiα
)β
− e
−(ln2)( yi+1

exiα
)β
). (10)

The log-likelihood function of the discrete Weibull regression model via median is given by

l(α, β|y, x) =
n∑

i=1

ln(e
−(ln2)( yi

exiα
)β
− e
−(ln2)( yi+1

exiα
)β
). (11)
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The maximum likelihood estimation of the parameters is obtained by setting the first partial
derivatives of the log-likelihood function with respect to each unknown parameter equal to zero;

∂l
∂α j

=
n∑

i=1

(ln2)βxi je−xiα

wi(α, β)

yi(
yi

exiα
)
β−1

e
−(ln2)( yi

exiα
)β
− (yi + 1)(

(yi + 1)
exiα

)
β−1

e
−(ln2)( (yi+1)

exiα
)β
 ,

∂l
∂β

=
n∑

i=1

−ln 2
wi(α, β)

( yi

exiα
)
β
e
−(ln2)( yi

exiα
)β
[lnyi − xiα] − (

(yi + 1)
exiα

)
β

e
−(ln2)( (yi+1)

exiα
)β
[ln(yi + 1) − xiα]

 ,

where wi(α, β) = e
−(ln2)( yi

exiα
)β
− e
−(ln2)( yi+1

exiα
)β

.
The maximum likelihood estimators do not have a closed form solution because of the complex

form of the likelihood equations. It is very difficult to prove that the solution to the normal equations
gives a global maximum. Therefore, the maximum likelihood estimators are estimated by using the
numerical method applied in the function optim() from package stats in R language, which minimizes
the negative log-likelihood function of the median discrete Weibull regression model.

Let I(α, β) be the observed Fisher’s information matrix for the (k + 2) × (k + 2) unknown
parameters that contain negative of the second derivative of the log-likelihood function; hence, the
variance-covariance matrix is the inverse of the observed Fisher’s information matrix,∑

= I−1(α, β). (14)

The maximum likelihood estimators are substituted, thus resulting in an estimator of
∑

denoted by
∑̂

,

∑̂
=


σ̂α0α0 . . . σ̂α0αk σ̂α0β

... . . . ...
...

σ̂α0αk . . . σ̂αkαk σ̂αkβ

σ̂α0β . . . σ̂αkαβ σ̂ββ

 . (15)

This matrix can be obtained by inverting the Hessian matrix from the function hessian() in R
language. The Hessian matrix contains the second derivative of the negative log-likelihood, i.e.,
moreover, the Hessian matrix is the observed Fisher’s information matrix.

According to the parameter inferences performed using the maximum likelihood method, under
some regularity conditions [25], these estimators enjoy standard asymptotic properties. Thus, by the
asymptotic normality of maximum likelihood estimators, the 100(1 − α)% confidence intervals for
parameters α j, j = 0, 1, 2, ..., k and β, respectively are

α̂ j ± zα/2

√
σ̂α jα j and β̂ ± zα/2

√
σ̂ββ, (16)

where zα/2 is the upper α/2 − th quantile of the standard normal distribution.

2.3. Bayesian estimation

2.3.1. Random walk Metropolis algorithm

The Metropolis-Hastings (MH) algorithm is the most popular example of a Markov chain Monte
Carlo (MCMC) method for simulating a sample from a probability distribution that is the target
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distribution from which direct sampling is difficult. This algorithm is similar to the acceptance-
rejection method; the proposal (candidate) value can be generated from the proposal distribution,
then, the proposal value is accepted with an acceptance probability. Moreover, the MH algorithm is
converging to the target distribution itself. For more details on the MH algorithm, see Hastings [26]
and Gilks et al. [27].

Given y = (y1, y2, ..., yn) is the vector of the observed values of a random sample Y1, Y2, ...Yn, let
p(θ|y) be the target distribution, while θ is the vector of current state values (parameters) and θ∗ is
the proposal value generated from the proposal distribution q(θ∗|θ) . Then, the proposal value θ∗ is
accepted with the probability p = min(1, Rθ) , where

Rθ =
p(θ∗|y)
p(θ|y)

×
q(θ|θ∗)
q(θ∗|θ)

.

The iterative steps of the MH algorithm can be described as follows
Step 1: Initialize the parameter θ(0) for the algorithm.
Step 2: For l = 1, 2, ..., L repeat the following steps:

a. Generate θ∗ ∼ q(θ∗|θ(t−1)).
b. Calculate p = min(1, Rθ).
c. Generate u from a uniform distribution, u ∼ U(0, 1).

If u ≤ p, accept θ∗ and set θ(l) = θ∗ with probability p.
If u > p, reject θ∗ and set θ(l) = θ(l−1) with probability 1-p.

A random walk Metropolis algorithm is a special case of the MH algorithm. In the random
walk Metropolis algorithm, the proposal distribution is symmetrical, depending only on the distance
between the current state value and the proposal value, then the proposal value θ∗ is accepted with
probability p = min(1, Rθ), where

Rθ =
p(θ∗|y)
p(θ|y)

.

The algorithm of random walk Metropolis can be summarized followed by the above steps with
adjusting Step 2. Generate random error ε from a multivariate normal distribution with a zero-mean
vector and variance-covariance

∑
.

2.3.2. Bayesian estimation for median discrete Weibull regression model

This section performs the Bayes estimators for the median discrete Weibull regression model based
on three schemes of prior distributions as follows:
i) Uniform non-informative prior distribution: If no prior information is available, a default flat prior
can be resorted to, then it is easy to focus on the uniform non-informative prior distribution. The
following the prior distributions are

π(α j) ∝ 1, j = 0, 1, ..., k, and π(β) ∝ 1.

ii) Normal prior distribution: As stated earlier, the possible values of α j are real numbers, which
corresponds to the possible values of a normal distribution; this study selects the prior distribution
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of α j; that is, a normal distribution with the hyperparameters as (µα j ,σ
2
α j) , j = 0, 1, ..., k.

For parameter β, this study selects the prior distribution that is Gamma distribution with the
hyperparameters as (a, b). The following prior distributions are

π(α j) =
1√

2πσ2
α j

e
−1

2σ2
α j

(α j−µα j )
2

, µα j ∈ R,σ2
α j
> 0, j = 0, 1, 2, ..., k

and
π(β) =

1
baΓ(α)

βα−1e−β/b, a, b > 0.

iii) Laplace prior distribution: If prior information is available, this study can perform the informative
prior distribution that should include all possible values of parameter. The possible values of α j are
real numbers which corresponds to the possible values of a Laplace distribution; it selects the prior
distribution of α j; that is, a Laplace distribution with the hyperparameters as (0, 1/λ). Similarly, it
selects the prior distribution, which is Gamma distribution with the hyperparameters as (a, b). The
following prior distributions are

π(α j) =
λ

2
e−λ|α j|, λ > 0, j = 0, 1, 2, ..., k,

and
π(β) =

1
baΓ(α)

βa−1e−β/b, a, b > 0.

The joint prior distributions of the parameters α and β under the independence assumption is

π(θ) = π(α0)...π(αk)π(β), (17)

where θ = (α0,α1, ...,αk, β).
The choice of the hyperparameters’ values is generally modified by available information of

dataset to improve the Bayes estimators. For example, it fixes the hyperparameters’ values of
α j, j = 0, 1, 2, ..., k of normal prior distribution with mean zero and high variance. For Laplace prior
distribution, it fixes the hyperparameters’ values of α j, j = 0, 1, 2, ..., k with some λ > 0. In addition,
the hyperparameters’ values of β are considered by the maximum likelihood estimator of β with the
mean of Gamma distribution. The joint posterior density function of the parameters α and β can be
written as:

p(θ|y, x) =
L(θ|y, x)π(θ)∫ ∫

..
∫

L(θ|y, x)π(θ)dα0...dαkdβ
∝ L(θ|y, x)π(θ), (18)

where L(θ|y, x) is the likelihood function of the median discrete Weibull regression model in Eq (10).
The Bayes estimator of each parameter under the squared error loss function is the expected value

of each parameter under the joint posterior density function. Therefore, the Bayes estimators are
given by

α̂ j =

∫ ∫
...

∫
α j p(θ|y, x)dα0...dαkdβ (19)
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and
β̂ =

∫ ∫
...

∫
βp(θ|y, x)dα0...dαkdβ, (20)

where j = 0, 1, 2, ..., k.
A difficulty to the implementation of Bayesian procedure is that of obtaining the posterior

distribution. The process often requires the integration which is very difficult to calculate especially
when dealing with complex and high-dimensional models. In such a situation, MH algorithms are
highly helpful in this case to model deviations from the posterior density and generate accurate
approximations [26,27].

Since the integral in Eqs (19) and (20) does not have a closed form, this study chose the random
walk MH algorithm to estimate the Bayes estimators. It also determines the joint posterior density
function of the parameters α and β in Eq (18) as the target distribution, while θ is the current state
value and θ∗ is the proposal value generated from the proposal distribution q(θ∗|θ). Then, the proposal
value θ∗ is accepted with the probability p = min(1, Rθ), where

Rθ =
L(θ∗|y, x)π(θ∗)
L(θ|y, x)π(θ)

×
q(θ|θ∗)
q(θ∗|θ)

. (21)

For the random walk Metropolis algorithm, the proposal distribution is symmetrical, depending
only on the distance between the current state value and the proposal value. Then, the proposal
value θ∗ is accepted with probability p = min(1, Rθ) , where

Rθ =
L(θ∗|y, x)π(θ∗)
L(θ|y, x)π(θ)

. (22)

The iterative steps of the random walk Metropolis algorithm can be described as follows:
Step 1: Initialize the parameters θ(0) = (α(0), β(0)) for the algorithm using the maximum likelihood

estimation (MLE) of the parameters θ = (α, β).
Step 2: For l = 1, 2, ..., L , repeat the following steps:
a. Generate random error vector ε from a multivariate normal distribution with a zero-mean vector

and variance-covariance matrix as a diagonal matrix in which the diagonal elements are the diagonal
of the inverse of the observed Fisher’s information matrix; ε ∼ N(µ = 0,

∑
= diag(I−1(θ))) .

Then, set θ∗ = θ(l−1) + ε.
b. Calculate p = min(1, Rθ) where Rθ =

L(θ∗|y,x)π(θ∗)
L(θ|y,x)π(θ) .

c. Generate µ from a uniform distribution; u ∼ U(0, 1).
If u ≤ p , accept θ∗ and set θ(l) = θ∗ with probability p.
If u > p , reject θ∗ and set θ(l) = θ(l−1) = with probability1 − p.

Step 3: Remove B of the chain for burn-in.
Step 4: Calculate the estimated values of the Bayes estimators of the parameters α , and β from the

average of the generated values as given by

θ̂Bayes =
1

L − B

L∑
l=B+1

θ(t), (23)

where θ is a parameter in vector θ = (α, β).
The construction of the highest posterior density (HPD) credible intervals of the parameters α j, j =
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0, 1, 2, .., k, and β follows the Monte Carlo procedure. Given an MCMC sample θ(l), l = B + 1, B +
2, ..., L, the HPD interval for θ can be shown as follows:

Step 1: Sort θ(l), l = B + 1, B + 2, ..., L to obtain the ordered value

θ(1) ≤ θ(2) ≤ ... ≤ θ(L−B).

Step 2: Compute the 100(1 − α)% HPD credible intervals

Ri(L − B) = (θ(i), θ(i+[(1−α)(L−B)])), i = 1, 2, ..., (L − B) − [(1 − α)(L − B)], (24)

where [(1 − α)(L − B)] is the integer part of (1 − α)(L − B) and θ is a parameter in vector θ = (α, β).

2.4. Simulation study

In this section, the Monte Carlo simulation is conducted to assess and compare the performance
of the Bayesian estimation via the random walk Metropolis algorithm for the median discrete Weibull
regression model under difference three prior distributions for the regression parameters: Uniform non-
informative prior (Bayes(U)), normal prior (Bayes(N)) and Laplace prior (Bayes(L)). Moreover, the
MLE is considered. The various selected sample sizes (n) are 50, 100 and 200. The three explanatory
variables are considered: A standard normal distribution (x1 ∼ N(0, 1)), a uniform distribution
that lies between -0.3 and 0.3 (x2 ∼ U(−0.3, 0.3)) and a Bernoulli distribution with probability of
success 0.4 (x3 ∼ Ber(0.4)). In particular, this study selects the regression parameters to take values
(α0,α1,α2,α3) = (1.5, 0.4,−0.2, 0.8) and β = 0.9 for over-dispersion, β = 2.5 for under-dispersion
and β = 1.6 for either over-dispersed or under-dispersed, depending on the value of q.

The parameters are estimated by using the numerical method. In this paper, the Nelder-Mead
method in the function optim() from package stats in R is applied to estimate parameters of the median
discrete Weibull regression model. For Bayesian estimation, it fixes the hyperparameters’ values
of α j and j = 0, 1, 2, 3 of normal prior distribution with mean zero and variance 1002 and the
hyperparameters’ values of β as one and the maximum likelihood estimator. In addition, it fixes
the hyperparameters’ values of α j and j = 0, 1, 2, 3 of Laplace prior distribution as 0.5 and the
hyperparameters’ values of β as one and the maximum likelihood estimator. Additionally, this study
considers 10,000 iterations of the sampler and uses the first 10% of the data as burn-in. This simulation
study is repeated 1,000 times. The measures of accuracy for the estimators are

(i) the estimates of the parameters (Est.)

Est. =
1,000∑
l=1

α̂ j
(l)/1, 000, (25)

(ii) the mean square error (MSE)

MSE =
1,000∑
l=1

(α̂ j
(l) − α j)

2
/1, 000, (26)

(iii) the coverage probability (CP)

CP = #(LCLα j < α j < UCLα j)/1, 000, (27)
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(iv) the average length (AL)

AL =
1,000∑
l=1

(UCL(l)
α j − LCL(l)

α j )/1, 000, (28)

where α̂ j is the j-th estimator LCL(l)
α j , UCL(l)

α j are the j-th lower bound and upper bound for the 95%
confidence interval of the l -th time and LCLα j < α j < UCLα j is the total of the number of times that
α j is inside the confidence interval. The same measure of accuracy has been applied for the estimators
of parameter β. Tables 1–3 report the estimates of the parameters (Est.) together with the MSE. In
addition, Tables 4–6 report the 95% CP and the AL.

2.5. Real data analysis

In this section, the median discrete Weibull regression is applied to a real data set that shows the
ability for over-dispersion data (see Kalktawi [9]). This data is available under the “COUNT” package
in R from Hosmer and Lemeshow [28] and represents the number of visits to a doctor by pregnant
women in the first three months of their pregnancies with 189 observations. The response variable
is the number of physician visits in first trimester, and the three explanatory variables are history
of mother smoking (1=history of mother smoking; 0=mother nonsmoker) (x1), weight (lbs) at last
menstrual period (x2) and age of mother (x3). For fitting the discrete Weibull distribution of the
response variable, the Kolmogorov-Smirnov statistic is 0.0985 less than the critical value of 0.0989.
Thus, this data can be modeled by the discrete Weibull distribution. Moreover, this data is modeled
by the Poisson, negative binomial and discrete Weibull distributions. The results show that the Akaike
information criterion (AIC) from the Poisson, negative binomial and discrete Weibull distributions are
476.59, 466.85 and 466.84, respectively. Additionally, the mean and variance of the data are 0.7937
and 1.1221, respectively, which indicates an over-dispersion case.

We estimate parameters and construct the 95% confidence intervals via the maximum likelihood
estimation method. To demonstrate how the proposed Bayesian method under the three prior
distributions can be used in practice, this study calculates parameter estimates and the 95% HPD
interval of the parameters with L = 10, 000 replicates and 10% of the chain for burn-in; B = 1, 000.
In addition, the three information criteria, namely, the AIC, the Bayesian information criterion (BIC)
and the deviance information criterion (DIC) (see in Kalktawi [9] and Haselimashhadi et al. [14])
are applied to compare models with different estimates of parameters, which are models for the three
explanatory variables and a subset of parameters of that significance. All results are reported in Table 7.
Along with, the traceplot, autocorrelation for sampled values and posterior densities of significant
independent variables are performed in Figure 1.
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3. Results and discussion

3.1. Results and discussion of simulation study

An inspection of Tables 1–3 show that the estimates of the parameters (Est.) in the simulation study
obtained by all methods seem to be close to the true parameter values. Moreover, all of the estimators
have monotonic behaviors according to the MSE, namely, when n increases, the estimated MSE values
decrease. The Bayes estimators have a smaller MSE than the estimators of MLE. The MSE of the
Bayes(L) outperforms other methods in almost all situations. Additionally, note that the MSE for all
estimators of the three Bayesian methods behave very similarly when n = 200. Conversely, the MLE
presents the highest MSE but has a satisfactory performance when sample size increases. In addition„
note that the MSE of the estimators of α2 are very high and may cause what we define as a strong
effect on x2 or the high variance of the estimators of α2. Furthermore, the explanatory variable affects
the MSE of estimators. However, when n is large enough and β increases, the MSE of estimators will
decrease and will no longer be very high anymore.

Table 1. Est. and MSE when θ=(1.5,0.4,-0.2,0.8,0.9).

n parameter MLE Bayes(U) Bayes(N) Bayes(L)
Est. MSE Est. MSE Est. MSE Est. MSE

α0 1.5070 0.0578 1.5006 0.0579 1.4884 0.0585 1.4803 0.0578
α1 0.4035 0.0316 0.4096 0.0308 0.4098 0.0309 0.3961 0.0296

50 α2 -0.3635 1.0364 -0.1902 0.9833 -0.1870 0.9819 -0.1390 0.5564
α3 0.7746 0.1228 0.8001 0.1195 0.8005 0.1196 0.7704 0.1110
β 0.9622 0.0191 0.9274 0.0150 0.9139 0.0142 0.9109 0.0140

α0 1.4906 0.0273 1.4898 0.0263 1.4836 0.0265 1.4813 0.0268
α1 0.3995 0.0155 0.4027 0.0149 0.4031 0.0150 0.3964 0.0148

100 α2 -0.3319 0.5356 -0.1948 0.4429 -0.1953 0.4420 -0.1637 0.3085
α3 0.8031 0.0583 0.8164 0.0566 0.8169 0.0569 0.7998 0.0559
β 0.9286 0.0077 0.9125 0.0065 0.9060 0.0063 0.9042 0.0063

α0 1.49830 0.0149 1.5013 0.0132 1.4983 0.0132 1.4970 0.0132
α1 0.3990 0.0070 0.4018 0.0065 0.4018 0.0064 0.3986 0.0064

200 α2 -0.3440 0.3627 -0.1686 0.2088 -0.1687 0.2088 -0.1483 0.1623
α3 0.7938 0.0284 0.8031 0.0253 0.8032 0.0252 0.7948 0.0251
β 0.9095 0.0037 0.9058 0.0031 0.9026 0.0030 0.9015 0.0030

Note: the boldface identifies the smallest MSE for each case.
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Table 2. Est. and MSE when θ=(1.5,0.4,-0.2,0.8,1.6).

n parameter MLE Bayes(U) Bayes(N) Bayes(L)
Est. MSE Est. MSE Est. MSE Est. MSE

α0 1.5009 0.0187 1.5026 0.0175 1.4962 0.0177 1.4951 0.0176
α1 0.4054 0.0102 0.4052 0.0097 0.4050 0.0097 0.4003 0.0096

50 α2 -0.2270 0.3470 -0.1931 0.3101 -0.1933 0.3108 -0.1647 0.2268
α3 0.7936 0.0398 0.8000 0.0378 0.8006 0.0377 0.7886 0.0373
β 1.7116 0.0584 1.6525 0.0451 1.6303 0.0420 1.6281 0.0418

α0 1.4952 0.0086 1.4955 0.0081 1.4922 0.0082 1.4916 0.0082
α1 0.4012 0.0051 0.4017 0.0048 0.4016 0.0048 0.3995 0.0048

100 α2 -0.2314 0.1710 -0.2003 0.1391 -0.1982 0.1372 -0.1798 0.1147
α3 0.8051 0.0193 0.8091 0.0180 0.8089 0.0180 0.8039 0.0179
β 1.6521 0.0248 1.6248 0.0196 1.6140 0.0189 1.6126 0.0190

α0 1.5006 0.0047 1.5007 0.0041 1.4991 0.0041 1.4987 0.0041
α1 0.4012 0.0022 0.4010 0.0021 0.4010 0.0021 0.4001 0.0021

200 α2 -0.2090 0.0871 -0.1821 0.0661 -0.1823 0.0661 -0.1693 0.0582
α3 0.7979 0.0093 0.8016 0.0081 0.8017 0.0081 0.7990 0.0080
β 1.6195 0.0111 1.6090 0.0088 1.6040 0.0086 1.6027 0.0087

Note: the boldface identifies the smallest MSE for each case.

Table 3. Est. and MSE when θ=(1.5,0.4,-0.2,0.8,2.5).

n parameter MLE Bayes(U) Bayes(N) Bayes(L)
Est. MSE Est. MSE Est. MSE Est. MSE

α0 1.4971 0.0089 1.5011 0.0074 1.4972 0.0074 1.4977 0.0075
α1 0.4025 0.0043 0.4034 0.0041 0.4014 0.0041 0.4035 0.0041

50 α2 -0.2189 0.1713 -0.1965 0.1302 -0.1782 0.1076 -0.1971 0.1300
α3 0.7958 0.0188 0.8004 0.0156 0.7952 0.0156 0.8002 0.0157
β 2.6337 0.1496 2.5842 0.1114 2.5483 0.1030 2.5507 0.1033

α0 1.4957 0.0045 1.4975 0.0034 1.4975 0.0034 1.4954 0.0034
α1 0.4016 0.0024 0.4018 0.0020 0.4017 0.0020 0.4008 0.0020

100 α2 -0.2216 0.1024 -0.2018 0.0599 -0.2015 0.0597 -0.1889 0.0540
α3 0.8022 0.0105 0.8056 0.0075 0.8057 0.0075 0.8034 0.0075
β 2.5486 0.0729 2.5403 0.0471 2.5239 0.0454 2.5225 0.0454

α0 1.4987 0.0024 1.5007 0.0018 1.4998 0.0018 1.4996 0.0018
α1 0.4002 0.0012 0.4006 0.0009 0.4005 0.0009 0.4001 0.0009

200 α2 -0.2118 0.0703 -0.1947 0.0410 -0.1949 0.0409 -0.1868 0.0393
α3 0.7987 0.0052 0.8016 0.0037 0.8014 0.0037 0.8004 0.0036
β 2.5099 0.0401 2.5144 0.0239 2.5064 0.0236 2.5054 0.0236

Note: the boldface identifies the smallest MSE for each case.
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Tables 4–6 show that when sample sizes were increased, the CP of all methods was generally close
to the nominal confidence level. The CP obtained when using the three Bayesian methods are closer to
the nominal level than using MLE method. Additionally, the CP for the three prior distributions of the
Bayesian method behave remarkably similar. Regarding the AL, as sample sizes were increased, the
AL of the 95% confidence intervals decreased for all methods. For cases β = 0.9 and β = 1.6, the AL
based on the Bayes(L) were the shortest for almost all situations after the CP was considered, while the
Bayes(U) were the shortest in the case of β = 2.5. Although the AL for the MLE method performs the
shortest in some situations, but the CP is farthest from the nominal confidence level. Additionally, the
results of the AL for the estimator α2 are quite wide, which is the explanation given for the extremely
high MSE values of the estimator α2.

Table 4. CP and AL when θ=(1.5,0.4,-0.2,0.8,0.9).

n parameter MLE Bayes(U) Bayes(N) Bayes(L)
CP AL CP AL CP AL CP AL

α0 0.918 0.8825 0.939 0.9398 0.943 0.9523 0.948 0.9497
α1 0.925 0.6384 0.952 0.6802 0.956 0.6906 0.958 0.6776

50 α2 0.932 3.6636 0.943 3.8821 0.953 3.9383 0.975 3.3774
α3 0.923 1.2656 0.939 1.3614 0.941 1.3795 0.947 1.3446
β 0.933 0.4552 0.932 0.4476 0.938 0.4428 0.938 0.4412

α0 0.940 0.6229 0.952 0.6465 0.950 0.6499 0.952 0.6510
α1 0.918 0.4443 0.931 0.4573 0.928 0.4603 0.925 0.4584

100 α2 0.921 2.5582 0.944 2.6243 0.951 2.6481 0.964 2.4005
α3 0.935 0.8935 0.948 0.9242 0.945 0.9306 0.949 0.9235
β 0.938 0.3066 0.948 0.3026 0.947 0.3013 0.945 0.3010

α0 0.931 0.4491 0.949 0.4521 0.951 0.4538 0.946 0.4542
α1 0.947 0.3138 0.956 0.3166 0.951 0.3179 0.954 0.3170

200 α2 0.871 1.8096 0.948 1.8175 0.946 1.8231 0.959 1.7103
α3 0.939 0.6332 0.958 0.6405 0.958 0.6438 0.958 0.6430
β 0.920 0.2115 0.937 0.2098 0.936 0.2094 0.936 0.2092
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Table 5. CP and AL when θ=(1.5,0.4,-0.2,0.8,1.6).

n parameter MLE Bayes(U) Bayes(N) Bayes(L)
CP AL CP AL CP AL CP AL

α0 0.915 0.4946 0.938 0.5214 0.944 0.5286 0.946 0.5278
α1 0.926 0.3605 0.944 0.3820 0.953 0.3863 0.950 0.3836

50 α2 0.917 2.0497 0.950 2.1733 0.951 2.2057 0.971 2.0250
α3 0.926 0.7132 0.939 0.7624 0.946 0.7728 0.945 0.7663
β 0.926 0.7826 0.940 0.7683 0.940 0.7569 0.941 0.7562

α0 0.935 0.3518 0.949 0.3601 0.946 0.3618 0.948 0.3624
α1 0.912 0.2509 0.923 0.2575 0.932 0.2588 0.931 0.2585

100 α2 0.921 1.4423 0.941 1.4748 0.946 1.4822 0.958 1.4122
α3 0.936 0.5041 0.945 0.5194 0.942 0.5211 0.948 0.5199
β 0.930 0.5268 0.947 0.5210 0.953 0.5179 0.951 0.5171

α0 0.936 0.2504 0.955 0.2532 0.950 0.2534 0.952 0.2536
α1 0.945 0.1769 0.955 0.1790 0.954 0.1794 0.953 0.1792

200 α2 0.929 1.0147 0.950 1.0240 0.945 1.0292 0.959 0.9931
α3 0.944 0.3567 0.958 0.3610 0.960 0.3619 0.962 0.3623
β 0.917 0.3627 0.943 0.3617 0.941 0.3596 0.939 0.3594

Table 6. CP and AL when θ=(1.5,0.4,-0.2,0.8,2.5).

n parameter MLE Bayes(U) Bayes(N) Bayes(L)
CP AL CP AL CP AL CP AL

α0 0.919 0.3255 0.948 0.3348 0.944 0.3375 0.947 0.3381
α1 0.928 0.2383 0.937 0.2466 0.947 0.2478 0.944 0.2496

50 α2 0.911 1.3709 0.944 1.4014 0.961 1.3439 0.944 1.4162
α3 0.920 0.4746 0.943 0.4896 0.936 0.4926 0.939 0.4948
β 0.924 1.2153 0.941 1.1989 0.943 1.1721 0.941 1.1712

α0 0.926 0.2311 0.946 0.2317 0.950 0.2327 0.946 0.2331
α1 0.915 0.1657 0.929 0.1665 0.929 0.1672 0.932 0.1673

100 α2 0.899 0.9562 0.943 0.9509 0.943 0.9554 0.946 0.9264
α3 0.924 0.3337 0.941 0.3343 0.944 0.3360 0.946 0.3356
β 0.904 0.8210 0.946 0.8140 0.949 0.8042 0.947 0.8039

α0 0.929 0.1630 0.955 0.1623 0.958 0.1623 0.957 0.1625
α1 0.921 0.1158 0.946 0.1153 0.948 0.1156 0.948 0.1157

200 α2 0.907 0.6652 0.946 0.6583 0.948 0.6591 0.949 0.6471
α3 0.934 0.2324 0.951 0.2318 0.952 0.2323 0.952 0.2324
β 0.896 0.5652 0.942 0.5617 0.942 0.5584 0.940 0.5588
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3.2. Results and discussion of real data analysis

Table 7 shows the results of significant explanatory variables that are selected from the three
explanatory variables. We only report that an explanatory variable x3 (age of mother) shows significant
in all methods. Results from comparing models with different estimates of parameters suggest that a
model for only x3 provided better fitting than a model for the three explanatory variables, according
to the AIC, BIC and DIC. Regarding the DIC of the three Bayesian methods for each of the two
models, they exhibited remarkably similar behavior. Additionally, the AIC and BIC are included as
well. This finding corresponds to the results of the simulation study in case n = 200. Figure 1 shows
the traceplot, autocorrelation for sampled values and posterior densities for regression coefficient α3
based on the Bayes(L). It can be seen that the trace plot showed adequate convergence. Moreover, it is
clear that the sampled values are well mixed and exhibit adequate stability for autocorrelation.

Table 7. Parameter estimates, the 95% confidence intervals, and the three information
criteria.

Models Parameters MLE Bayes(U) Bayes(N) Bayes(L)
x1, x2, x3 α0 -1.0983* -1.1566* -1.667* -1.0553*

(-1.8269,-0.3697) (-2.0877,-0.4473) (-1.8724,-0.4639) (-1.7395,-0.3875)
α1 -0.6240 -0.6690 -0.6980 -0.0478

(-0.3173,0.1924) (-0.3491,0.1849) (-0.3169,0.1738) (-0.3182,0.1795)
α2 0.0029 0.0031 0.0030 0.0029

(-0.0009,0.0069) (-0.0008,0.0072) (-0.0007,0.0070) (-0.0009,0.0074)
α3 0.0295* 0.0306* 0.0314* 0.0273*

(0.0058,0.0532) (0.0055,0.0585) (0.0083,0.0552) (0.0057,0.0490)
β 1.19312* 1.1676* 1.1564* 1.1717*

(0.9986,1.3875) (0.9897,1.3639) (0.9684,1.3795) (0.9848,1.3579)
AIC 463.1398 463.2289 463.3156 463.2471
BIC 479.3486 479.4376 479.5244 479.4558
DIC - 463.3949 463.0142 462.3886

x3 α0 -0.7974* -0.8387* -0.7974* -0.7791*
(-1.3929,-0.2019) (-1.5015,-0.2737) (-1.3929,-0.2019) (-1.4164,-0.1910)

α3 0.0321* 0.0333* 0.0321* 0.0310*
(0.0083,0.0558) (0.0111,0.0574) (0.0083,0.0558) (0.0083,0.0555)

β 1.1733* 1.1587* 1.1733* 1.1545*
(0.9850,1.3617) (0.9676,1.3525) (0.9850,1.3617) (0.9532,1.3618)

AIC 459.5681** 461.6021** 461.7598** 461.6235**
BIC 466.0515** 471.3273** 471.3521** 471.3487**
DIC - 461.5384** 461.7598** 461.7922**

Note: (*) denotes the 95% confidence intervals does not contain zero (statistically significant) and (**) denotes the minimum value of
each information criteria between models of and only.
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Figure 1. Traceplot, autocorrelation and posterior densities for regression coefficient of
Bayes(L).

4. Conclusions

This paper introduced the Bayesian estimation for the discrete Weibull regression model via the
median link function. The Bayesian approach was considered on the three different prior distributions:
Uniform non-informative prior, normal prior and Laplace prior. The augmented random walk
Metropolis procedure was also proposed to compute the Bayes estimates of the unknown parameters.
Moreover, the maximum likelihood estimation was compared. The performance of these methods was
compared by using the Monte Carlo simulation based on the MSE and CP criteria. These criteria
were calculated for different sample sizes based on both under-dispersion and over-dispersion data,
along with the application of the methods illustrated by using a real dataset available on the literature

AIMS Mathematics Volume 9, Issue 1, 270–288.



286

to compare models with different estimates of parameters via the Akaike information criterion, the
Bayesian information criterion and the deviance information criterion. Based on MSE criterion, the
Bayesian using Laplace prior distribution for estimating the parameters performs better than other
approaches. Additionally, the three Bayesian methods behaved very similarly with the large sample
size. Estimated coverage probabilities of the three Bayesian approaches were considered as the criteria
of a good confidence interval. In additioon, the results of real data analysis were coincided with those
in the simulation study. Overall, the Bayesian estimation using Laplace prior distribution outperforms
other methods for parameters estimation. However, the Bayesian estimation using all three prior
distributions can be an effective alternative for this model.
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