
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(1): 55–72.
DOI:10.3934/math.2024004
Received: 10 October 2023
Revised: 16 November 2023
Accepted: 22 November 2023
Published: 24 November 2023

Research article

Semi-supervised estimation for the varying coefficient regression model

Peng Lai1,∗, Wenxin Tian1 and Yanqiu Zhou2

1 School of Mathematics and Statistics, Nanjing University of Information Science and Technology,
Nanjing 210044, China

2 School of Science, Guangxi University of Science and Technology, Liuzhou 545006, China

* Correspondence: Email: laipeng@nuist.edu.cn.

Abstract: In many cases, the ‘labeled’ outcome is difficult to observe and may require a complicated
or expensive procedure, and the predictor information is easy to be obtained. We propose a semi-
supervised estimator for the one-dimensional varying coefficient regression model which improves
the conventional supervised estimator by using the unlabeled data efficiently. The semi-supervised
estimator is proposed by introducing the intercept model and its asymptotic properties are proven. The
Monte Carlo simulation studies and a real data example are conducted to examine the finite sample
performance of the proposed procedure.
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1. Introduction

Semi-supervised learning first appeared in machine learning literature, used to describe a situation
where some data are labeled and the rest are unlabeled [10]. Conceptually, it is between supervised and
unsupervised learning. It allows you to take advantage of a large amount of unlabeled data available and
smaller labeled datasets in many instances. Semi-supervised learning occurs when the label variable
is difficult to observe and may require complex or expensive processes. Specifically, a sample of n
observations in the joint distribution (X,Y) is given, where Y is the label variable and X contains the
covariates. In addition, an additional m samples are observed with only X given. The aim is to study
the relationships between X and Y using additional unlabeled data.

For semi-supervised learning, much literature focuses on the case that Y takes a small number
of values, which can be reduced to the case of classification tasks, such as [19]. In recent years,
research in this field has focused on neural network-based models and generative learning algorithm

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2024004


56

problems. [13] introduced a simple and computationally efficient algorithm for training deep neural
networks in a semi-supervised learning paradigm: interpolating Consistency Training (ICT). [8]
introduced an innovative framework for federated transfer learning (FTL) known as Semi-Supervised
Federated Heterogeneous Transfer Learning (SFHTL), to utilize unlabeled non-overlapping samples,
addressing the challenge of model overfitting caused by the limited overlap of training samples in
federated learning (FL) scenarios. Based on compatibility conditions in the semi-supervised probably
approximately correct (PAC) theory, [7] demonstrated why labeled heterogeneous source data and
unlabeled target data help reduce target risk. Based on this theory, two algorithms were designed as
a proof of concept. One is the kernel heterogeneous domain alignment (KHDA) algorithm, which
is a kernel-based algorithm, and the other is the joint mean embedded alignment (JMEA) algorithm
based on neural networks. At the same time, some scholars have studied the regression problem. [14]
classified different semi-supervised methods into two categories: distribution-based and marginal-
based. The distribution method relied on the assumption that the conditional expectation E(Y |X) was
linked to the marginal distribution of X. The marginal-based approach used additional information on
X. Some other studies, such as [18], took into account Y sequential values and used unlabeled data to
learn the structure of X so that non-parametric regression could be better estimated. These efforts are
very helpful where non-parametric regression is useful and unlabeled data is available. [15] proposed
an estimator of the population mean using unlabeled data combined with least squares. [16] provided
a semi-supervised reasoning framework focused on the mean and variance of the responses, allowing
covariates to be much larger in size than the sample sizes, and provided new estimates of the mean
and variance of response variables. [4] considered the linear regression problem in a semi-supervised
setting and proposed a class of highly efficient adaptive semi-supervised estimators (EASE) to improve
the estimation efficiency. Additionally, they applied this method to the study of electronic medical
records on autoimmunity. [2] proposed a correction estimator that effectively integrates labeled and
unlabeled data, called Corrected High-dimensional Inference of Variance Interpretation Estimators
(CHIVE), which achieved minimax optimal convergence speed under a general semi-supervised
framework. [1] studied linear regression in a semi-supervised setting and, even in a framework where
E(Y |X) was not linear, additional information about the distribution of X was helpful to construct better
estimates than standard least squares estimates. However, there are few studies on semi-supervised
learning in the varying coefficient models. Therefore, we want to extend the intercept model method
of [1] to the varying coefficient model and investigate the estimation of the coefficient function under
semi-supervised learning.

Varying coefficient models constitute a versatile and expansive category of statistical models
encompassing well-known structures like additive models, partial linear models, single-index
coefficient regression models and adaptive varying coefficient partial linear models. Researchers
have investigated varying coefficient models, seeking to understand and refine their applications
across diverse statistical contexts. The exploration of these models extends beyond conventional
frameworks, uncovering novel insights that contribute to the evolving landscape of statistical
methodology. [6] introduced a robust two-step estimation approach designed for the coefficient
function. The methodology involves the construction of a reliable estimator for the coefficient function,
accompanied by a thorough analysis of the asymptotic mean squared error and the convergence velocity
of the estimator. This method not only advances the precision of coefficient function estimation
but also contributes insights into the statistical properties of the estimator under consideration. [3]
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investigated the generalized varying coefficient model, focusing on both estimation and hypothesis
testing. Their methodological approach centered on crafting a robust estimation for the coefficient
function, leveraging the local polynomial regression technique to enhance accuracy. [9] proposed a
semiparametric estimator for the heteroscedastic single-index varying coefficient model. The estimator
is proved to attain the semiparametric efficiency bound. [17] considered an estimating equations
approach to parameter estimation in an adaptive varying coefficient linear quantile model. They
proposed estimating equations for the index vector of the model in which the unknown nonparametric
functions were estimated by minimizing the check loss function, resulting in a profiled approach.

Our goal here is to study the more efficient estimates of the one-dimensional varying coefficient
model with unlabeled data as a pioneer in the semi-supervised varying coefficient modeling problems.
The intercept model is introduced into the varying coefficient models, and the extra information from
the unlabeled data is combined to improve the performance of the estimators.

The rest of the article is organized as follows. Section 2 provides the basic setting and the proposed
methods. Theoretical properties are also given in Section 2. In Section 3, we conduct Monte Carlo
simulation studies to examine the finite sample performance of the proposed procedure. We also use
the proposed procedure in an example with real data.

2. Materials and methods

2.1. Varying coefficient model

In the study of the demand for shared bicycles (Y), many studies focus on the impact of the
temperature (X), and how the relationships between them may change with time (T ). Thus the varying
coefficient model is a good choice. Nevertheless, in real-world scenarios, it is common that the labeled
variable Y may not be entirely observed, and only observations of the covariate (X,T ) are available.
In such cases, the introduction of semi-supervised learning becomes imperative. In semi-supervised
learning, the data structure involves a set of n observations sampled from the joint distribution (Y, X,T ),
and an additional m samples are observed with only (X,T ) given. The model leverages both labeled and
unlabeled data, allowing us to make more informed and robust estimates by incorporating the partially
observed labeled samples along with the unlabeled data. This approach is effective when dealing with
practical problems where complete observations of the labeled variable Y may be limited.

To study the estimates of the varying coefficient model with unlabeled data, we introduce our basic
method and consider the following model,

Y = g(T )X + ε, (2.1)

where Y is the label variable, X is the one-dimensional covariant, T is the dependent variable, g(·) is
the unknown measurable function on R and ε is the random error with E(ε|T, X) = 0.

2.2. Locally weighted linear regression estimates

In the supervised situation, where the data from model (2.1) are completely observed, the coefficient
function g(t) of model (2.1) can be estimated by the locally weighted linear regression estimation
method [5]. For any given point t0, use a linear function in a neighborhood of t0,

g(t) ≈ g(t0) + g′(t0)(t − t0). (2.2)
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We can minimize the following objective functions by a and b to obtain the estimator of g(t0),

L(a, b) =

n∑
i=1

(Yi − aXi − b
Ti − t0

h
Xi)2Kh(Ti − t0), (2.3)

where g(t0) = a, hg′(t0) = b and K(·) is some kernel function Kh(·) = K(·/h)/h with bandwidth h. Let
Zi =

(
Xi, Xi(Ti−t0

h )
)

and β(t0) = (a, b)> = (g(t0), hg′(t0))>. Thus, β̂(t0) =
(
â, b̂

)>
= (ĝ(t0), hĝ′(t0))> is

β̂(t0) = (D>KwD)−1(D>KwY), (2.4)

where D is the n × 2 matrix and its ith line elements are
(
Xi, Xi

Ti−t0
h

)
, Y = (Y1,Y2, ...,Yn)>, Kw =

diag (Kh(T1 − t0),Kh(T2 − t0), ...,Kh(Tn − t0)). Thus, the locally weighted linear regression estimate for
the coefficient function g(t0) of model (2.1) is ĝL(t0) = e>β̂(t0), where e = (1, 0)>.

2.3. Intercept model with total information

To take full advantage of the information from the unlabeled data, we want to discuss the form
of estimation in the semi-supervised case. First, we assume that the total information is completely
known.

Motivated by [1], for model (2.1), we have

g(T ) = arg min
g(T )

E
[
(Y − g(T )X)|T

]2
=

E(YX|T )
E(X2|T )

.

So, we get the following model through multiplying model (2.1) by X
E(X2 |T ) ,

Ỹ = g(T )X̃01 + a(T )X̃02 + ε̃ = g̃(T )X̃1 + ε̃, (2.5)

where Ỹ = YX
E(X2 |T) , g̃(T ) = (g(T ), a(T )), X̃1 =

(
X̃01, X̃02

)>
, X̃01 = 1, X̃02 = X2

E(X2 |T) − 1 and ε̃ is

the remainder term. Under the total information situation, E(X2|T ) is known. The multiplication term
makes the expectation of Ỹ to be E(Ỹ |T ) = g(T ). Therefore, by introducing this multiplication term into
our estimation process, we can leverage the information from the unlabeled data set more effectively.

After introducing the intercept model, we have the locally weighted regression estimator of β(t0),

ˆ̃β(t0) =
(
D̃>KwD̃

)−1 (
D̃>KwỸ

)
, (2.6)

where the ith line elements of D̃ are (X̃>i , X̃
>
i (Ti−t0

h )) and X̃i = (X̃01i, X̃02i)>, X̃01i = 1, X̃02i =
X2

i
E(X2 |Ti)

− 1,

i = 1, 2, . . . , n, ˆ̃β(t0) =

( ˆ̃g(t0)
h ˆ̃g′(t0)

)
. Thus, the total information estimate of g̃(t0) is ĝT I(t0) = ẽ> ˆ̃β(t0),

where ẽ = (1, 0, 0, 0)>.

2.4. Intercept model with partial information

In practical problems, the overall information is not completely known, so we can only extract
partial information through the observed unlabeled data. We consider the estimation under partial
information (PI) i.e., the semi-supervised setting.
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For semi-supervised data, consider n independent and identically distributed observations
(X1,T1,Y1), (X2,T2,Y2), . . . , (Xn,Tn,Yn) in a joint distribution G, and an additional set
(Xn+1,Tn+1), (Xn+2,Tn+2), . . . , (Xn+m,Tn+m) of m independent observations from the marginal
distribution. Model (2.5) becomes

Y̌ = g(T )X̌01 + a(T )X̌02 + ε̌ = ǧ(T )X̌2 + ε̌, (2.7)

where Y̌ = YX
Ě(X2 |T) , ǧ(T ) = (g(T ), a(T )), X̌2 =

(
X̌01, X̌02

)>
, X̌02 = X2

Ě(X2 |T) − 1, X̌01 = 1 and ε̌ is the

remainder term. Ě(X2|T ) is the estimated conditional expectation under T for X2 based on the semi-
supervised data, Ě(X2|T ) =

∑n+m
i=1 X2

i Kh(Ti−T )∑n+m
i=1 Kh(Ti−T ) . Therefore, the semi-supervised estimator of β(t) is

ˆ̌β(t0) =
(
Ď>KwĎ

)−1 (
Ď>KwY̌

)
, (2.8)

where the ith line elements of Ď are (X̌>i , X̌
>
i (Ti−t0

h )) and X̌i = (X̌01i, X̌02i)>, X̌01i = 1, X̌02i =
X2

i

Ě(X2 |Ti)
− 1,

i = 1, 2, . . . , n, ˆ̌β(t0) =

( ˆ̌g(t0)
h ˆ̌g′(t0)

)
. The semi-supervised estimator of the coefficient function ǧ(t0) of

the model (2.7) is ĝPI(t0) = ě> ˆ̌β(t0), where ě = (1, 0, 0, 0)>.

2.5. Theoretical properties

In this subsection, the following conditions are listed to study the theoretical properties of the
proposed estimating procedures.

(1) The density function f (t) of T is continuous over the interval [0,1] and takes values greater than 0.

(2) The varying coefficient function g(t) and E(Y |T = t) have continuous derivatives up to order 2,
and are bounded away from zero.

(3) The kernel function Kh(·) is a bounded symmetric density function satisfying Lipschitz continuity
in the interval (-1,1) with a window width of 0 < h and h = O(n−

1
5 ).

(4) Γ(t) = E(X2|T = t) is non-singular on the interval [0,1] and has a continuous second derivative.

(5) E(ε2|T = t, X = x) has bounded partial derivatives up to order 2 and is bounded away from zero.

(6) There exists s > 2 that makes E(|X|2s) < ∞ and E(|Y |2s) < ∞.

Remark 1. Conditions (1)–(4) are general assumptions for varying coefficient models, which can be
found in Tang and Zhou [12].

Theorem 1. If conditions (1)–(6) hold, and ε(X − E(X|T )) has a finite second order moment, then,
√

nh(ĝL(t0) − g(t0) − 1
2µ2h2g′′(t0)) ∼ N(0, σ2

L),

where σ2
L = ν0 f −1(t0)[Γ−1(t0)]2E(X2ε2|T = t0), µ2 =

∫
t2K(t)dt, ν0 =

∫
K2(t)dt.
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Proof. First, we consider the varying coefficient model (2.1), known by the properties of the varying
coefficient model,

1
n

D>KwD
P
−→

(
Γ(t0) f (t0) 0

0 µ2Γ(t0) f (t0)

)
, (2.9)

where D is the n × 2 matrix and its line i elements are
(
Xi, Xi

Ti−t0
h

)
, Γ(t0) = E(X2|Ti = t0), f (t) is the

density function of T and µ2 =
∫

t2K(t)dt. Since

Yi = g(Ti)Xi + εi =

(
Xi

Ti−t0
h Xi

)> (
g(t0)

hg′(t0)

)
+ (g(Ti) − g(t0) − g′(t0)(Ti − t0))Xi + εi,

then we have,
Y1

Y2
...

Yn

 =


X1

T1−t0
h X1

X2
T2−t0

h X2
...

...

Xn
Tn−t0

h Xn


(

g(t0)
hg′(t0)

)
+


(g(T1) − g(t0) − g′(t0)(T1 − t0))X1

(g(T2) − g(t0) − g′(t0)(T2 − t0))X2
...

(g(Tn) − g(t0) − g′(t0)(Tn − t0))Xn

 +


ε1

ε2
...

εn


= D

(
g(t0)

hg′(t0)

)
+


(g(T1) − g(t0) − g′(t0)(T1 − t0))X1

(g(T2) − g(t0) − g′(t0)(T2 − t0))X2
...

(g(Tn) − g(t0) − g′(t0)(Tn − t0))Xn

 + ε.

Define the above as Y = Dβ(t0) + ∆gX + ε, where Y = (Y1,Y2, . . . ,Yn)>, ∆g =

diag ((g(T1) − g(t0) − g′(t0)(T1 − t0)), . . . , (g(Tn) − g(t0) − g′(t0)(Tn − t0))) and X = (X1, X2, . . . , Xn)>.
We have

β̂(t0) = (D>KwD)−1D>KwY = (D>KwD)−1D>KwDβ(t0) + (D>KwD)−1D>Kw(∆gX + ε). (2.10)

Therefore,

β̂(t0) − β(t0) = (
1
n

D>KwD)−1(
1
n

D>Kw∆gX +
1
n

D>Kwε). (2.11)

Let 1
n D>Kw∆gX = A(1)

1 , 1
n D>Kwε = A(2)

2 , A1 = e>1 A(1)
1 , A2 = e>1 A(2)

2 , where e1 is a unit vector with
elements (1, 0)>. For A1,

E(A1) = E(
1
n

n∑
i=1

XiKh(Ti − t0)Xi(g(Ti) − g(t0) − g′(t0)(Ti − t0))) = Γ(t0) f (t0)
1
2

g′′(t0)h2µ2 + o(h2).

Since β̂(t0) − β(t0) =

(
ĝ(t0)

hĝ′(t0)

)
−

(
g(t0)

hg′(t0)

)
, we have

ĝL(t0) − g(t0) = (Γ(t0) f (t0))−1(Γ(t0) f (t0)
1
2

g′′(t0)h2µ2 + o(h2) +
1
n

n∑
i=1

XiKh(Ti − t0)εi). (2.12)

It should be noted that 1
n

∑n
i=1 XiKh(Ti − t0)εi ∼ N(0, 1

nh E(X2
i ε

2
i |t0) f (t0)ν0), where ν0 =

∫
K2(t)dt. Thus,

ĝL(t0) − g(t0) =
1
2

g′′(t0)h2µ2 + o(h2) + (Γ(t0) f (t0))−1 1
n

n∑
i=1

XiKh(Ti − t0)εi, (2.13)
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and it follows that
√

nh(ĝL(t0) − g(t0) −
1
2
µ2h2g′′(t0)) ∼ N(0, ν0 f −1(t0)(Γ2(t0))−1E(X2

i ε
2
i |t0)). (2.14)

�

Theorem 2. Assuming that
(
Ỹ , X̃01, X̃02

)
has a finite second-order moment, the total information

estimator of the intercept model has
√

nh(ĝT I(t0) − g(t0) − 1
2µ2h2g′′(t0)) ∼ N(0, σ2

T I),

where σ2
T I = ν0 f −1(t0)E(ε̃2|t0), σ2

L = σ2
T I + σ2

di f f 1, σ2
di f f 1 = nhE{ 1

f (t0)
1
n

∑n
i=1 Kh(Ti − t0)( εiXi

E(X2 |Ti)
− ε̃i)}2.

Proof. Before discussing the form of estimation in the semi-supervised case, we assume that all
information is completely known and consider the estimation with complete data information.
Consider the intercept model (2.5) under the complete data. We have the objective function

L(β̃) =

n∑
i=1

(Ỹi − g̃(t0)X̃i − hg̃′(t0)
Ti − t0

h
X̃i)2Kh(Ti − t0), (2.15)

where, X̃i = (X̃01i, X̃02i)>.

Let the line i elements of D̃ be (X̃>i , X̃
>
i (Ti−t0

h )), Ỹ = (Ỹ1, Ỹ2, · · · , Ỹn)>, ˆ̃β =

( ˆ̃g(t0)
h ˆ̃g′(t0)

)
, so locally

weighted linear regression by varying coefficients shows that ˆ̃β(t0) = (D̃>KwD̃)−1(D̃>KwỸ), ˆ̃g(t0) =

e>1
ˆ̃β(t0), where the first element of e1 is 1 and the others are 0.
In addition, we have

1
n

D̃>KwD̃
P
−→

(
Γ̃(t0) f (t0) 0

0 µ2Γ̃(t0) f (t0)

)
, (2.16)

where Γ̃(t0) = E(X̃X̃>|t0) and X̃ =


X̃>1
...

X̃>n

.
Consider 1

n D̃>KwỸ =

( 1
nX̃>KwỸ

1
nX̃>T>h KwỸ

)
and

Ỹi = g̃(Ti)>X̃i + ε̃i =
(

X̃>i (Ti−t0
h )X̃>i

) ( g̃(t0)
hg̃′(t0)

)
+ X̃>i

(
g(Ti) − g(t0) − g′(t0)(Ti − t0)
a(Ti) − a(t0) − a′(t0)(Ti − t0)

)
+ ε̃i.

We can define

Ỹ =


Ỹ1

Ỹ2
...

Ỹn

 = D̃β̃(t0) + X̃∆ga + ε̃, (2.17)

where ∆ga = diag
((

g(T1) − g(t0) − g′(t0)(T1 − t0)
a(T1) − a(t0) − a′(t0)(T1 − t0)

)
, . . . ,

(
g(Tn) − g(t0) − g′(t0)(Tn − t0)
a(Tn) − a(t0) − a′(t0)(Tn − t0)

))
.

Therefore,

ˆ̃β(t0) = (D̃>KwD̃)−1D̃>KwỸ = β̃(t0) + (
1
n

D̃>KwD̃)−1(
1
n

D̃>KwX̃∆ga +
1
n

D̃>Kwε̃).
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Note that

X̃iX̃>i =

(
X̃01i

X̃02i

) (
X̃01i

X̃02i

)>
=

 1 X2
i

E(X2 |Ti)
− 1

X2
i

E(X2 |Ti)
− 1 [ X2

i
E(X2 |Ti)

− 1]2

 .
We have the following form,

1
n

D̃>KwD̃ =

( 1
n

∑n
i=1 X̃iX̃>i Kh(Ti − t0) 1

n

∑n
i=1 X̃iX̃>i Kh(Ti − t0)Ti−t0

h
1
n

∑n
i=1 X̃iX̃>i Kh(Ti − t0)Ti−t0

h
1
n

∑n
i=1 X̃iX̃>i Kh(Ti − t0)(Ti−t0

h )2

)
,

and

1
n

n∑
i=1

X̃iX̃>i Kh(Ti − t0) =

 1
n

∑n
i=1 Kh(Ti − t0) 1

n

∑n
i=1[ X2

i
E(X2 |Ti)

− 1]Kh(Ti − t0)
1
n

∑n
i=1[ X2

i
E(X2 |Ti)

− 1]Kh(Ti − t0) 1
n

∑n
i=1[ X2

i
E(X2 |Ti)

− 1]2Kh(Ti − t0)(Ti−t0
h )2


P
−→

 f (t0) 0
0 E{[ X2

E(X2 |T ) − 1]2|T = t0} f (t0)

 .
Condisering 1

n D̃>KwX̃∆ga and 1
n D̃>Kwε̃, let 1

n D̃>KwX̃∆ga = Ã(1)
1 , 1

n D̃>Kwε̃ = Ã(2)
2 , Ã1 = e>1 Ã(1)

1 ,
Ã2 = e>1 Ã(2)

2 . We have

D̃>KwX̃∆ga =

( ∑n
i=1 Kh(Ti − t0)X̃iX̃>i ∆ga∑n

i=1 Kh(Ti − t0)Thi X̃iX̃>i ∆ga

)
,

and

Ã(1)
1 =

( 1
n

∑n
i=1 Kh(Ti − t0)X̃iX̃>i ∆ga

1
n

∑n
i=1 Kh(Ti − t0)Ti−t

h X̃iX̃>i ∆ga

)
.

Therefore,

Ã1 =
1
n

n∑
i=1

Kh(Ti − t0)X̃2
01i[g(Ti) − g(t0) − g′(t0)(Ti − t0)]

+
1
n

n∑
i=1

Kh(Ti − t0)X̃01iX̃02i[a(Ti) − a(t0) − a′(t0)(Ti − t0)]

= Ã11 + Ã12.

It is easy to obtain Ã1 = Ã11 + Ã12 = 1
2g′′(t0)h2µ2 f (t0) + o(h4). On the other hand,

Ã(2)
2 =

1
n

D̃>Kwε̃ =

( 1
n

∑n
i=1 X̃iKh(Ti − t0)ε̃i

1
n

∑n
i=1 X̃iKh(Ti − t0)Ti−t0

h ε̃i

)
Ã2 = e>1 Ã(2)

2 =
1
n

n∑
i=1

Kh(Ti − t0)ε̃i.

Since ˆ̃β − β̃ = (1
n D̃>KwD̃)−1( 1

n D̃>KwX̃∆ga + 1
n D̃>Kwε̃), so we have

ˆ̃g(t0) − g(t0) −
1
2

h2µ2g′′(t0) = f −1(t0)
1
n

n∑
i=1

Kh(Ti − t0)ε̃i + o(h4). (2.18)
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Since

E(
1
n

n∑
i=1

Kh(Ti − t0)ε̃i) = E(Kh(Ti − t0)ε̃i) = E (Kh(Ti − t0)E(ε̃i|Xi,Ti)) = 0,

E(
1
n

n∑
i=1

Kh(Ti − t0)ε̃i)2 =
1
n2

n∑
i=1

E
(
K2

h(Ti − t0)ε̃2
i

)
+

1
n2

∑
i, j

E
(
Kh(Ti − t0)ε̃iKh(T j − t0)ε̃ j

)
=

1
nh

f (t0)E(ε̃2
i |t0)ν0 + o(

1
nh

),

letting ˆ̃g(t0) = ĝT I(t0), we can get

√
nh( ˆ̃gT I(t0) − g(t0) −

1
2
µ2h2g′′(t0)) ∼ N(0, ν0 f −1(t0)E(ε̃2|t0)),

where σ2
T I = v0 f −1(t0)E(ε̃2|t0).

We have

1
nh
σ2

L = E

 1
f (t0)

1
n

n∑
i=1

Kh(Ti − t0)
εiXi

E(X2|Ti)

2

= E

 1
f (t0)

1
n

n∑
i=1

Kh(Ti − t0)ε̃i

2

+ E

 1
f (t0)

1
n

n∑
i=1

Kh(Ti − t0)(
εiXi

E(X2|Ti)
− ε̃i)

2

+2E

 1
f (t0)

1
n

n∑
i=1

Kh(Ti − t0)ε̃i

 1
f (t0)

1
n

n∑
i=1

Kh(Ti − t0)(
εiXi

E(X2|Ti)
− ε̃i)

 .
Note that

V =
εX

E(X2|T )
− ε̃ =

(Y − g(T )X)X
E(X2|T )

−
YX

E(X2|T )
+ g(T ) + a(T )

(
X2

E(X2|T )
− 1

)
= g(T )

(
1 −

X2

E(X2|T )

)
+ a(T )

(
−1 +

X2

E(X2|T )

)
= (a(T ) − g(T )) X̃02,

we have

E

 1
f (t0)

1
n

n∑
i=1

Kh(Ti − t0)ε̃i

 1
f (t0)

1
n

n∑
i=1

Kh(Ti − t0)(
εiXi

E(X2|t0)
− ε̃i)


= E

 1
f 2(t0)

(
1
n

n∑
i=1

Kh(Ti − t0))2ε̃iVi


= E

 1
f 2(t0)

(
1
n

n∑
i=1

Kh(Ti − t0))2E(ε̃i|Xi,Ti)Vi

 = 0.
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We can determine that

E

 1
f (t0)

1
n

n∑
i=1

Kh(Ti − t0)
εiXi

E(X2|Ti)

2

= E

 1
f (t0)

1
n

n∑
i=1

Kh(Ti − t0)ε̃i

2

+ E

 1
f (t0)

1
n

n∑
i=1

Kh(Ti − t0)(
εiXi

E(X2|Ti)
− ε̃i)

2

.

That is, σ2
L ≥ σ

2
T I , σ

2
L = σ2

T I + σ2
di f f 1, where

σ2
di f f 1 = nhE

 1
f (t0)

1
n

n∑
i=1

Kh(Ti − t0)(
εiXi

E(X2|Ti)
− ε̃i)

2

= h
1

f 2(t0)

∫
1
h2 K2(

Ti − t0

h
)E

[
(

εX
E(X2|Ti)

− ε̃)2|Ti

]
f (Ti)dTi

=
1

f (t0)

∫
K2(u)duE

[
(

εX
E(X2|t0)

− ε̃)2|t0

]
+ o(h2)

=

∫
K2(u)du

f (t0)
E

[
(a(t0) − g(t0))(

X2

E(X2|t0)
− 1)

]2

.

�

Theorem 3. Considering the partial information estimator of the intercept model in a semi-supervised
setting, when lim n

n+m = v, we have
√

nh(ĝPI(t0) − g(t0) − 1
2µ2h2g′′(t0)) ∼ N(0, σ2

PI),

where σ2
PI = ν0 f −1(t0)E(ε̌2|t0), σ2

PI = σ2
T I + vσ2

di f f 1.

Proof. Considering that in a practical problem the overall information is not completely known, so we
can only extract partial information from the observed unlabeled data, we next consider the estimation
under partial information (PI). We study the intercept model (2.7) under the semi-supervised setting.

In the same way as (ii), the local linear regression by varying coefficients shows that ˆ̌β(t0) =

(Ď>KwĎ)−1(Ď>KwY̌), ˆ̌g(t0) = e>1
ˆ̌β(t0). Where the line i elements of Ď are (X̌>i , X̌

>
i (Ti−t0

h )) and
X̌i = (X̌01i, X̌02i)>.

First, let us say

Ě(X2|T ) =
∑n+m

i=1 X2
i Kh(Ti−T )∑n+m

i=1 Kh(Ti−T ) , m̌(T ),

and let n + m = N. When T = t, we say m(t) = E(X2|t).
From the properties of nonparametric kernel estimation, we can get

supt |m̌(t) − m(t)| = Oa.s.(
√

ln N
√

Nh
+ h2),

and from that, we can get

sup |Ě(X2|T = t) − E(X2|T = t)| = sup |Ě(X2|t) − E(X2|t)| = Op(( ln N
Nh )

1
2 + h2).
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So we have

X2
i

Ě(X2|T )
−

X2
i

E(X2|T )
= X2

i
1

Ě(X2|T )E(X2|T )
Op((

ln N
Nh

)
1
2 + h2),

and we let Op(( ln N
Nh )

1
2 + h2) = 4hN . It is easy to get that

X2
i

Ě(X2|T )
=

X2
i

E(X2|T )
+ 4hN .

From the above description, we have

X̌iX̌>i =

(
X̌01i

X̌02i

) (
X̌01i

X̌02i

)>
=

 1 X2
i

Ě(X2 |Ti)
− 1

X2
i

Ě(X2 |Ti)
− 1 [ X2

i

Ě(X2 |Ti)
− 1]2

 =

 1 X2
i

E(X2 |Ti)
− 1 + 4hN

X2
i

E(X2 |Ti)
− 1 + 4hN [ X2

i
E(X2 |Ti)

− 1]2 + 42
hN

 .
We have the following form:

1
n

Ď>KwĎ =

( 1
n

∑n
i=1 X̌iX̌>i Kh(Ti − t0) 1

n

∑n
i=1 X̌iX̌>i Kh(Ti − t0)Ti−t0

h
1
n

∑n
i=1 X̌iX̌>i Kh(Ti − t0)Ti−t0

h
1
n

∑n
i=1 X̌iX̌>i Kh(Ti − t0)(Ti−t0

h )2

)
.

Similar to the previous steps,

1
n

n∑
i=1

X̌iX̌>i Kh(Ti − t0)
P
−→

 f (t0) 0
0 E{[ X2

E(X2 |T ) − 1]2|T = t0} f (t0)

 .
Let X̌ =


X̌>1
...

X̌>n

, and considering 1
n Ď>KwX̌∆ga and 1

n Ď>Kwε̌, let 1
n Ď>KwX̌∆ga = Ǎ(1)

1 , 1
n Ď>Kwε̌ =

Ǎ(2)
2 , Ǎ1 = e>1 Ǎ(1)

1 , Ǎ2 = e>1 Ǎ(2)
2 , where the first element of e1 is 1 and the others are 0. We have

Ď>KwX̌∆ga =

( ∑n
i=1 Kh(Ti − t0)X̌iX̌>i ∆ga(Ti)∑n

i=1 Kh(Ti − t0)Ti−t0
h X̌iX̌>i ∆ga(Ti)

)
.

Therefore,

Ǎ1 =
1
n

n∑
i=1

Kh(Ti − t0)X̌2
01i[g(Ti) − g(t0) − g′(t0)(Ti − t0)]

+
1
n

n∑
i=1

Kh(Ti − t0)X̌01iX̌02i[a(Ti) − a(t0) − a′(t0)(Ti − t0)]

= Ǎ11 + Ǎ12,

where

Ǎ11 =
1
n

n∑
i=1

Kh(Ti − t0)[g(Ti) − g(t0) − g′(t0)(Ti − t0)],
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and

Ǎ12 =
1
n

n∑
i=1

Kh(Ti − t0)
(

X2
i

Ě(X2|Ti)
− 1

)
[a(Ti) − a(t0) − a′(t0)(Ti − t0)]

=
1
n

n∑
i=1

Kh(Ti − t0)
(

X2
i

E(X2|Ti)
− 1

)
[a(Ti) − a(t0) − a′(t0)(Ti − t0)] + 4hN .

Similarly for Ã1, Ǎ1 = Ǎ11 + Ǎ12 = 1
2g′′(t0)h2µ2 f (t0) + o(h4) + 4hN . On the other hand,

Ǎ(2)
2 =

1
n

Ď>Kwε̌ =

( 1
n

∑n
i=1 Kh(Ti − t0)ε̌i

1
n

∑n
i=1 Kh(Ti − t0)X̌02iε̌i

)
,

Ǎ2 = e>1 Ǎ(2)
2 =

1
n

n∑
i=1

Kh(Ti − t0)ε̌i.

Note that ˆ̌β − β̌ = (1
n Ď>KwĎ)−1( 1

n Ď>KwX̌∆ga + 1
n Ď>Kwε̌), so we have

ˆ̌g(t0) − g(t0) −
1
2

h2µ2g′′(t0) = f −1(t0)
1
n

n∑
i=1

Kh(Ti − t0)ε̌i + o(h4).

Since

E(
1
n

n∑
i=1

Kh(Ti − t0)ε̌i) = E(Kh(Ti − t0)ε̌i) = E (Kh(Ti − t0)E(ε̌i|X,T )) = 0,

E(
1
n

n∑
i=1

Kh(Ti − t0)ε̌i)2 =
1

nh
f (t0)E(ε̌2|t0)ν0 + o(

1
nh

),

letting ˆ̌g(t0) = ĝPI(t0), we can get
√

nh( ˆ̌gPI(t0) − g(t0) −
1
2

h2µ2g′′(t0)) ∼ N(0, ν0 f −1(t0)E(ε̌2|t0)), (2.19)

where σ2
PI = v0 f −1(t0)E(ε̌2|t0). We have

1
nh
σ2

PI = E(
1

f (t0)
1
n

n∑
i=1

Kh(Ti − t0)ε̌i)2

= E(
1

f (t0)
1
n

n∑
i=1

Kh(Ti − t0)ε̃i)2 + E(
1

f (t0)
1
n

n∑
i=1

Kh(Ti − t0)(ε̌i − ε̃i))2

+ 2E[(
1

f (t0)
)2(

1
n

n∑
i=1

Kh(Ti − t0))(
1
n

n∑
j=1

Kh(T j − t0))ε̃i(ε̌ j − ε̃ j)],

where

E[(
1

f (t0)
)2(

1
n

n∑
i=1

Kh(Ti − t0))(
1
n

n∑
j=1

Kh(T j − t0))ε̃i(ε̌ j − ε̃ j)] = 0 + o(
1

nh
).

Let nhE( 1
f (t0)

1
n

∑n
i=1 Kh(Ti − t0)(ε̌i − ε̃i))2 = σ2

di f f 2, so we have
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σ2
PI = σ2

T I + σ2
di f f 2.

Since
ε̌i − ε̃i = (Y̌i − g(Ti)X̌01i − a(Ti)X̌02i) − (Ỹi − g(Ti)X̃01i − a(Ti)X̃02i)

= (YiXi − a(Ti)X2
i )(

1
Ě(X2|Ti)

−
1

E(X2|Ti)
)

= (g(Ti) − a(Ti))(
X2

i

Ě(X2|Ti)
−

X2
i

E(X2|Ti)
) + o(

1
nh

),

(2.20)

and

X2
i

Ě(X2|T )
−

X2
i

E(X2|T )
= (X2

i − Ě(X2|T ))(
1

Ě(X2|T )
−

1
E(X2|T )

) + 1 −
Ě(X2|T )
E(X2|T )

= −
Ě(X2|T )
E(X2|T )

+ 1 + 4hN ,

we can get

ε̌i − ε̃i = (g(Ti) − a(Ti))(
X2

i

Ě(X2|T )
−

X2
i

E(X2|T )
) + o(

1
nh

)

= (a(Ti) − g(Ti))(
Ě(X2|T )
E(X2|T )

− 1) + 4hNn

= (a(Ti) − g(Ti))

 1
n+m

∑n+m
j=1 Kh(T j − Ti)X2

j
1

n+m

∑n+m
j=1 Kh(T j − Ti)E(X2|T )

− 1

 + 4hNn
,

where 4hNn
= 4hN + o( 1

nh ), and

1
nh
σ2

di f f 2

= E(
1

f (t0)
1
n

n∑
i=1

Kh(Ti − t0)(ε̌i − ε̃i))2

= E

 1
f (t0)

1
n

n∑
i=1

Kh(Ti − t0)(a(Ti) − g(Ti))

 1
n+m

∑n+m
j=1 Kh(T j − Ti)X2

j
1

n+m

∑n+m
j=1 Kh(T j − Ti)E(X2|Ti)

− 1

2

+ O(4hNn
)2

= E

 1
f (t0)

1
n + m

n+m∑
j=1

Kh(T j − Ti)

1
n

n∑
i=1

1
f (Ti)

Kh(Ti − t0)(a(Ti) − g(Ti))

 X2
j

E(X2|Ti)
− 1




2

+ O(4hNn
)2

, E

 1
f (t0)

 1
n + m

n+m∑
j=1

[
X2

j W1

]
−

1
n + m

n+m∑
j=1

[W2]




2

+ O(4hNn
)2,

where

W1 =
1
n

n∑
i=1

1
f (Ti)

Kh(T j − Ti)Kh(Ti − t0)(a(Ti) − g(Ti))
1

E(X2|Ti)

= Kh(T j − t0)(a(t0) − g(t0))
1

E(X2|t0)
+ o(h2),
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and

W2 =
1
n

n∑
i=1

1
f (Ti)

Kh(T j − Ti)Kh(Ti − t0)(a(Ti) − g(Ti)) = Kh(T j − t0)(a(t0) − g(t0)) + o(h2).

So, we can get, for any given t0

σ2
di f f 2 = nhE

 1
f (t0)

1
n + m

n+m∑
j=1

Kh(T j − t0)(a(t0) − g(t0))

 X2
j

E(X2|t0)
− 1

 + o(h2)


2

+ O(nh42
hNn

)

= nh

 1
f 2(t0)

1
n + m

E
[
Kh(T j − t0)(a(t0) − g(t0))

(
X2

E(X2|t0)
− 1

)]2

+ o(h4)

 + O(nh42
hNn

)

= nh

 1
f (t0)

1
n + m

E
[
(a(t0) − g(t0))

(
X2

E(X2|t0)
− 1

)]2
∫

K2(u)du

h
+ o(h4)

 + O(nh42
hNn

)

=
n

n + m

∫
K2(u)du

f (t0)
E

[
(a(t0) − g(t0))

(
X2

E(X2|t0)
− 1

)]2

+ o(nh5) + O(nh42
hNn

)

Suppose lim n
n+m = v, we can get σ2

di f f 2 = vσ2
di f f 1, then we have σ2

PI = σ2
T I + vσ2

di f f 1. �

Remark 2. Theorems 1–3 show that if σ2
di f f 1 is not equal to zero, then σ2

L is larger than σ2
T I , and,

further, if v < 1, then σ2
L is also larger than σ2

PI . This means that the proposed semi-supervised
estimators could be more efficient than the supervised estimators.

3. Simulation studies and results

To study the finite sample performance of the proposed semi-supervised estimates, this section uses
some numerical simulations and a real data analysis to compare the estimated performances of the
locally weighted linear estimation of the varying coefficient model (LWLR), the total information
estimator based on the intercept model (TI) and the semi-supervised estimator under the partial
information setting (PI).

3.1. Monte Carlo simulations

Example. Consider

Model (I) : Y = sin(πT )X +
1
2

T X2 + δ︸     ︷︷     ︸
ε1

,

Model (II) : Y = (1 − T )2X + exp(−
1
2

T )X2 + δ︸               ︷︷               ︸
ε2

,

where X ∼ N(0, 1), T comes from the uniform distribution U(0, 1) and random error δ ∼ N(0, 1). At
the same time, ε1 and ε2 are affected by X and T . The labeled samples (Yi, Xi,Ti), i = 1, 2, ..., n and the
unlabeled samples (Xi,Ti), i = n+1, n+2, ..., n+m are from Model (I) or (II) with sample size n and m,
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respectively. Let the kernel function be the Epanechnikov kernel function, K(u) = 0.75(1−u2)I(|u| ≤ 1).
We determine the bandwidth h of the kernel function through the process of cross-validation (CV).
By employing CV, we aim to identify an optimal bandwidth value that enhances the performance
of the kernel function in the given context. For numerical simulation, the labeled sample size is
n=10, 20, 40, 60 and the unlabeled sample size is m = n, 3n, 10n for each model. To compare the pros
and cons of the estimators obtained by different methods, the estimation curves are obtained by 1000
repeated simulations, and the estimation effect is evaluated by the root mean squared error (RMSE)

and standard deviation (STD) of the estimations, where RMS E =
√

1
q

∑q
j=1

1
n

∑n
k=1[ĝ j(tk) − g(tk)]2, and

S T D =
√

1
n

∑n
k=1

1
q

∑q
j=1[ĝ j(tk) − 1

q

∑q
j=1 ĝ j(tk)]2. The expression “ĝ j(tk)” represents the jth estimation

of the coefficient function at the discrete time point tk, where {tk, k = 1, 2, . . . , n} refers to the appropriate
grid point. The simulation results are shown in Table 1.

Table 1. RMSE and STD derived in Model (I) and (II).

LWLR TI PI

n
m

– – n 3n 10n

Model(I)

RMSE

10 6.1491 3.5380 3.8323 3.7895 3.8279
20 2.2740 1.6919 1.6775 1.7452 1.7575
40 0.8886 0.7658 0.8036 0.7853 0.7644
60 0.7847 0.7580 0.7813 0.7781 0.7764

STD

10 6.1192 3.4779 3.7803 3.7370 3.7762
20 2.1842 1.5691 1.5536 1.6264 1.6396
40 0.3583 0.3053 0.3505 0.3512 0.3019
60 0.2476 0.2394 0.2163 0.2044 0.2340

Model(II)

RMSE

10 6.1408 3.5271 3.8242 3.7821 3.8205
20 2.2067 1.6047 1.5934 1.6616 1.6692
40 0.6967 0.5785 0.6292 0.6046 0.5761
60 0.5003 0.4976 0.5088 0.4972 0.4990

STD

10 6.1225 3.4927 3.7945 3.7522 3.7909
20 2.1888 1.5801 1.5685 1.6376 1.6453
40 0.4704 0.3405 0.4208 0.3831 0.3365
60 0.2445 0.2390 0.2415 0.2383 0.2420

As can be seen from Table 1, the proposed total information estimator and the semi-supervised
partial information estimator based on the intercept model are generally superior to the ordinary locally
weighted linear regression estimator, and the RMSE and STD obtained by the former two methods are
generally smaller than the latter one. The proposed semi-supervised intercept model can improve the
efficiency of the estimator.

3.2. Real data application

In recent years, the introduction of shared bicycles has enriched the travel and transportation options
of urban residents and solved the “last kilometer” travel problem of residents. Shared cycling has a
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significant impact on building a larger riding community, minimizing greenhouse gas emissions and
improving public health and transport issues. But, shared bicycle travel is easily affected by the weather
environment, where the temperature is an important disturbance factor. We study the data set of the
number of shared bicycles rented hourly in Seoul from 2017.12–2018.11 [11]. There are a total of
N=8760 samples in the data set. To study the superiority of the estimation method proposed in this
paper, the variables selected include count of bikes rented at each hour (vehicles, Y), hour of the
day (0 : 00 − 23 : 00, T ) and temperature (◦C, X). At the same time, n=1000 labeled samples and
m=7760 unlabeled samples are randomly selected in the original data set to construct a semi-supervised
setting, and the semi-supervised intercept model method proposed in this paper is used for analysis.
We establish the following model:

Y = β(T )X + ε. (3.1)

Compare the estimated R2 obtained by semi-supervised intercept model estimation R2
PI , the local

linear regression estimation R2
LWLRN

under all supervised data and R2
LWLRn

under n supervised samples.
At the same time, in order to eliminate the influence of randomness, we repeated K = 50 times and
calculated the mean of the corresponding R2(k) respectively, that is, R2 = 1

K

∑K
k=1 R2(k). The goodness

of fit based on N samples is R2
LWLRN

= 0.8531, the goodness of fit based on n samples is R2
LWLRn

=0.7651
and R2

PI = 0.8411, the effect is significantly better than that of the local linear regression estimation
without using unlabeled data.

4. Conclusions

Semi-supervised data is becoming more common, and most semi-supervised learning methods
focus on classification tasks, or solving linear regression models, with less emphasis on varying
coefficient models. Therefore, a good estimate of the coefficient function of the varying coefficient
model is given in this work. The key idea is to introduce an intercept model to replace the original
varying coefficient regression model and perform the estimation under a semi-supervised setting; that
is, the information of unlabeled data is utilized in the estimation process. It is further proved that the
new estimates have good asymptotic properties. At the same time, the asymptotic properties of the new
estimate is better than that of the conventional locally weighted linear regression estimators.

Finally, the method is applied to study the effect of temperature on the demand for shared bicycle
rental. The coefficient function of the shared bicycle rental demand model is well estimated, and the
demand is predicted.
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