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Abstract: In this paper, a type of Zika virus model with immigration is considered. Additionally based
on the risk of infected immigrants, we propose a control measure of screening for immigrants and a
three-measure control model of combined mosquito prevention and killing. The existence and stability
of the equilibrium in the Zika virus model are analyzed. The necessary conditions for the existence of
the optimal solution are given using Pontryagin’s maximum principle. We focused on testing screening
of the immigrating population to ensure a reduction in the transmission of the virus. Models have
demonstrated that in combination with routine mosquito control measures and the appropriate use of
mosquitoicides, the transmission of Zika virus in the population can be effectively reduced.
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1. Introduction

Zika virus belongs to flavivirus genus, flavivirus family, which is an arbovirus transmitted by
mosquitoes, mostly transmitted by Aedes aegypti, Aedes albopictus and Culex mosquitoes, etc. Zika
virus was first detected in rhesus monkeys in the Zika jungle in Uganda in 1947 [1], and then in 1952,
first found in populations in Uganda [2]. During 2015 and 2016, Brazil reported more than 4,000
cases of microcephalic teratoma in pregnant women infected with Zika virus [3, 4], a 20 fold increase
compared to previous years. By early 2016, Zika virus has spread to South America, Asia, Oceania
and other regions [5–7]. According to the World Health Organization, 86 countries and territories have
experienced outbreaks of the Zika virus since the outbreak began.

Human immigration is a very normal phenomenon. The movement or travel of a group of people,
either from an endemic area to a healthy area or from a healthy area to an endemic area. Therefore,
population movement or immigration is the main cause of the rapid spread of infectious diseases. Fred
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Brauer et al. [8] considered the immigration of infected individuals based on the traditional SI and SIS
models of infectious diseases and assumed a constant rate of population immigration. Their results
suggest that isolation of migrating infected individuals is necessary. Molalegn Ayana and Purnachandra
Rao Koya [9] considered the impact of having immigrants infected with Zika virus through a model
and proposed that infected immigrants facilitate the spread of Zika virus. Traoré et al. [10] analyzed
a vector-borne infectious disease model that takes into account vector and human immigration. Their
results also indicate that human migration is a problem that cannot be ignored and may cause the spread
of disease in non-infected areas. So what control measures are more appropriate for this situation?
Should we take immigration testing or require pre-migration vaccination?

There are many scholars who have focused their research on optimal cost-effectiveness and cost
analysis. Kouidere et al. [11] studied a mathematical model that describes the transmission dynamics
of African swine fever virus (ASFV) between pigs and ticks. To reduce the number of infected pigs
and ticks, several strategies are proposed, and Pontryagin’s Maximum principle and cost analysis
are used to find the solution of optimal control. In 2022, they proposed a mathematical model in
another paper [12] to describe the spread of COVID-19 in Peru, and characterized the optimal control
through Pontryagin’s Maximum principle. Using an optimal control model, Abdulfatai and Armin [13]
concluded that by comparing treatment of symptomatic infected individuals and indoor residual
spraying is the most cost-effective strategy. Miyaoka et al. [14] developed a response-diffusion model
of Zika transmission, suggesting that the best control strategy is to immunize susceptible populations
with vaccination as the control variable. Bonyah Ebenezer et al. [15] proposed and analyzed a SEIR-
Zika epidemic model and established an optimal control model. They only proposed the optimal
control strategy and did not mention the cost. Similarly, there are a number of studies that consider
only optimal control strategies [16–19]. Screening controls for in-migrants are largely absent from
these control strategies. As of now, there is some wait time for a Zika virus vaccine to become available,
but testing for Zika virus is currently available. The major contributions of this work are as follows: A
Zika virus model with immigrants is proposed to explain the risk of virus transmission by immigrants.
We also propose appropriate screening measures for immigrants to find the optimal control scheme by
building an optimal control model as well as cost analysis, pointing out the feasibility of appropriate
screening in Zika virus control.

The structure of this paper is as follows. In the next section, the Zika virus model with immigration
is proposed. In Section 3, we discussed the stability of the equilibriums point. In Section 4, combining
with the actual situation, the control strategy is proposed and the optimal control model is established.
The optimal control analysis is carried out. Cost-effectiveness analysis is given in Section 5. Then, the
conclusion and discussion will be made in Section 6.

2. Establishment of the model

Considering that mosquitoes move in a relatively small distance, we overlook the immigration of
mosquitoes. We divide the human population into four sub-classes, namely susceptible humans S H,
exposed humans EH, infected humans IH, and recovered humans RH. By this virtue, the total human
population can be represented by: NH = S H + EH + IH + RH.

Similarly, NM(t) is the total number of mosquitoes, which can be rationally partitioned into
susceptible mosquitoes S M, exposed mosquitoes EM, infected mosquitoes IM. Hence, NM = S M +
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EM + IM.

One problem for the model proposed by Molalegn Ayana and Purnachandra Rao Koya [9] is that if
there are no infected people in the current infected population, then no one in the immigrant population
is infected, which is clearly inappropriate. Imagine a city in which there are no infected people, but if
people infected by the virus move in, then that must be one reason why the virus would be present in
that city. Therefore, based on the idea of [10], the following model developed:

dS H

dt
= (1 − PE − PI − PR)ΛH − βHS H(IM + ρIH) − µHS H,

dEH

dt
= PEΛH + βHS H(IM + ρIH) − (µH + αH)EH,

dIH

dt
= PIΛH + αHEH − (µH + r + η)IH,

dRH

dt
= PRΛH + (r + η)IH − µHRH,

dS M

dt
= ΛM − βMS MIH − µMS M,

dEM

dt
= βMS MIH − (µM + δM)EM,

dIM

dt
= δMEM − µMIM,

(2.1)

where ΛH denotes the recruitment of humans, which also means the rate at the new individuals enter
human population. Of these new individuals, we hypothesize that a fraction of 1 − PE − PI − PR are
susceptibles, PE are exposed, PI are infected and PR are are recovered. ΛM represents susceptible
mosquitoes recruitment, βH signifies the direct transmission rate of the disease from infectious
mosquitoes to susceptible humans, βM denotes the rate of transmission from infected humans to
susceptible mosquitoes, βHρ represents the rate of transmission from infected humans to susceptible
humans, αH stands for the rate of exposed humans moving into infectious class, δM is the rate flow
from EM to IM. Natural mortality levels associated with each subpopulation of humans and mosquitoes
are denoted by µH and µM, respectively, r is the natural recovery rate, and η denotes the treatment rate.
All the parameters here are positive. Figure 1 shows the compartment model, which clearly shows the
construction process of the model. Table 1 defines all the parameters of the model.

Figure 1. Figure compartments model.

AIMS Mathematics Volume 8, Issue 9, 21893–21913.



21896

Table 1. The parameters are defined.

Parameter Definition
ΛH The growth rate of immigration
1 − PE − PI − PR The proportion of susceptible immigrant
PE, PI , PR The proportion of exposed persons infected persons and recovered persons
βH The rate of transmission of the virus from mosquitoes to humans
ρ The rate of transmission of the virus from person to person
µH The natural mortality rate of people
αH The transfer rate from exposed to infected persons
r Human natural recovery rate
η Recovery rate due to treatment
ΛM Growth rate of susceptible mosquitoes
βM The rate of transmission of the virus from humans to mosquitoes
µM Mosquito natural mortality rate
δM The transfer rate of exposed mosquitoes to infected mosquitoes

Theorem 1. Set initial valueF(0) ≥ 0, where

F(t) = (S H, EH, IH,RH, S M, EM, IM). (2.2)

Then, the solutions of F(t) at t > 0 are non-negative and lim
t→∞

supNH(t) ≤ ΛH
µH

, lim
t→∞

supNM(t) ≤ ΛM
µM

.

Proof. Total population NH = S H + EH + IH + RH, and

N
′

H = ΛH − µHNH.

Therefore, when t → ∞, 0 ≤ NH(t) ≤ ΛH
µH

holds.
The total mosquito population is expressed as NM = S M + EM + IM, and

N
′

M = ΛM − µMNM.

Then when t → ∞, 0 ≤ NM(t) ≤ ΛM
µM

holds. Hence we have,

lim
t→∞

supNH(t) ≤ ΛH
µH

, lim
t→∞

supNM(t) ≤ ΛM
µM

.

Furthermore, let

Ω = {(S H, EH, IH,RH, S M, EM, IM) ∈ R7
+ | 0 ≤ S H + EH + IH + RH ≤

ΛH
µH

and 0 ≤ S M + EM + IM ≤
ΛM
µM
}.

We can get that Ω is the positive invariant set of the system (2.1). �
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3. Equilibria of the model and stability analysis

3.1. The disease-free equilibrium and the basic reproduction number

When PE = 0, PI = 0, that means that no infected or exposed person moves in, the model can be
written as 

dS H

dt
= (1 − PR)ΛH − βHS H(IM + ρIH) − µHS H,

dEH

dt
= βHS H(IM + ρIH) − (µH + αH)EH,

dIH

dt
= αHEH − (µH + r + η)IH,

dRH

dt
= PRΛH + (r + η)IH − µHRH,

dS M

dt
= ΛM − βMS MIH − µMS M,

dEM

dt
= βMS MIH − (µM + δM)EM,

dIM

dt
= δMEM − µMIM.

(3.1)

The disease-free equilibrium point of system (3.1) is E0 = ( (1−PR)ΛH
µH

, 0, 0, PRΛH
µH

, ΛM
µM
, 0, 0). By the next

generation operator method, F and V are respectively

F =


0 (1−PR)ΛHβHρ

µH
0 (1−PR)ΛHβH

µH

0 0 0 0
0 ΛMβM

µM
0 0

0 0 0 0

 .

V =


µH + αH 0 0 0
−αH µH + η + r 0 0

0 0 µM + δM 0
0 0 −δM µM

 .
The basic reproduction number can be obtained by ρ(FV−1), that is R0 = R1 +

√
R2

1 + R2, where

R1 =
(1 − PR)ΛHβHραH

2µH(µH + αH)(µH + r + η)
,

R2 =
(1 − PR)ΛMβMΛHβHαHδM

µ2
M(µH + αH)(µH + r + η)µH(µM + δM)

.

Lemma 1. For 2R1 + R2 < 1 if and only if R0 < 1 holds.

Proof. Because of R0 = R1 +

√
R2

1 + R2, if R0 < 1 , get
√

R2
1 + R2 < 1 − R1, square both sides get

2R1 + R2 < 1. If 2R1 + R2 < 1, get R2 < 1 − 2R1, add R2
1 to both sides so R2

1 + R2 < 1 − 2R1 + R2
1, take

the square root of both sides and get R1 +

√
R2

1 + R2 < 1. Therefore R0 < 1 is true when 2R1 + R2 < 1
is true. �
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3.2. The stability of the disease-free equilibrium

The Jacobi matrix of system (3.1) at E0 is

J (E0) =



−µH 0 −
(1−PR)βHρΛH

µH
0 0 0 −

(1−PR)βHΛH
µH

0 − (µH + αH) (1−PR)βHρΛH
µH

0 0 0 (1−PR)βHΛH
µH

0 αH − (µH + r + η) 0 0 0 0
0 0 r + η −µH 0 0 0
0 0 −

βMρΛM
µH

0 −µH 0 0
0 0 βMρΛM

µH
0 0 − (µM + δM) 0

0 0 0 0 0 δM −µM


.

The Jacobi matrix shows that the three eigenvalues are −µH,−µH,−µM . The remaining four
eigenvalues can be determined by the following characteristic equation

λ4 + K1λ
3 + K2λ

2 + K3λ + K4 = 0.

where
K1 = k1 + k2 + k3 + k4,

K2 = (k1 + k2) k3 + (k1 + k2 + k3) k4 + k1k2 (1 − 2R1) ,

K3 = k1k2 (k3 + k4) (1 − 2R1) + k3k4 (k1 + k2) ,

K4 = k1k2k3k4 (1 − 2R1 − R2) .

k1 = µH + αH, k2 = µH + r + η, k3 = µM + δM, k4 = µM.

From Lemma 1, we know that 2R1+R2 < 1 if and only if R0 < 1 holds. Therefore all the order principal
minor determinants are positive, when Ki, i = 1, 2, 3, 4. Thus, when R0 < 1, according to Hurwitz’s
criterion, system (3.1) is locally asymptotically stable at the equilibrium point E0; otherwise, it is
unstable. Next we give the global asymption stability of DFE.

Theorem 2. The disease-free equilibrium point E0 of system (3.1) is globally asymptotically stable if
R0 < 1; otherwise, it is unstable.

Proof. Define the Lyapunov function

V(t) = ω1

(
S H − S ∗H − S ∗H log S H

S ∗H

)
+ ω2EH + ω3IH

+ω5

(
S M − S ∗M − S ∗M log S M

S ∗M

)
+ ω6EM + ω7IM.

The time derivative of the Lyapunov function is

dV(t)
dt

= ω1

(
1 −

S ∗H
S H

) [
(1 − PR)ΛH − βHS H (IM + ρIH) − µHS H

]
+ω2

[
βHS H (IM + ρIH) − (µH + αH) EH

]
+ω3

[
αHEH − (µH + r + η) IH

]
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+ω5

(
1 −

S ∗M
S M

) [
ΛM − βMS MIH − µMS M

]
+ω6

[
βMS MIH − (µM + δM) EM

]
+ω7

[
δMEM − µMIM

]
.

The disease-free equilibrium point of system (3.1) is E0, therefore S ∗H =
(1−PR)ΛH

µH
, S ∗M = ΛM

µM
.

dV(t)
dt = −µHω1

(S H−S ∗H)2

S H
− (ω1 − ω2) βHS H (IM + ρIH) −

[
(µH + αH)ω2 − αHω3

]
EH

−
[
(µH + r + η)ω3 − ω1βHρ

ΛH
µH
− ω5βM

ΛM
µM

]
IH − ω4µHRH

− (ω5 − ω6) βMS MIH − µMω5
(S M−S ∗M)2

S M
−

[
(µM + δM)ω6 − µMω7

]
EM

−
[
µMω7 − ω1

ΛH
µH
βH

]
IM.

Selection constant
ω1 = ω2 = αH, ω3 = µH + αH,

ω5 = ω6 =
(1−PR)ΛHβHαHδM
µHµM(µM+δM) , ω7 =

(1−PR)ΛHβHαH
µHµM

.

We get
dV(t)

dt = −µHω1
(S H−S ∗H)2

S H
− k1k2 [1 − (2R1 + R2)] IH − µMω5

(S M−S ∗M)2

S M
.

Thus, dV(t)
dt is negative when R0 < 1, and dV(t)

dt is zero if and only if S H =
(1−PR)ΛH

µH
, EH = IH = EM =

IM = 0, S M = ΛM
µM

. Therefore the largest compact invariant set in Ω is the singleton set E0. According
to LaSalle’s invariance principle [20], the disease-free equilibrium point E0 of system (3.1) is globally
asymptotically stable if R0 < 1; otherwise, it is unstable. �

3.3. The existence of the endemic equilibrium

Obviously, when PE , 0, PI , 0, there is no disease-free equilibrium. Let each equation of
system (2.1) equal to 0, we can get

(1 − PE − PI − PR)ΛH − βHS H(IM + ρIH) − µHS H = 0,
PEΛH + βHS H(IM + ρIH) − (µH + αH)EH = 0,
PIΛH + αHEH − (µH + r + η)IH = 0,
PRΛH + (r + η)IH − µHRH = 0,
ΛM − βMS MIH − µMS M = 0,
βMS MIH − (µM + δM)EM = 0,
δMEM − µMIM = 0.

(3.2)

Let the endemic equilibrium of system (3.2) be E1 = (S H1, EH1, IH1,RH1, S M1, EM1, IM1). Denoting
k1 = µH + αH, k2 = µH + r + η, k3 = µM + δM, then we have

S H1 =
(1 − PI − PR)ΛHαH − k1k2IH1 + k1PIΛH

αHµH
,

EH1 =
k2IH1 − PIΛH

αH
,
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IH1 =
k3µ

2
MIM1

βMΛMδM − βMk3µMIM1
, (3.3)

RH1 =
PRΛH + (r + η)IH1

µH
,

S M1 =
ΛMδM − k3µMIM1

δMµM
,

EM1 =
µMIM1

δM
,

IM1 =
k1k2IH1µH − k1PIΛHµH − αHPEΛHµH

(1 − PI − PR)ΛHαHβH − βHk1k2IH1 + βHPIΛHk1
− ρIH1. (3.4)

It can be derived from Eq (3.3) that

IM1 =
βMΛMδMIH1

k3µM(βMIH1 + µM)
. (3.5)

According to Eqs (3.4) and (3.5), we assume that

f1(IH) =
k1k2IHµH − k1PIΛHµH − αHPEΛHµH

(1 − PI − PR)ΛHαHβH − βHk1k2IH + βHPIΛHk1
− ρIH, (3.6)

f2(IH) =
βMΛMδMIH

k3µM(βMIH + µM)
, (3.7)

f (IH) = f1(IH) − f2(IH). (3.8)

According to Eq (3.8), the positive root of f (IH) = 0 is the key to the existence of the endemic
equilibrium in system (2.1). From Eqs (3.6) and (3.7), it can be determined that, when f (IH) = 0,
the positive root is in the interval (0, I1), where

I1 =
(1 − PI − PR)ΛHαH + PIΛHk1

k1k2
.

The derivatives of Eqs (3.6) and (3.7) are taken as follows

f ′1 (IH) =
(1 − PE − PI − PR)αHΛHk1k2µH

βH [(1 − PI − PR)αHΛH − k1k2IH + PIΛHk1]2 − ρ,

f ′2 (IH) =
βMΛMδM

k3 (βMIH + µM)2 .

Continue with the second order derivative as follows

f ′′1 (IH) =
2k1k2αHΛHk1k2µH (1 − PI − PR − PE)

βH [(1 − PI − PR)αHΛH − k1k2IH + PIΛHk1]3 > 0,

f ′′2 (IH) = −
2β2

MΛMδM

k3 (βMIH + µM)2 < 0.
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Because of f
′′

2 (IH) < 0, f
′′

1 (IH) > 0, f
′′

(IH) > 0 holds. That admits that f
′

(IH) increases monotonically
as IH falling in (0, I1). Let IH = 0, then

f ′1(0) =
(1 − PE − PI − PR)αHΛHk1k2µH

βH [(1 − PI − PR)αHΛH + PIΛHk1]2 − ρ,

f ′2(0) = −
2β2

MΛMδM

k3µ
2
M

< 0.

Therefore,
Case 1. If f

′

(0) ≥ 0, then f
′

(IH) ≥ 0, IH ∈ (0, I1). Hence, f (IH) is monotonically increasing as
IH ∈ (0, I1). Combined with f (0) < 0 and f (I1) → +∞, there is a unique I∗H ∈ (0, I1) that satisfies
f (IH) = 0.
Case 2. If f

′

(0) < 0, because f
′

(I1)→ +∞, then there is one I2 ∈ (0, I1), so that f
′

(I2) = 0. This proves
that f

′

(IH) < 0 as IH ∈ (0, I2) and f
′

(IH) > 0 as IH ∈ (I2, I1). Noting that f (I2) < 0 and f (I1) → +∞,
there is a unique I∗H ∈ (I2, I1) satisfies f (I∗H) = 0.

Then the following theorem holds:

Theorem 3. For system (2.1):
I) If PE, PI > 0, the system has a unique endemic equilibrium point.
II) If PE, PI = 0,R0 > 1, the system has a unique endemic equilibrium point [15].

3.4. The stability of the endemic equilibrium

In order to simplify the system, system (2.1) can be written as the following equivalent system

dS H

dt
= (1 − PE − PI − PR)ΛH − βHS H(IM + ρIH) − µHS H,

dEH

dt
= PEΛH + βHS H(IM + ρIH) − k1EH,

dIH

dt
= PIΛH + αHEH − k2IH,

dS M

dt
= ΛM − βMS MIH − µMS M,

dEM

dt
= βMS MIH − k3EM,

dIM

dt
= δMEM − µMIM.

(3.9)

Theorem 4. For system (3.9):
I) If PE, PI > 0, the only endemic equilibrium of the system is globally asymptotically stable.
II) If PE, PI = 0,R0 > 1, the only endemic equilibrium of the system is globally asymptotically

stable.

Proof. For conclusion II), Theorem 5.2 in Reference [15] has been proved, now we only prove
conclusion I).

AIMS Mathematics Volume 8, Issue 9, 21893–21913.
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Define the Lyapunov function as

V = 1
βHS ∗H(I∗M+ρI∗H)

[
S ∗Hφ

(
S H
S ∗H

)
+ E∗Hφ

(
EH
E∗H

)]
+ 1

αH E∗H
I∗Hφ

(
IH
I∗H

)
+ 1
βMS ∗M I∗H

[
S ∗Mφ

(
S M
S ∗M

)
+ E∗Mφ

(
EM
E∗M

)
+ I∗Mφ

(
IM
I∗M

)]
,

(3.10)

where φ : (0,∞)→| R |, φ(x) = x − 1 − ln x. Obviously φ(x) has a minimum φ(1) = 0.
The total derivative of the Lyapunov function with respect to the system (3.9) is

dV
dt = 1

βHS ∗H(I∗M+ρI∗H)
[(

1 − S ∗H
S H

) dS ∗H
dt +

(
1 − E∗H

EH

) dE∗H
dt

]
+ 1

αH E∗H

(
1 − I∗H

IH

) dI∗H
dt

+ 1
βMS ∗M I∗H

[(
1 − S ∗M

S M

) dS ∗M
dt +

(
1 − E∗M

EM

) dE∗M
dt +

(
1 − I∗M

IM

) dI∗M
dt

]
.

(3.11)

Calculated separately, we can get(
1 − S ∗H

S H

) dS ∗H
dt = µHS ∗H

(
2 − S H

S ∗H
−

S ∗H
S H

)
+ βHS ∗H

(
I∗M + ρI∗H

)
·

[
1 − S ∗H

S H
−

βHS H(IM+ρIH)
βHS ∗H(I∗M+ρI∗H)

]
.

(3.12)

(
1 − E∗H

EH

) dE∗H
dt = −PEΛE

(EH−E∗H)2

EH E∗H
+ βHS ∗H

(
I∗M + ρI∗H

)
·

[
1 − E∗H

EH
−

EH
E∗H

+
βHS H(IM+ρIH)
βHS ∗H(I∗M+ρI∗H)

]
.

(3.13)

1
αH E∗H

(
1 − I∗H

IH

) dI∗H
dt = − PIΛI

αH E∗H

(IH−I∗H)2

IH I∗H
+

(
1 + EH

E∗H
−

IH
I∗H
−

I∗H EH

IH E∗H

)
. (3.14)

(
1 − S ∗M

S M

) dS ∗M
dt = µMS ∗M

(
2 − S M

S ∗M
−

S ∗M
S M

)
+ βMS ∗MI∗H

(
1 − S ∗M

S M
−

βMS M IH
βMS ∗M I∗H

+ IH
I∗H

)
. (3.15)(

1 −
E∗M
EM

)
dE∗M

dt
= βMS ∗MI∗H

(
1 −

EM

E∗M
+
βMS MIH

βMS ∗MI∗H
−
βMS MIHE∗M
βMS ∗MI∗HEM

)
. (3.16)

(
1 −

I∗M
IM

)
dI∗M
dt

= βMS ∗MI∗H

(
1 −

IM

I∗M
+

EM

E∗M
−

I∗MEM

IME∗M

)
. (3.17)

According to Eqs (3.13)–(3.18)

dV
dt

=
1

βHS ∗H(I∗M + ρI∗H)
[µHS ∗H(2 −

S H

S ∗H
−

S ∗H
S H

) − PEΛE
(EH − E∗H)2

EHE∗H
]

−
PIΛI

αHE∗H

(IH − I∗H)2

IHI∗H
+

µMS ∗M
βMS ∗MI∗H

(2 −
S M

S ∗M
−

S ∗M
S M

) + [6 −
S ∗M
S M

−
βMS MIHE∗M
βMS ∗MI∗HEM

−
IM

I∗M
−

I∗MEM

IME∗M
−

S ∗H
S H
−

E∗H
EH
−

I∗HEH

IHE∗H
] ≤ 0.

(3.18)

Therefore, the maximum invariant set of system (3.9) is a single point set {E∗}. According to LaSalle’s
invariance principle [20], the endemic equilibrium E∗ of system (3.9) is globally asymptotically stable,
as is the system (2.1). �
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3.5. Numerical simulation

To verify the above theoretical results, we conducted numerical simulations using the data
from [19], where ΛH = 0.4, PR = 0.1, βH = 0.0002, ρ = 0.0029, µH = 0.1, αH = 0.0022,
r = 0.0614799, η = 0.4, ΛM = 1.3, βM = 0.0009, µM = 0.002, δM = 0.3.
Example 1. Set PE = 0 PI = 0 and η = 0.4, then R = 0.8946 < 1. According to Theroem 2,
the disease-free equilibrium point in model (3.1) is globally asymptotically stable. From Figure 2,
it can be seen that both Ih and Im eventually converge to 0, although the initial values have different
starting points.
Example 2. When PE = 0.15 PI = 0.25, it follows from Theorems 3 and 4 that the endemic
equilibrium point is globally asymptotically stable (see Figure 3).

(a) Infectious people (b) Infectious mosquito
Figure 2. Time series of Ih and Im in model (3.1) with PE = 0 PI = 0 and η = 0.4.

(c) Infectious people (d) Infectious mosquito
Figure 3. Time series of Ih and Im in model (3.9) with PE = 0.15 PI = 0.25.
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4. Optimal control analysis and numerical simulation

4.1. Optimal control analysis

Optimal control theory is used to determine the method to achieve the minimum cost and maximum
performance under various assumptions [21,22]. In this section, to reduce infection vectors and control
the spread of diseases, based on the previous analysis and combined with reality, several control
strategies were proposed.

The two most common ways to control Zika virus are the efforts on preventing Zika infections (e.g.
using mosquito nets, condoms, and so on) and the efforts on eliminating mosquitoes by insecticides.
For the risk of someone carrying the virus in the immigrant population, we propose a measure of virus
screening.

It is important to note that the control variables are primarily acting on the parameters corresponding
to each control measure. For example, measures to prevent mosquito bites will change the rate of
mosquito bite infection, so the reduction in infection rate is expressed in the form (1−u1)βH, (1−u1)βM.
Similarly, if a mosquito killer is to be used, then it is to some extent increasing the mortality rate of
mosquitoes, so expressed in the form (1 + u3)µM. The implementation of virus screening will reduce
the proportion of exposure and infection in the immigrant population. So, we denote it by the form
(1 − u2)PE, (1 − u2)PI . Therefore, our optimal control model is given by

dS H
dt = (1 − (1 − u2) PE − (1 − u2) PI − PR) ΛH − (1 − u1) βHS H (IM + ρIH) − µHS H,

dEH
dt = (1 − u2) PEΛH + (1 − u1) βHS H (IM + ρIH) − (µH + αH) EH,

dIH
dt = (1 − u2) PIΛH + αHEH − (µH + r + η) IH,

dRH
dt = PRΛH + (r + η)IH − µHRH,

dS M
dt = ΛM − (1 − u1) βMS MIH − (1 + u3) µMS M,

dEM
dt = (1 − u1) βMS MIH −

[
(1 + u3) µM + δM

]
EM,

dIM
dt = δMEM − (1 + u3) µMIM,

(4.1)

where u1, u2, u3 are described in Table 2.

Table 2. Description of the control parameters used in model (4.1).

Symbol Description
u1 Efforts on preventing zika infections through mosquito nets, condoms, and so on.
u2 Efforts on reducing the rate of infected populations in immigration people

by screening of migrant populations.
u3 Efforts on harvesting through spray insecticide.

In general, if the basic reproduction number exists, the control scheme can be proposed by limiting
the basic reproduction number to less than 1 and backtracking the values of the control parameters.
However, in this model, if PI , 0, PE , 0, there is no the basic reproduction number, so the above
method cannot be used to study the control measures. Therefore, in this paper, the transmission model
is first qualitatively analyzed to reveal the dynamics behavior of continuous virus transmission. Then,
the Pontryagin maximum principle [23] will be used to find the optimal control scheme to achieve virus
control in a limited time.
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The objective function is defined as follows

J (u1, u2, u3) =
∫ t f

0
(ωEH EH + ωIH IH + ωEM EM + ωIM IM + a1

2 u2
1 + a2

2 u2
2 + a3

2 u2
3)dt, (4.2)

where ωEH , ωIH , ωEM , ωIM , a1, a2, a3 represents the weight coefficients of the control variables, which
are designed to maintain a balance among the items of the integration function so that no dominant
individual term emerges. t f is the terminal moment when the control policy is implemented. Our goal
is to find a set of control parameters (u∗1, u

∗
2, u

∗
3) satisfying

J
(
u∗1, u

∗
2, u

∗
3
)

= min J (u1, u2, u3) .

Control constraint set is U = {(u1, u2, u3) | 0 < u1, u2, u3 < 1}. It should be noticed that the right side of
model (4.2) is bounded and the objective function is convex. A sufficient condition for the existence of
optimal control indicates that the model has optimal control. The Lagrange function is

L (EH, IH, EM, IM, u1, u2, u3) = ωEH EH + ωIH IH + ωEM EM + ωIM IM + a1
2 u2

1 + a2
2 u2

2 + a3
2 u2

3.

Define the Hamilitonian function as

H = ωEH EH + ωIH IH + ωEM EM + ωIM IM +
a1

2
u2

1 +
a2

2
u2

2 +
a3

2
u2

3

+λS H [(1 − (1 − u2)PE − (1 − u2)PI − PR)ΛH − (1 − u1)βHS H(IM + ρIH) − µHS H]

+λEH [(1 − u2)PEΛH + (1 − u1)βHS H(IM + ρIH) − (µH + αH)EH]

+λIH

[
(1 − u2) PIΛH + αHEH − (µH + r + η) IH

]
+λRH

[
PRΛH + (r + η)IH − µHRH

]
+λS M

[
ΛM − (1 − u1) βMS MIH − (1 + u3) µMS M

]
+λEM

[
(1 − u1) βMS MIH −

[
(1 + u3) µM + δM

]
EM

]
+λIM

[
δMEM − (1 + u3) µMIM

]
.

From Pontryagin extreme value principle, the control set u(t) should satisfy the following necessary
conditions:

λ′S H
= λS HµH + (1 − u1) βH

(
λS H − λEH

)
(IM + ρIH) ,

λ′EH
= λEHµH +

(
λEH − λIH

)
αH − ωEH ,

λ′IH
= −ωIH +

(
λS H − λEH

)
βHS Hρ (1 − u1) + λIHµH +

(
λIH − λRH

)
(r + η)

+
(
λS M − λEM

)
(1 − u1) βMS M,

λ′RH
= λRHµH,

λ′S M
=

(
λS M − λEM

)
(1 − u1) βMIH + λS M (1 + u3) µM,

λ′E′M
= −ωEM + (1 + u3) λEMµM +

(
λEM − λIM

)
δM,

λ′IM
= (1 + u3) λIMµM − ωIM .
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Theorem 5. There is a set of u1, u2, u3, so that J
(
u∗1, u

∗
2, u

∗
3

)
= min J (u1, u2, u3). The optimal control

expressions are as follows

u∗1 = max
{

min
{

1,
(
λEH − λS H

)
βHS H (IM + ρIH) +

(
λEM − λS M

)
βMS MIH

a1

}
, 0

}
,

u∗2 = max
{

min
{

1,
PEΛH

(
λEH − λS H

)
+ PIΛH

(
λIH − λS H

)
a2

}
, 0

}
,

u∗3 = max
{

min
{

1,
µM

(
λS M S M + λEM EM + λIM IM

)
a3

}
, 0

}
.

Proof. From the extremum condition of the control equation, we have ∂H
∂u1

= 0, ∂H
∂u2

= 0, ∂H
∂u3

= 0, where

∂H
∂u1

= a1u1 +
(
λS H − λEH

)
βHS H (IM + ρIH) +

(
λS M − λEM

)
βMS MIH,

∂H
∂u2

= a2u2 + PEΛH
(
λS H − λEH

)
+ PIΛH

(
λS H − λIH

)
,

∂H
∂u3

= a3u3 − µM
(
λS M S M + λEM EM + λIM IM

)
.

Then, we can obtain the solution of the equations as follows

u∗1 =

(
λEH − λS H

)
βHS H (IM + ρIH) +

(
λEM − λS M

)
βMS MIH

a1
,

u∗2 =
PEΛH

(
λEH − λS H

)
+ PIΛH

(
λIH − λS H

)
a2

,

u∗3 =
µM

(
λS M S M + λEM EM + λIM IM

)
a3

.

Therefore, the optimal control solution can be expressed as

u∗1 = max
{

min
{

1,
(
λEH − λS H

)
βHS H (IM + ρIH) +

(
λEM − λS M

)
βMS MIH

a1

}
, 0

}
,

u∗2 = max
{

min
{

1,
PEΛH

(
λEH − λS H

)
+ PIΛH

(
λIH − λS H

)
a2

}
, 0

}
,

u∗3 = max
{

min
{

1,
µM

(
λS M S M + λEM EM + λIM IM

)
a3

}
, 0

}
.

�
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4.2. Numerical simulation

4.2.1. The fitting of parameters

Since the duration of Zika virus infection is about one week, we assumed a natural recovery rate
of 0.862 per week in humans. Then, based on the weekly infection data of the Brazilian Zika virus
in the first 20 weeks of 2015 in Reference [25], we used the least square method to fit the remaining
parameters on the DEDiscover software, and the fitting results are shown in Table 3 and Figure 4. The
sum of squares of the fitting residuals is 0.116.

Figure 4. Model fitting of 2015 Zika case infection data in Brazil.

Table 3. Numerical simulation parameter values.

Parameters estimated Value Standard error CI Low Bound CI High Bound p-value t-statistic

αH 0.7072 4.6684e-04 0.7061 0.7083 4.0381e-23 1.5149e03
βH 2.6764e-05 5.8064e-08 2.6630e-05 2.6897e-05 5.4959e-19 460.9354
βM 8.6896e-05 1.1472e-07 8.6632e-05 8.7161e-05 1.0335e-20 757.4592
δM 0.1012 2.9540e-04 0.1005 0.1018 5.9194e-18 342.4556
η 4.4527e-04 5.9456e-06 4.3156e-04 4.5898e-04 1.1260e-12 74.8909

ΛH 1.2904e03 0.0196 1.2904e03 1.2904e03 3.1146e-36 6.5990e04
ΛM 1.0116e04 0.0858 1.0116e04 1.0116e04 2.9976e-38 1.1791e05
µH 2.8405e-04 9.2322e-06 2.6276e-04 3.0534e-04 1.3532e-09 30.7670
µM 0.1206 6.6706e-05 0.1204 0.1208 9.8132e-24 1.8079e03
PE 1.5245e-04 3.0340e-06 1.4546e-04 1.5945e-04 2.7245e-11 50.2484
PI 1.3756e-04 8.3696e-06 1.1826e-04 1.5686e-04 1.8941e-07 16.4351
PR 0.0632 1.8189e-04 0.0628 0.0636 5.2882e-18 347.3166
ρ 0.0029 1.8176e-05 0.0029 0.0030 2.4862e-15 160.9351
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4.2.2. Optimal control results

In order to find out the optimal control, we used the forward-backward Runge-Kutta method [26]
to solve the optimal solution. Select the balance weight coefficient as ωEH = 50, ωIH = 30, ωEM =

0.2, ωIM = 0.1, a1 = 30, a2 = 20, a3 = 50.
The results showed that the number of exposed people, infected people, exposed mosquitoes and

infected mosquitoes were all on the rise before the control. Among them, the number of infected
mosquitoes even reached a peak of 30,000 before the control, and the number of infected people was
as high as 15,000 before the control. However, the number of infected and exposed mosquitoes and
people decreased significantly under the control measures u1, u2, and u3. After control, the number of
infected and exposed people tended to zero (see Figure 5(b),(d)) and the number of infected mosquitoes
stabilized below 20 (see Figure 5(f),(h)). The spread of Zika virus was well controlled. Figure 6 shows
the time-varying control profile.

(a) Exposed people before control (b) Exposed people after control

(c) Infectious people before control (d) Infectious people after control

(e) Exposed mosquito before control (f) Exposed mosquito after control
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(g) Infectious mosquito before control (h) Infectious mosquito after control
Figure 5. Figure 2(a)–(h) shows the comparison of exposed people, infected people, exposed
mosquitoes and infected mosquitoes before and after control.

Figure 6. Optimal control strategy u1, u2, u3.

5. Cost-effectiveness analysis

Next, we analyze the cost-effectiveness of investments in Zika virus prevention and control. Assume
that the percentage of testing is the number of existing infections as a percentage of the immigrating
population. The total cases averted (TCA) though control and the total costs (TC) associated with
intervention are given by the following formula

TCA = T (EH(0) + IH(0) + EM(0) + IM(0)) +
∫ T

0

(
E∗H(t) + I∗H(t) + E∗M(t) + I∗M(t)

)
dt,

TC =

∫ T

0

(
B1u1S ∗H + B2u2I∗H + B3u3

(
S ∗M + E∗M + I∗M

))
dt,

where the factors show the per capita cost of the control strategy. According to estimates from the
Global Vector Control Response 2017–2030 (GVCR; WHO [27]), the annual per person cost of
insecticides is approximately 4.24 dollars and the per person annual cost of mosquito nets is 1.27
dollars. Assuming that each person in transit is tested only once per week, the cost of testing and
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screening is estimated to be 10.3 dollars per person per week based on online quotes for commercially
available Zika virus test reagents. Based on the data simulation results, we can eliminate the virus by
using u1 and u3 . If only u3 works, the number of patients will reduce, but the virus will not disappear.
Using only u1 will not meet the purpose of control. Therefore, based on the available strategies, we
compare the following 3 control options:
Control option 1. Using mosquito nets and spraying insecticides: u1 , 0, u2 = 0, u3 , 0.
Control option 2. Using mosquito nets and test screening: u1 , 0, u2 , 0, u3 = 0.
Control option 3. Using mosquito nets, screening tests, spraying insecticides: u1 , 0, u2 , 0, u3 , 0.

Here, incremental cost-benefit ratio (ICER) is used to analyze the cost-effectiveness results of the
three schemes. The formula is as follows

ICER(b) =
TC(b) − TC(a)

TCA(b) − TCA(a)
.

ICER represents the incremental cost per unit of incremental health outcome, which is a classic
method to analyze cost-effectiveness [26]. It can be seen from Table 4 that the ICER value of control
option 2 is 326.0178819117, which is significantly higher than that of options 1 and 3. Therefore,
control option 2 requires higher cost and lower efficiency, so option 2 is excluded from the alternative
plan. Comparing options 1 and 3, you will find the ICER value of option 1 is higher than that of
option 3. Therefore, it can be concluded that option 3 has the lowest ICER value, so it is the lowest
cost and the highest efficiency option. From Figure 7, it is clear that option 3 can achieve the effect
of option 1. From the perspective of environmental sustainability, option 3 is less harmful to the
environment and human beings.

Table 4. Control strategy ICER.

Control strategy TCA TC ICER
Control strategy 1 2.967498525 × 104 1.468663997 × 106 49.40229517113
Control strategy 2 2.711757076 × 104 6.349011418 × 105 326.0178819117
Control strategy 3 2.969829612 × 104 1.467163991 × 106 -64.3479200904

Figure 7. Comparison diagram of optimal control options 1–3.
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6. Conclusions

This paper focuses on the optimal control and cost-effective analysis of the Zika virus model with
migration. Non-negativity and boundedness of the model are also shown. When no infected population
enters, a disease-free equilibrium point exists in the system, and the disease-free equilibrium point
was globally asymptotically stable. When cases migrate, there is no disease-free equilibrium in the
model, only an epidemic equilibrium with global asymptotic stability. Based on this model, we
propose three control measures u1, which means reducing mosquito bites through mosquito nets, and
mosquito repellants. The factor u2 stands for reducing the likelihood of infection and exposure among
immigrants through testing and screening immigrants. The parameter u3 represents the reduction
of the mosquito population by spraying insecticides to prevent the spread of the Zika virus. The
necessary conditions for the existence of an optimal solution are given using Pontriagin’s maximum
principle. Based on Control option 1, the cost-effectiveness of three control strategies was compared
and analyzed. According to the incremental cost-effectiveness ratio results (see Table 3), the ICER
value of Control option 2 is 326.0178819117, which is much higher than options 1 and 3. This means
that Control option 2 is the least efficient and most expensive. On the other hand, Control option 3 with
the lowest ICER value of -64.3479200904 exhibits the lowest cost and the highest return. Especially
from the perspective of human health and environmental protection, the combination of these three
options is capable of reducing our dependence on pesticides. Indeed, although we are concerned
with screening, if immunization against the Zika virus is possible and the immigrant population is
fully vaccinated and protected, this factor could also be reflected in the control item. Therefore, both
vaccination and screening are indispensable control measures to control the Zika virus.

In Zika virus transmission, the environment also has an impact on the transmission of the virus,
such as temperature, humidity, etc. Subsequently, there will be corresponding measures adjusted in
virus control, which will be considered in the next study.
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