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Abstract: In this paper, new results were presented on the symmetry reduction of gas dynamics system
of partial differential equations following the general framework of Lev Ovsyannikov’s article “The
“podmodeli” program, Gas dynamics.” We considered the gas dynamics equations with an equation of
state prescribing the pressure as the sum of density function and entropy function. This system has a
12-dimensional Lie algebra and we considered its certain three-dimensional subalgebra generated by
space translations, Galilean translations and pressure translation. For this subalgebra, the symmetry
reduction of the original system leads to a system of ordinary differential equations. We obtained a
family of exact solutions for this system, which describes the motion of particles with a linear velocity
field and non-homogeneous deformation in the 3D-space. For these solutions, the trajectories of all
points are either parabolas or rays. At t = 0 an instantaneous collapse occurs when all of the particles
accumulate in a plane with infinitely many particles at every point of the plane. For a fixed period of
time, the particles were emitted from the same point on a plane and ended up on the same line. The gas
motion was vortex. A one-dimensional subalgebra embedded into three-dimensional subalgebra was
considered. The invariants were written in a consistent form. It was shown that the submodel of rank
one was embedded in the submodel of rank three.
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1. Introduction

The symmetry analysis of differential equations is a powerful method to obtain new exact particular
solutions for nonlinear partial differential equations [1–3]. In this paper, we consider the gas dynamics
equations [4]. Many solutions for these equations were found from some considerations, for example,
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using similarity and dimensional methods [5]. The outstanding mathematician Lev Ovsyannikov began
to obtain new exact solutions to these equations systematically. He succeeded by applying the group
analysis of differential equations [1] to the gas dynamics equations. As a result of years of research,
the “Submodels” program was published [6], in which the scientific community proposed to list all
submodels in order to simplify the original model that specifies classes of exact solutions and have a
lower dimension.

Lev Ovsyannikov has solved the problem of group classification of the gas dynamics equations
by an arbitrary element. He obtained 13 special equations of state [6]. The transformation group
of the gas dynamics equations has additional symmetries for these special state equations. Groups
are associated with Lie algebras of infinitesimal generators. However, some Lie algebras are similar.
In this paper, we consider a state equation that expands the transformation group to a 12-parameter
group. Other authors have not considered this equation of state from the point of view of group
analysis of differential equations. In this article, pressure is represented as a sum of density function and
entropy function. The transformation group consists of time translation, space translations, Galilean
translations, rotations in coordinate planes, space-time uniform dilatation and pressure translation. The
12-dimensional Lie algebra is the direct sum of two ideals. The paper [7] presents an optimal system of
non-similar subalgebras of the Lie algebra. Simplifications of the original model of lower dimensions
can be built for each subalgebra. Invariant submodel is the gas dynamics equations that are written
in invariants of subalgebra. The number of independent variables of the submodel is a rank of the
submodel. In particular, from a three-dimensional subalgebra one can construct an invariant submodel
of rank one. This is a system of gas dynamics equations written in terms of subalgebra invariants
with one independent variable. The integration of the system leads to the exact invariant solution of
the gas dynamics equations. These solutions can be used at applications. However, the first stage
is a representation of the motion of particles on the whole in space. Many authors were engaged in
constructing submodels and the study of particle motion. For example, the following recent works can
be noted: A solution with collapse on a helicoid was obtained in [8]; motion of gas particles based on
the Galilean group was studied in [9]; examples of invariant solutions describing vortex gas flow with
variable entropy, including a point source or sink were considered in [10]; in [11], three families of
exact solutions were obtained and, in a particular case, particle motions were presented; the invariant
solutions and submodels in two-phase fluid mechanics generated by three-dimensional subalgebras and
describing barochronous flows were presented in [12]; a solution with collapse was obtained in [13] for
a two-phase liquid; for a monatomic gas, an approximate solution on a three-dimensional subalgebra
and a description of the motion of particles were presented in [14]; for two types of state equations the
motions of particles with a linear velocity field were obtained in [15].

A submodel of a lower rank can be nested in a submodel of a higher rank [16]. This happens when
a subalgebra (for a submodel of higher rank) is embedded in a superalgebra (for a submodel of lower
rank). This is significant because a solution of a nested submodel is a solution of the submodel of a
larger dimension. In order to embed submodels, the invariants should be written in a consistent form.
It means that the invariants of the superalgebra should be expressed in terms of the invariants of the
subalgebra. All possible embedded subalgebras are given in [17] for the gas dynamics equations with
an arbitrary state equation. This paper provides an example of embedded submodels for the special
state equation.
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2. The main formulas and defenitions

We consider the gas dynamics equations [6]

D~u + ρ−1∇p = 0,

Dρ + ρ div~u = 0,

Dp + ρ fρdiv~u = 0,

(2.1)

where the total differentiation operator has the form

D = ∂t + (~u · ∇);

t is time, ∇ = ∂~x is a gradient with respect to the spatial independent variables ~x, ~u is a velocity vector,
ρ is a density and p is a pressure.

In the Cartesian coordinate system, we have [18]

~x = x~i + y~j + z~k,

∇ =~i∂x + ~j∂y + ~k∂z,

~u = u~i + v~j + w~k,

where~i, ~j, and ~k are an orthonormal basis.
The state equation has the special form [6]

p = f (ρ) + S , (2.2)

where S is an entropy.
The last equation of system (2.1) can be replaced by the equation for entropy:

DS = 0.

Equations (2.1) and (2.2) are invariant under the action of 12-parameter transformation group [6]:

1o. ~x ∗ = ~x + ~a (space translations),
2o. ~x ∗ = ~x + t~b, ~u ∗ = ~u + ~b (Galilean translations),
3o. ~x ∗ = O~x, ~u ∗ = O~u, OOT = E, det O = 1 (rotations),
4o. t∗ = t + b0 (time translation),
5o. t∗ = ct, ~x ∗ = c~x (uniform dilatation),
6o. p∗ = p + a0 (pressure translation).

(2.3)

The 12-dimensional Lie algebra L12 corresponds to transformation group (2.3). Lie algebra L12 is a
direct sum of two ideals L12 = L11⊕ {Y1}. All nontrivial, non-similar subalgebras of the Lie algebra L12

were written in the optimal system of subalgebras in [7]. The basis generators of L12 in the Cartesian
coordinate system have the form [6]

X1 = ∂x, X2 = ∂y, X3 = ∂z,

X4 = t∂x + ∂u, X5 = t∂y + ∂v, X6 = t∂z + ∂w,

X7 = y∂z − z∂y + v∂w − w∂v, X8 = z∂x − x∂z + w∂u − u∂w,

X9 = x∂y − y∂x + u∂v − v∂u, X10 = ∂t,

X11 = t∂t + x∂x + y∂y + z∂z, Y1 = ∂p.

(2.4)
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The commutators of infinitesimal generators (2.4) are given in Table 1 [7], where instead of operators
Xi, i = 1...11, we simply write indices i.

Table 1. The table of commutators of infinitesimal generators of Lie algebra L12.

1 2 3 4 5 6 7 8 9 10 11 Y1

1 −3 2 1
2 3 −1 2
3 −2 1 3
4 −6 5 −1
5 6 −4 −2
6 −5 4 −3
7 −3 2 −6 5 −9 8
8 3 −1 6 −4 9 −7
9 −2 1 −5 4 −8 7

10 1 2 3 10
11 −1 −2 −3 −10
Y1

3. Results

3.1. Invariant submodel and exact solution

The basis generators of the three-dimensional subalgebra 3.35 [7] has the form

X1 = ∂x, X3 + X4 = ∂z + t∂x + ∂u,

Y1 + aX3 + X5 = ∂p + a∂z + t∂y + ∂v.
(3.1)

Invariants of subalgebra (3.1) are

t, u + a
y
t
− z, v −

y
t
, w, ρ, p −

y
t
. (3.2)

Representation of invariant solution from (3.2) can be written as

u = u1(t) − a
y
t

+ z,

v = v1(t) +
y
t
,

w = w(t),
ρ = ρ(t), (3.3)

p = p1(t) + γ
y
t
,

S = S 1(t) + γ
y
t
,

p1 = f (ρ) + S 1.
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In (3.3) the coefficient γ has added in order to distinguish the results for three-dimensional
subalgebra 3.37 [18] of Lie algebra L11 from the results for three-dimensional subalgebra 3.35 of Lie
algebra L12. If we consider L11, then γ = 0. If we mean L12, then γ = 1.

Substituting (3.3) in (2.1) and (2.2), we obtain invariant submodel of rank one

u1t =
a
t
v1 − w,

v1t = −
γ

t
ρ−1 −

v1

t
,

wt = 0, (3.4)

ρt = −
ρ

t
,

S 1t = −
γ

t
v1, p1 = f (ρ) + S 1.

The solution of (2.1) and (2.2) from (3.3) and (3.4) has the form

u = −a
y + Y0

t
+ z − w0t −

aγ
2ρ0

t + u0,

v =
y + Y0

t
−

γ

2ρ0
t,

w = w0,

ρ =
ρ0

t
,

p = γ
y + Y0

t
+
γ2

2ρ0
t + f

(
ρ0

t

)
+ p0,

S = γ
y + Y0

t
+
γ2

2ρ0
t + p0.

(3.5)

In solution (3.5) u0 = w0 = Y0 = 0, due to Galilean translations with ~b = (−u0, 0,−w0) and space
translations with ~a = (0,Y0, 0) (2.3). Using pressure translation with a0 = −p0, we have in pressure
p0 = 0.

Let us consider the solution (3.5) embedded into the solution of invariant submodel of rank three
obtained from one-dimensional subalgebra 1.11 from L12. This subalgebra is obtained from the sum of
subalgebra 1.11 from L11 [18] and generator Y1. The basis generator of subalgebra 1.11 from L12 has
the form

Y1 + X3 + X4 = ∂p + ∂z + t∂x + ∂u. (3.6)

Subalgebra (3.6) embeds to subalgebra 3.35 (we assume a=1) (3.1) if coordinate axes (x1, x2), (x4, x5)
are reassigned as (x2, x1), (x5, x4), respectively, then (3.6) is as follows

Y1 + X3 + X5 = ∂p + ∂z + t∂y + ∂v. (3.7)

Invariants of subalgebra (3.7) are

t, x, z −
y
t
, u, v −

y
t
, w, ρ, p −

y
t
. (3.8)
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Let us write invariants (3.8) in consistent form with invariants (3.2), then representation of invariant
solutions from (3.8) can be written as

z1 = z −
y
t
,

u = u1(t, x, z1) + z1,

v = v1(t, x, z1) +
y
t
,

w = w(t, x, z1),
ρ = ρ(t, x, z1),

p = p1(t, x, z1) + γ
y
t
,

S = S 1(t, x, z1) + γ
y
t
,

p1 = f (ρ) + S 1.

The invariant submodel of rank three has the form

u1t + (u1 + z1)u1x +

(
w −

v1

t

)
u1z1 + ρ−1 p1x =

v1

t
− w,

v1t + (u1 + z1)v1x +

(
w −

v1

t

)
v1z1 −

ρ−1

t
p1z1 = −

v1

t
−
γ

t
ρ−1,

wt + (u1 + z1)wx +

(
w −

v1

t

)
wz1 + ρ−1 p1z1 = 0, (3.9)

ρt + (u1 + z1)ρx +

(
w −

v1

t

)
ρz1 + ρ(u1x −

v1z1

t
+ wz1) = −

ρ

t
,

S 1t + (u1 + z1)S 1x +

(
w −

v1

t

)
S 1z1 = −

γ

t
v1, p1 = f (ρ) + S 1.

If system (3.9) doesn’t depend on x, z1, then it is the system (3.4) with a = 1. This means that the
solution for (3.4) with a = 1 is also the solution for system (3.9).

3.2. Particle motion

Particle motion is given by the equation [4]:

d~x
dt

= ~u(t, ~x).

We investigate the motion of particles for solution (3.5). The world lines in R4(t, ~x) are given by
formulas

x = (z0 − av0)t + x0,

y = −
γt2

2ρ0
+ v0t, (3.10)

z = z0,

where ~x0 = (x0, v0, z0) are local Lagrangian coordinates. The Jacobian determinant of
transformation (3.10) from Lagrangian coordinates to Euler coordinates is

J =

∣∣∣∣∣∣ ∂~x∂~x0

∣∣∣∣∣∣ = t. (3.11)
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At the moment of time t = 0, the Jacobian determinant (3.11) vanishes and the particles collapse. The
rank of the Jacobian matrix at this moment of time is equal to two and the blow-up manifold is the
plane y = 0. Thus, for t = 0, the plane y = 0 is a flat blow-up or source. Projections of world lines to
R3(~x) are particle trajectories.

The gas motion is vortex

rot~u =

(
0; 1;

a
t

)
.

For z0 , av0, the particle trajectories are parabolas along the OY axis in the z = z0 planes.

Parabola vertex coordinates are
(
z0 − av0

γ
ρ0v0 + x0;

v2
0ρ0

2γ
; z0

)
at tmax =

v0ρ0

γ
. The trajectories of

such particles, for which z0 = av0, are rays parallel to the OY axis and scattering from the points(
x0;

v2
0ρ0

2γ
; av0

)
in the negative direction of the OY axis.

Let us rewrite the gas-dynamic functions in terms of the Lagrangian coordinates

u = z0 − av0, v = −
γ

ρ0
t + v0, w = 0,

ρ =
ρ0

t
, p = γv0 + f

(
ρ0

t

)
, S = γv0.

The velocity of the particle changes only in the direction of the OY axis.

From the system (3.10), by separating the Euler and Lagrangian variables, we can obtain the
equality

x − zt + ay + a
γt2

2ρ0
= x0, (3.12)

where the left side of which is a combination of the invariants of the subalgebra 1.11 (we assume
a = 1) (3.8). Thus, from the straight line x = x0 on the blow-up, the particles scatter to the plane (3.12).
Also from the straight line z = z0 on the blow-up, the particles scatter to the plane z = z0 (see Figure 1).

At the moment of time t = 0, the particles scatter with velocicties (z0 − av0; v0; 0) from the point
(x0, z0) of the blow-up plane y = 0. In Figure 2 the trajectories are shown for several particles. All
particles scattering from one point of the plane are on a straight line, which is the intersection of the
planes (3.12) and z = z0, or given by the parametric system (3.10) for fixed t if v0 is a parameter.

The density is uniform in space at any moment of time. At t ∈ (−∞; 0) the gas becomes denser,
and at t ∈ (0; +∞) the gas expands (ρ → 0 as t → ∞). The physical meaning of γ is the presence of
particle acceleration in the direction OY axis and, accordingly, the presence of the second component
of the pressure gradient py.

From a physical point of view, the blow-up is impossible, and it is necessary to conjugate
the solution with another solution (possibly obtained for embedded subalgebras) through weak
discontinuities and shock waves.
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Figure 1. The blow-up plane y = 0 is gray. The plane z = −2 and the plane (3.12) with
x0 = 2, γ = 1, a = 1, ρ0 = 1 at t = 1; 3 are black.

Figure 2. Trajectories of four particles scattering from the same blow-up point with
coordinates x0 = 1, z0 = 2, v0 = 0, 1, 2, 3 at a = 1, ρ0 = 1, γ = 1; at t ∈ (−3; 0) the trajectories
are gray; at t ∈ (0; 5) the trajectories are black, the blow-up plane is gray, the straight line is
black at which these particles are located at t = 5.

4. Conclusions

In this article, we have obtained a new family of exact solutions for the gas dynamics equations with
the special state equation when the pressure is prescribed by the sum of density function and entropy
function. The solutions have been obtained from invariant submodel of rank one. It has been observed
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that the solutions of invariant submodel of rank one are embedded into solutions of the submodel with
three independent variables. The new solutions of the gas dynamics equations describe the motion of
particles in space with a linear velocity field and non-homogeneous deformation. At the one moment
of time the solution specifies the blow-up or instantaneous source. The manifold of blow-up or source
is a plane. From one point of the source the particles scatter into straight lines. The particle trajectories
are parabolas or rays. The gas motion is vortex. The density is uniform in space at any moment of time.
The gas becomes denser near the blow-up, and expands as it moves further away from the source.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work was supported by the state assignment of Mavlyutov Institute of Mechanics UFRC RAS.

Conflict of interest

The author declares no conflict of interest in this paper.

References

1. L. V. Ovsiannikov, Group analysis of differential equations, New York: Academic Press, 1982.
https://doi.org/10.1016/C2013-0-07470-1

2. P. J. Olver, Applications of Lie groups to differential equations, New York: Springer, 1986.
https://doi.org/10.1007/978-1-4684-0274-2

3. G. W. Bluman, S. Kumei, Symmetries and differential equations, New York: Springer, 1989.
https://doi.org/10.1007/978-1-4757-4307-4

4. L. V. Ovsiannikov, Lectures on the foundations of gas dynamics, 2 Eds., Moscow-Izhevsk: Institut
komp’yuternykh issledovaniy, 2003.

5. L. I. Sedov, Similarity and dimensional methods in mechanics, 10 Eds., Boca Raton: CRC Press,
1993. https://doi.org/10.1201/9780203739730

6. L. V. Ovsyannikov, The “podmodeli” program. Gas dynamics, J. Appl. Math. Mech., 58 (1994),
601–627. https://doi.org/10.1016/0021-8928(94)90137-6

7. D. T. Siraeva, Optimal system of non-similar subalgebras of sum of two ideals, Ufa Math. J., 6
(2014), 90–103. https://doi.org/10.13108/2014-6-1-90

8. Y. V. Yulmukhametova, The solution of equations of ideal gas that describes Galileo invariant
motion with helical level lines, with the collapse in the helix, J. Samara State Tech. Univ., Ser.
Phys. Math. Sci., 23 (2019), 797–808. https://doi.org/10.14498/vsgtu1703

9. S. V. Khabirov, Motion of gas particles based on the Galilei group, T. I. Mat. Mek. UrO RAN, 27
(2021), 173–187. https://doi.org/10.21538/0134-4889-2021-27-1-173-187

AIMS Mathematics Volume 9, Issue 1, 89–98.

http://dx.doi.org/https://doi.org/10.1016/C2013-0-07470-1
http://dx.doi.org/https://doi.org/10.1007/978-1-4684-0274-2
http://dx.doi.org/https://doi.org/10.1007/978-1-4757-4307-4
http://dx.doi.org/https://doi.org/10.1201/9780203739730
http://dx.doi.org/https://doi.org/10.1016/0021-8928(94)90137-6
http://dx.doi.org/https://doi.org/10.13108/2014-6-1-90
http://dx.doi.org/https://doi.org/10.14498/vsgtu1703 
http://dx.doi.org/https://doi.org/10.21538/0134-4889-2021-27-1-173-187


98

10. S. V. Khabirov, Plane steady vortex submodel of ideal gas, J. Appl. Mech. Tech. Phy., 62 (2021),
600–615. https://doi.org/10.1134/S002189442104009X

11. D. T. Siraeva, Invariant solutions of the gas dynamics equations from 4-parameter three-
dimensional subalgebras containing all translations in space and pressure translation, Sib. Electron.
Math. Re., 18 (2021), 1639–1650. https://doi.org/10.33048/semi.2021.18.123

12. A. Panov, Invariant solutions and submodels in two-phase fluid mechanics generated by 3-
dimensional subalgebras: Barochronous flows, Int. J. Non-Linear Mech., 116 (2019), 140–146.
https://doi.org/10.1016/j.ijnonlinmec.2019.05.002

13. A. Panov, About one collapse in two-phase fluid, AIP Conf. Proc., 1939 (2018), 020048.
https://doi.org/10.1063/1.5027360

14. R. F. Shayakhmetova, Vortex scattering of monatomic gas along plane curves, J. Appl. Mech. Tech.
Phy., 59 (2018), 241–250. https://doi.org/10.1134/S0021894418020074

15. R. Nikonorova, D. Siraeva, Y. Yulmukhametova, New exact solutions with a linear velocity field
for the gas dynamics equations for two types of state equations, Mathematics, 10 (2022), 123.
https://doi.org/10.3390/math10010123

16. S. V. Khabirov, A hierarchy of submodels of differential equations, Sib. Math. J., 54 (2013), 1110–
1119. https://doi.org/10.1134/S0037446613060189

17. T. F. Mukminov, S. V. Khabirov, Graf of embedded subalgebras of 11-dimensional
symmetry algebra for continuous medium, Sib. Electron. Math. Re., 16 (2019), 121–143.
https://doi.org/10.33048/semi.2019.16.006

18. S. V. Khabirov, Lectures analytical methods in gas dynamics, Ufa: BSU, Russia, 2013.

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 1, 89–98.

http://dx.doi.org/https://doi.org/10.1134/S002189442104009X
http://dx.doi.org/https://doi.org/10.33048/semi.2021.18.123
http://dx.doi.org/https://doi.org/10.1016/j.ijnonlinmec.2019.05.002
http://dx.doi.org/https://doi.org/10.1063/1.5027360
http://dx.doi.org/https://doi.org/10.1134/S0021894418020074
http://dx.doi.org/https://doi.org/10.3390/math10010123
http://dx.doi.org/https://doi.org/10.1134/S0037446613060189
http://dx.doi.org/https://doi.org/10.33048/semi.2019.16.006
http://creativecommons.org/licenses/by/4.0

	Introduction
	The main formulas and defenitions
	Results
	Invariant submodel and exact solution
	Particle motion

	Conclusions

