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Abstract: This paper investigates generalized pilot estimators of covariance matrix in the presence of
missing data. When the random samples have only bounded fourth moment, two kinds of generalized
pilot estimators are provided, the generalized Huber estimator and the generalized truncated mean
estimator. In addition, we construct thresholding generalized pilot estimator for a kind of sparse
covariance matrices and establish the convergence rates in terms of probability under spectral and
Frobenius norms respectively. Moreover, the convergence rates in sense of expectation are also given
under an extra condition. Finally, simulation studies are conducted to demonstrate the superiority of
our method.
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1. Introduction

Let X be a p-dimensional random vector. Estimating its covariance matrix X = (07,)pxp 18 Of
interest in high-dimensional statistics (Mendelson and Zhivotovskiy [1], Dendramis et al. [2] and
Zhang et al. [3]). Until now, a commonly adopted strategy for evaluating the covariance matrix has
been to impose sparse structure on itself (Belomestny [4], Kang and Deng [5], Bettache et al. [6] and
Liang et al. [7]).

If X is sub-Gaussian, Bickel and Levina [8], Cai and Liu [9] and Cai and Zhou [10] considered all
the rows or columns of the covariance matrix belonging to /,-ball, weighted /,-ball or weak /,-ball as
a kind of sparse assumption. Moreover, they proposed the corresponding thresholding estimators and
established the convergence rates in sense of probability or expectation respectively.

When each component of X = (Xi,---,X,)" is subject to heavy-tailed distribution, i.e., the
distribution of X, satisfies fR e*dF,(x) = oo for t > 0, Avella-Medina et al. [11] introduced a pilot
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estimator X = (O uv)pxp Satisfying

P{lé‘w — 0, = Coy(ogp)/n, Al <u,v < p} < é&np

for positive constant Cy and log p = o(n). Where &, ), is a deterministic positive sequence and satisfies
lim g,, = 0. Avella-Medina et al. pointed out the sample covariance matrix

n,p—oo
R 1 n ~ o ~ 1 n
%= —Z(Xk—X)(Xk—X) with X = —Zxk
n n
k=1 k=1

must be a pilot estimator if Xy, - - - , X, are i.i.d. sub-Gaussian random samples. In addition, some other
pilot estimators were provided under bounded fourth moment assumption. The authors also considered
convergence rate of the thresholding pilot estimator in terms of probability when the rows or columns
of the covariance matrix are in weighted /,-ball.

However, missing data (also called incomplete data) always occurs in high-dimensional sampling
setting, see Hawkins et al. [12], Lounici [13] and Loh and Wain-wright [14]. Instead of obtaining whole
i.i.d. samples Xy, - ,X,, one can only collect some parts of them. Let the vector S; € {0,1} (i =
1,---,n) denote by

1, if X;, is observed;
S,’u = . . ..
0, if X;, is missing,

where X;, and S ;, are the u-th coordinate of the X; and S; respectively. This paper denotes the samples
with missing values by X7 = (X, - ,X;"p)T where X = X;,S;,. The following missing mechanism
introduced by Cai and Zhang [15] is adopted.

Assumption 1.1 (Missing completely at random). S = {Sy,---,S,} can be either deterministic or
random and is independent of X = {Xy, -+, X, }.
Define i
I’l;v = S S ivs

i=1
i.e., n, is the number of the u-th and v-th entries of X being both observed. For convenience, let

> uy

* * *

— 1 *
u uu’ nmin = min nuv'

u,y

Then, it is easy to see
*
u’

* * .
Nin < 1, < minfn

min —

n,} < n.

Meanwhile, the generalized sample mean X* = (X?),<,<, is defined by

_. 1 ¢
Xi=— ) XuSu

U =1

and the generalized sample covariance matrix £* = (6;,) 1s given by

1 + _ _
G = — Z(Xm = X)Xy = XS S iy (1.1)
n

w =1

AIMS Mathematics Volume 8, Issue 9, 21439-21462.



21441

Our goal is to construct the thresholding estimator of the sparse covariance matrix X based on
incomplete heavy-tailed data. Furthermore, the convergence rates of the thresholding estimator are
investigated in terms of probability and expectation respectively.

The rest of paper is organized as follows. Section 2 introduces the definition of generalized pilot
estimator based on missing data. Then under bounded fourth moment assumption, two kinds of
generalized pilot estimators are given. In Section 3, we construct the thresholding generalized pilot
estimator and explore its convergence rates in sense of probability under spectral and Frobenius norms
respectively. In Section 4, the convergence rates are given in terms of expectation under an extra mild
condition. Then, Section 5 investigates the numerical performances of the thresholding generalized
Huber pilot estimator and thresholding generalized truncated mean pilot estimator respectively
and compares these two estimators with the adaptive thresholding estimator proposed by Cai and
Zhang [15].

2. Generalized pilot estimator

Definition 2.1. Any symmetric matrix £* = (67,),x, based on incomplete data X, --- , X is said to
be a generalized pilot estimator of X, if for L > O there exists constant Cy(L) such that

P{I67, - ol 2 Co(L) y[og p)/my,. A1 <u,v < p} = O(p™) (2.1)

holds with log p = o(n’ . ).
Remark 2.1. If one can obtain complete data, the generalized pilot estimator defined by (2.1) coincides
with the pilot estimator proposed by Avella-Medina et al. [11] except &, is replaced by O(p™™).

Remark 2.2. If X is a sub-Gaussian random vector and the items o, (u = 1,--- p) of X are uniformly
bounded, the generalized sample covariance matrix £* given by (1.1) must be a generalized pilot
estimator of X.

In fact, Theorem 3.1 in [15] tells that for any 0 < x < 1 there exists constants C, ¢ > 0 such that

P{l6, = 0l 2 X VT < Cexp(—cnj,x). 2.2)

By n'. < n;, andlogp = o(n’ . ), one knowslogp = o(n}). If x = \/(2 + L)log p/(cni,) with

min min

L >0, (2.2) reduces to

P { 6-;1) - O-uvl > C()(L) M} < Cp—(L+2)

with Co(L) = V2 + L)o .0,/ C.
Furthermore,

P{l67, - 0wl 2 Co(L)y[(og p)/n;,.. A1 <u,v < p} < Cp™.

Therefore, £* given by (1.1) is a generalized pilot estimator of Z.

We introduce the following theorem in order to provide two other kinds of generalized pilot
estimators under bounded fourth moment assumption.
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Theorem 2.1. Suppose fnax EIX,|* < k% logp = o(n*. ), EX, = m, EX.X,) = M, and
<u<p

min

Assumption 1.1 holds. If ft;, and [i},, satisfy

() {17, =l > ek (@ + L log p) i | = OGP, (2.3)

(i) P{1i, — ] > ek (2 + L) log p) /| = 02 (2.4)

with absolute constants L > 0 and ¢ > 1 then L£* = () pxp = (i, — [LLfi}) yxp must be a generalized
pilot estimator of X.

Proof. Let K := ckV2 + L. Thus,

B {7, -l = K \flog p)/n;, A < u < p) = 0(p*Y) (25)

thanks to condition (2.3). Moreover,

P11, — )ity - )l = K*(log p)/ Jmgny, A1 < u,v < p} = O(p~"™D). (2.6)

Similarly, one derives

P{1;, — | = K y[(og p)/n;,. A1 < u,v < ph = 0(p7™) 2.7)

dueto (2.4)andc > 1.
By max E|X,|* < k*, one obtains |u,| < (EIX,[H)"* <k@=1,---,p)and

1<u<p

|l72/~1: - :uu,uv| < |:uv(:a:; - :uu)l + |:uu(:a: - :uv)l + |(:aZ - llu)(:ai - :uv)l
< k('.a;: - ﬂul + Iﬂ: - ,uvD + |(ﬁ; - ,uu)(:a: - ,uv)l
< C_IK(llj: _ﬂul + |/-1: _/Jvl) + |(/1;k¢ _,uu)(ﬁ: _:uv)la

the above last inequality follows from K > ck. Thus, one concludes

P{lﬁ;ﬁ: — Myfly| > c'K? ( \/(log p)/n: + \/(log p)/n:) + Kz(log p)/ Amini, Al <u,v < p}
= 0(p*H)

thanks to (2.5) and (2.6).
Since n;,, < min{n,, n;}, the above result reduces to

B {5, — pupes] > 2¢7 K? \log p)/m;, + K*(log p)/m;,.. 31 < u,v < pf = O(p ™).

*

Furthermore, according to logp = o(n; .

(log p)/n:, < ((log p)/n:,)""* and

P — ] > Qe + DK Aflog p)img,, 31 <u,v < p) = O(p~1*0) 2.8)

* *
yand n7. < n

- uv?

one knows logp = o(n;,). Therefore,

hold.
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Note that

~ %~k

|5-ZV - O-uvl = |(ﬁzv - ,leuv) - (;uuv - #u,uv)l < |ﬂ;v - ,uuvl + |ﬂ;ﬂ: - ﬂu,uvl-

Then,
P{l&ZV - 0-uv| > 2(C_1 + 1)K2 V(logp)/n;;v’ dl < u,v < p} = 0(p_L)

follows from (2.7) and (2.8).
Hence, X* is a generalized pilot estimator of £ with Co(L) = 2ck*(1 + ¢)(2 + L). O

We shall give two generalized pilot estimators based on incomplete heavy-tailed samples.
Denote Huber function by

Va0 = av (),

b S 1’ .
where @ > 0 and ¥(x) = {x 4 . For any constant L > 0, let (ii},), (u = 1,---, p) satisfy

signx, |x|>1

D Ve X, = @i))S i =0 (2.9)
i=1

with @, := \n:2/(2 + L)log p and ¢ > VDX, Similarly, (i), (u,v = 1,--- , p) satisfies

> W XX = [3))S S i = 0 (2.10)
i=1

with a,, = \/n,jvg’ 2/(2+ L)log p and ¢; > VD(X,X,). Then, we have the following estimator.

Example 2.1 (Generalized Huber estimator). Suppose conditions of Theorem 2.1 hold, then i‘.j‘q =

((ﬁ;)w - (ﬁ;)u(ﬂ}‘,)v) 5 is a generalized pilot estimator of X, where (fi},); (j = u,v) and (fi},)., are
pXp

defined by (2.9) and (2.10).

Proof. With the definition of X*

wu’

(2.9) is equivalent to
Z Y, Xiw = () = 0, (2.11)
i€A,
where A, = {i : S;, # 0}. Obviously, |A,| = >'_, S;,. By the definition of n}, we have |A,| = n.
Similarly, we find (2.10) is equivalent to

Z 'lew(XiuXiv - (ﬂ;—l)uv) =0 (2.12)

i€A,y
with A, ={i: Si4,S,» # 0} and |A,,| = n],.
By max E|X,[* < k*, we get

1<u<p

DX, < E|IX,] < (BIX,H"?* < k2.
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On the other hand,
D(X,X,) < BIX, X, < BIX'EIX,[H"* < k*

due to Cauchy-Schwarz inequality. Thus,

@, =\ + Dlog p., @ = i,k + L) log p. 2.13)
Obviously, it holds

2+ L)logp < 2+ L)logp <1 2+ L)logp < 2+ L)logp - 1

o)

n’ - n. 8 My - Monin
thanks ton’. <n; <njandlogp = o ).
According to (2.11) (2.13) and Theorem 5 in [16], we know that if (2 + L)log p/n; < 1/8 and
2+ L)logp/n;, <1/8 then

P {'(/j;])u - ,Llu| > 4k \/((2 + L) log P)/l’l,j} — 0(p—(2+L)),
P{I@i ) = ] > 4 (@ + Dlog p)/ng, | = 0(p~),

i.e., (fiy,), and (fi},),, reach the expected results (2.3) and (2.4). O
In order to give another generalized pilot estimator, let (i), (u = 1,--- , p), (@3 )w (u,v=1,---,p)
be defined by

(Ar) Z X < i (2.14)

() i= o = Q+L)logp|’ '
() 1= ZXXl{lXXl By | — T } (2.15)

T/uy +— iuriv iuriv 1 .

Ny, 4 2+ L)logp

respectively where L > 0, 8 > +/E|X,|> and 81 > E|X, X,|*. Then, we have the second estimator.

Example 2.2 (Generalized truncated mean estimator). Suppose conditions of Theorem 2.1 hold. Then,

i”} = ((/ft*T)w - QJ*})M(/]})V) y is a generalized pilot estimator of X, where (ii7); (j = u,v) and ({t}).,
pxp

are defined by (2.14) and (2.15).

Proof. We first show (fi7.), satisfies (2.3). According to max E|X, |* < k* we have

<u<p

ElX,* < (BIX, M < k2

(E) = - ;X’”l {'X’“' ‘/%}

So, (2.14) is equivalent to

where A, = {i : §;, # 0}.
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Leta := k+/n;/(2 + L)log p. We derive

(=l = |2 D XulllXal < a) = = ) EX,

U jeA, U jeA,

U jeA, U jeA,

Therefore, upon combining E|X,|* < k* and |A,| = n}

1
) = pl < | > (XullIXal < @) = EXu1(1Xa] < aD)| +

U jeA,

= % Z (Xiul{lxiul < a} - E(X;, 1{|Xi| < a})) T

u jeA,

According to E(X21{|X;,| < a}) < k* and Bernstein’s inequality in [17],

1 2t t
P{ — 3 (XXl < @) ~ EQG LX) < ah)| < ko[ = + “—} > 1 — 2 exp(—1)
Uy n:  3n
for any ¢ > 0.

By (2.16) and (2.17) and taking t = (2 + L) log p, we have

22+ L)1 2+ L)1 K
P{I(ﬁ*r)u—,uulsk @+ L)logp +3>°gp+_}21_2p<m>,
n, n; a

Substituting a = k \/n;/ (2 + L) log p into the above inequality, we know

P {|(ﬁ*r)u — ptal > 4k /(2 + L) log p)/n;} = O(p~ D)

which is the expected condition (2.3) of Theorem 2.1.
Similarly, we can derive

P{I(ﬂ*r)w — ] > 42 (2 + L)log p) /n;‘lv} = O(p~2)
i.e., the condition (2.4) of Theorem 2.1 holds.

3. Convergence rates in terms of probability

We introduce the thresholding function and the space of sparse covariance matrices.

1 1
= | D (XulllXal < @} = BOGU X < @) - — > B UIXul > a))
n n

(2.16)

2.17)

Definition 3.1. For any constant A > 0, a real valued function 7,(-) is said to be thresholding function

if
(i) Ta2) =0, |zl <A
(ii) |ta(z) — 2| < A;
(iii) |T1(2)| < coly| for |z — y| < A and the constant ¢y > 0.
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In fact, many functions satisfy conditions (i)—(ii1). For example, the soft thresholding function
T(z) = sign(z)(|z] — 1)+, the adaptive lasso thresholding function 7,(z) = z(1 — |1/z]") with > 1 and
the smoothly clipped absolute deviation thresholding rule proposed by Rothman et al. [18].

This paper considers the following class of covariance matrices introduced by [15]

P
. o
W(sn,p) = {Z = (Tw)pxp > 0: maxZ min { VOO vyy ———=1¢ < Spp (-
Y y(og p)/n

Next, we define the thresholding generalized pilot estimator (EH) = ((675,)")pxp and consider its
convergence rates in terms of probability under spectral and Frobenius norms respectively over the
parametric space H(s,,,).

Let £ = (G7,) be a generalized pilot estimator and define

uy

u=1

() =14,05,), (3.1

where 7, (-) is the thresholding function with

Sk Nk 1
A, =6 /L:ng_ (3.2)
nHV

The constant ¢ will be specified in the proving process of Lemma 3.1.
The following lemma is useful for inferring Theorem 3.1 and Theorem 4.1.

*

Lemma 3.1. Suppose mino,, >y > 0, logp = o(n’ . ) and Assumption 1.1 hold. Denote the events

Q1, Q> as
0 = {l&zv — 0wl £ A, Y1 S u,v < pl, (3.3)
0> = {&Zu&:v < 200,0w, Y1 < u,v < pl. (3.4)

Then, for any L > 0
(i) there exists C1(L) > O such that

N /logp : ol
|T/l,,v(0-;:v) - O-uvl < Cl(L) *— min VO uuO vy —(F/——— (> V1 <u,v=< p
nmin Y (lOg p)/n

holds under the event Q1 N Q.
(i) P(Q1 N @2) 2 1= O(p~").

Proof. (1) Under the event Q;, one knows

|T/lw(0-zv) - O-uvl < COlo-uvla (35)

|T/luv(5-;;v) - O-MV| S |T/luv(5-:v) - O-ZV| + |O-ZV - O-MV| S 2/1MV (3'6)

thanks to conditions (ii) and (iii) of Definition 3.1.
Define
5o V2Co(L)

Y

(3.7

AIMS Mathematics Volume 8, Issue 9, 21439-21462.
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where Cy(L) is given in Definition 2.1. By (3.2) when the event O, happens as well (3.6) reduces to

uu VVl
It (5) — (rw|<26,/ wTwl08P _ (py [TwTwlogp (3.8)

According to (3.5) and (3.8), one obtains

. O 0w 10
[14,(6%) = 0l < mind coloryl, C(L) o [T 08P

uv
uv

gp o
< Cy(L) min<{ o0, ——
: n, { V(og p)/n:;v}

under the event Q; N Q,. Therefore,

1 uy
0 () = 0wl < Co(L) | 282 min{ Voo, — Lol
min \Y} (log P)/”

holds due to n” . < n; < n. This reaches the conclusion (i) of Lemma 3.1.
(ii) In order to show P(Q; N Q,) > 1 — O(p~1), one first estimates P(O5).
Clearly,

O-WO- w OOy = (0-

uu O-Llu)a-:v + (5-:17 - O-VV)G-;M - (&Zu - O-Mu)(a-:v - O-VV)

and
0- 0- < OO vy + |5-;:u - O-Llu| | 5-;; | +|5—iv - vall&zul + |5—Zu - O-Lm”&iv - 0-vv|-

uu= vy —

Define the event

E := {5}, - ol < Co(L) \og p)/m;,,. Y1 < u,v < p.

Since £* = (07,,)pxp 18 a generalized pilot estimator of X = (07,),x, then one gets
P(E)=1-0(p™).

By log p = o(n; . ) and n’ one knows log p = o(n;,). Furthermore, it holds

min — uv’

y? oo
~ ~ uu vV
0,00 < OOy + (O‘W + ) + (O‘W + ) + T < OOy + >

under the event E because of min, o, > y. Hence,

Y
+_<2uu 2%
5 = O 0

P(Q5) < P(EC) = O(p™). (3.9)

Next to estimate P(Qf). One observes &,,07, = 0,0 — |07, — 0.l

uu® v = vvl - |5—:v - O-vv”&*
oull0, — oy and it follows that

uul -

2
Lo rL3
2 8 4

Y Y Y 7 7’
> wuvw T G wt3)—3 uu uu vv__ ~
0,00, = 0o 8(0‘ 2) 8(0‘ (oo 125
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holds true on the event E due to min, o, > ¥ and log p = o(n;,,). Hence,

uu= vy —

2
P{&* o> )/_’ V1 <u,v< p} >P(E)=1-0(p™h. (3.10)

Let A, = 6 /67,07, log p/n;, given by (3.2). It can be shown that

Gy — uv 1
PQ?FP{MN? ng,313u,vsp}

O-Zuo-:v n’j"
v21
< P{mv o> 5y[I=E A <y < p} +0(p™) (3.11)

follows from (3.10).
Note that £* = (5) is a generalized pilot estimator of ¥. Then, one derives

2n

uy

2]
P{mv — g > 04| 2l q1 <uv < p} = 0(p")

thanks to § = \/ECO(L) /vy defined in (3.7). Substituting the above result into (3.11) gives

P(Q)) = O(p™").

Combining this with (3.9), one obtains the stated result

P(Q1 N Qr) > 1 =P(Q)) —P(Q5) > 1 - O(p™). O

Finally, we give the upper bounds of ||()f.*)’ — Xl in terms of probability and ||A||,,» denotes the
spectral and Frobenius norms of matrix A respectively.

Theorem 3.1. Suppose mm Ouw =7 >0, logp=o(n’. )and Assumption 1.1 hold. Then,

min

TeH(sy p) min

lo
(i) inf P{II(Z) - Elh € Ci(L)siy |0 } 1-0(p™);

] — (Y -X log p I
(— < > — .
(@) Ee}?(l;],)P{ |[0219)] lr < Ci(L)sn,), n } > 1 O(p ),

min

ZeH(sn p)
de ouus<mM

(iii) _inf P{Tll(z )Y - Xllr < CUL) VM Smpiﬂ} > 1- 0(p_L)'

min

Proof. (i) Define the event Q := QN Q,, where Q;, Q, are given by (3.3) and (3.4) respectively. Then,
it is easy to see

p

IEY =2l = max ) 1, (0) = 0wl < Ci(L)ssy

u=1 min

log p

(3.12)

AIMS Mathematics Volume 8, Issue 9, 21439-21462.
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thanks to Lemma 3.1 and X € H(s,,,).
Gersgorin theorem tells [[(£*)" — X, < [|((£*)" — Z||; and this combining (3.12) implies

log p

IE)" = Zlh < Ci(L)sn,

min

on the event Q.
On the other hand, Lemma 3.1 tells P(Q) > 1 — O(p~1). Hence, Theorem 3.1(i) holds.
(i1) One observes

—||<z) ~ 3 = = Zme(aW) Tl <max2m,,\(aw> Tl

v=1 u=1
and it follows
1 1 N |07 ’
- o O-MV
—||(2*>’—2||%s(cl(L»Z#maxZ(min VT waGe, ——— ) (3.13)
p Poin " ST y(og p)/n

on the event Q according to Lemma 3.1.

14 )4
Note that max 3 |a,,|* < (max Y |a,|)?. Then, (3.13) reduces to

v u=1 v u=1

2
1 - lOg P a . |O-uv|
_”(Z*)T - ZH%‘ < (CI(L))2*— [max minyg VO 0y, —F/————
P nmin v MZ:; Y (log p)/n
1
<(CWys,,~2P

as long as X € H(s, ).

Therefore, conclusion (ii) reaches since Lemma 3.1 says P(Q) > 1 — O(p™1).

(iii) By max, o, < M, one knows

min { S ﬂ} iy
\/(og p)/n

Furthermore, it holds

- P fog!
—IE - 2 < M(Cy (L)’ —== RN oy
p”( ) ”F (Cy( )) - maxuzz;mm{\/o' o (logp)/n}

< M(Cy(L))s,, 287

under the event Q due to (3.13) and X € H(s,,,).
Thus, the claim (iii) follows from Lemma 3.1 immediately. |

Remark 3.1. Theorem 3.1(i) generalizes the result of [15] which requires X is the sub-Gaussian
random vector. In addition, ifn . = n, Theorem 3.1(i) yields the result of [ 11 ] thanks to the parametric
class H(s,,,) containing the class of sparse covariance matrices defined in [11].
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Remark 3.2. From the proving process of Theorem 3.1(i), we find that

log p

IE)" = Zll; < Ci(L)s,,

min

under the event Q.
Furthermore, let ||A||, denote the matrix l,,-operator norm of A, Lemma 7.2 in [19] tells

Al < [IAlli(1 < w < )

for any symmetric matrix A. Hence,

<r lo
IED = Bl < CLL)s0p |22

min

holds under the event Q.
Then, using Lemma 3.1 indicates

ZeH(sn,p)

lo _
inf P{H(Z*) ~ X/, < Ci(L)sn, gp} >1-0(p™).
4. Convergence rates in terms of expectation
This section studies the convergence rates of the thresholding generalized pilot estimator ()" in

terms of expectation over H(s,, ).
We introduce the following technical lemma.

Lemma 4.1. Let min, o, > y > 0, logp = o(n}, ), p > (n’, )& > 0), Elo}, — ol < M and
Assumption 1.1 holds. Then,

. (o log p
(i) sup f max min{ o0, ———dP < s, —;
ZeH (s,p) J(Q1NQ2) Z \/(log p)/n "N
1
.o |O-uv| ’ Sn,[? lOg p
(ii) sup f [max min?{ o0, ——— dP < \|——;
ZeH(snp) J(Q1NQ2)° Z y(log p)/n M nin

_, lo
(iii) sup f max Z |6, — OwldP < *gp.
EeH(sup) J(QING) V4T M nin

Where Q1, Q; are defined by (3.3) and (3.4). x Sy denotes x < cy with a absolute constant ¢ > 0.
Proof. Denote Q := Q; N Q0 and

|07
L,,:= sup f max » minJ o ,,0,,, —————— +dP.
P SeH(snp) Z { \(log p)/n
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Then, I, < 5,,P(Q°).

According to Lemma 3.1, one knows P(Q°) < O(p™) and I, < s,,p " Taking L = &' +3 > 0,

one obtains

P S ()™ < ()™t < (J(log p) /i

due to p > (nyin)°. Hence, it follows that

< log p

In,p ~ dn,p « )
min

which is the desired conclusion (i).
Similarly, the definition of H(s,,,) and Lemma 3.1 imply

12

|70 ) i

sup f [max min< Vo0, ——— dP < \[Sp, P
2eH (sn,p) Z { v/(log p)/n !

Moreover, the above result combining (4.1) concludes (ii).
To show (iii), Holder inequality tells

p p
sup f max Z |67, —OowldP = sup E {[max Z o, — O'uvl] I(Q”)}
oV u=1 ' =1

EeH(sn,p) SeH(sn,p) »
1/2

p 2
< sup {E(maxZw:v—m)} (PO,

ZeH(sn,p)

u=1

On the other hand, it holds

p 2 p
~ ~ % 2
(méix |O-uv - O-uvl) < p § |O—uv —Owl -
u=1

u,v=1

Furthermore, one obtains
» 2
~ 3
E| max E o, —owl| <p
v
u=1

due to the given condition E|5,, — owl? < M. Hence,
P 3 —L
sup f max ) |7, ~ owldP 5 pHBQ)) 5 p7
EEW(S,L/;) c v u=1

follows from P(Q°) < O(p7*h).
By L = &' + 3 and the assumptions p > (n*, )%, one finds

=

p%=p ZLS( M) 2 < lo*gp.

nmin

Substituting this into (4.2) implies the expected result (iii) holding.

4.1)

4.2)

O
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Theorem 4.1. Let (£%)" = (63,))pxp given by (3.1), Elo, — owl> < M, mino,, >y > 0 and

Assumption 1.1 holds. Iflogp = o(n’ ), p > (nfnm)f (& >0)and s,, 2 1 then

) - lo

() sup EIEDY = Zlh < Sup+|[—2L:
ZeH(snp) nmin

. | lo

i) sup E——[IE) = Bllr < sup+|—2L
ZeH (sn,p) 14 Moin

ng

XeH(sn,p)
mL:llx ouus<M

(iii) sup E%H(E*) - 2llFr S VSup

min

Proof. (1) Let the event Q := O N O, where Oy, O, are given by (3.3) and (3.4). Then, by Gersgorin

theorem [[(X*)" — X||, < [|(E*)" — X, we have

sup E[I(E)" - Xl < sup fll(i*)’ —X[,dP + sup f (E)" - X, dP.

EeH (50,) 2eH (s0) TeH (sn,p)
Clearly, I(E9)" — X|; := max 25:1 ITa,,(F),) — 0wl and it follows
v
S\ T log p
NED" =Xl < Sup | —

min

under the event Q thanks to Lemma 3.1 and the definition of H(s, ,). Hence,

lo
sup f IEY = ENdP S 5, 1|22
XeH(sp,p) min
Then, we just need to show
lo
Jn,p = Ssup ”(E ) - Z||1dP < Sn,p gp
ZeH(snp) J O° Prin

for finishing the proof of (1).
According to condition (ii1) of Definition 3.1, we obtain |t (67,)| < ¢old7, | and
1T, (G 0) = Tl < 172, (G + 10w < ol

uv uv

By lowl| £ Voo, and log p = o(n; . ), we know

| + |O-MV| < colo-uv

||

|0-uv| < min VO uulO vy —F———
V(og p)/n,

: o]
< min V OOy —F/———
} { y(og p)/n }

due ton’. < n. Hence, it holds

0 () = Tl < ol — ol + (co + 1) min { yTmorm, ——el
Jog p)in

0-uv| + (CO + 1)|0-uv|

4.3)

4.4)
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and

p
Jop S sup f m X w— OwldP
! 2"6'7'{(5n p) HZ—:
+ sup f ma Zp:mn Ll dP.
u X 1 O-MMO-VW B
2eH (s,p) p= \(log p)/n
Therefore, (4.3) follows from Lemma 4.1(1), (iii) and s, , 2 1. This reaches (i).
(i1) To show (ii), we observe

| . | -
sup ET”(E*)T_EHFS sup f—ll(E) —X||[pdP + sup f‘%”(z*)r_andP.

reH(snp) VP ZeH (sn,p) ZeH (sn,p)
Clearly,
1, oees 1
SIEY -2 = - Z Z (74, (F5) = Tl < maxZ [14,(T) = ol (4.5)
v=1 u=1

According to Lemma 3.1, we have

p

2
1 SE lo ogp : |0-uv|
_H(Z*) 2” < — — max [mln{ VO uuO vys —}) (46)
p re nmin Y MZ; V(log p)/n

on the event Q. Furthermore,

sup f—II(Z )" = ZllpdP

ZeH(sn,p)
172
lo Oyy
< sup f gp (max Z min< Vo0, L ] dP
Eeﬂ(sn,p) 0 nmm u=1 V (log p)/n
log p
= o n;in

holds due to the definition of H(s,, ).
Hence, it suffices to prove

lo
sup f —||(Z*) = X||pdP < Sup gp. “4.7)
ZeH(sn,p) c

rnin

By (4.4), we find

2
|T/l“” (0- ) 0-"”" S |0—uv - O-u\fl2 + (mln { Ms A}) .
(log p)/n

Substituting the above inequality into (4.5) leads to

2
1 L T
—IEH" - 2% < max 5%, — o |* + max [min T Oy ——— ) ) 4.8)
p Z; v Z \/(og p)/n
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P P
Since Vla| + |b| £ Vl]a| + V|b| and (max ), Iauvlz)% < max ) |a, |, we obtain
Voou=1 Voou=1

o]
—||(Z ) =2lF < maX |6, — ol + max min { VO WOy, —— ¢ .
VP Zl Zl \dog p)/n

Thus, (4.7) follows from Lemma 4.1(1), (ii1) and s, , 2
(i11)) By max o, < M, we obtain

min { VO T s A} <M. 4.9)

On the other hand, (4.6), (4.9) and X € H(s,,,) tells

| (S to ! log p
SIEDT 2 < —maXme{ T }s S

\(og p)/n

under the event Q. Therefore,

/10
SeH(snp) n.

max oy <M
u

Using (4.8) and (4.9), we have

1/2 p 1/2
1 ~ |0-uv| ~ 2
_”(E*)T - Z”F [max m1n O-MMO-VV’ I — ) + (max |O-ZV - O-uvl )
\p Z y(log p)/n ' Z:;

1/2

14 )4

. o Z -

< | max min \/O’ _— — .

~ [ v ML[O-VV’ Jli + mvaX |O-MV O-M\/l
1 (logp)/n

u= u=1

Hence, it holds

lo
sup f —II(Z ) = ZllpdP < Sup 2P 4.11)
EE(H(Sn,p) c nmm
muaxo',m<M
due to Lemma 4.1(ii), (iii) and s, , 2 1. Finally, conclusion (iii) follows from (4.10) to (4.11). O

Remark 4.1. The upper bound of Theorem 4.1(i) is optimal due to Proposition 3.1 in [15]. In addition,
Theorem 4.1(i) performs better than Theorem 3.1 of [15] which requires X to be sub-Gaussian.

Remark 4.2. From the proving process of Theorem 4.1(i), we observe

S\ T log p
sup E”(E ) - E”1 < Sn,p PR
ZEH(S,,’,,) nmln
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Note that ||All, < ||All;(1 £ w < o) for any symmetric matrix A. Then,

log p

ZEW(Sn,p) min

sup EI(E")" = Zlly < s

holds.

Remark 4.3. The condition
El5:, — ol <M (4.12)

in Lemma 4.1 and Theorem 4.1 is mild. In fact, the generalized Huber estimator (Example 2.1) and
generalized truncated mean estimator (Example 2.2) both satisfy (4.12). The details can be found in
Appendix.

5. Simulation studies

Let ()N:.;)T and ()3”})7 be defined by (3.1) and (3.2), this section investigates the numerical properties
and performances of the estimators (ij{)f, ()i*T)T and compares these two estimators with the adaptive
thresholding estimator £ proposed by [15]. The following two types of sparse covariance matrices
are considered:

Model 1. (Rothman et al., [18]) X = (07)pxp With o, = max{l — |u —v|/5, 0}.

Model 2. (Cai and Zhang, [15]) £ = I, + (D + D")/(|[D + D”||, + 0.01), where D = (d,,) x, is given
byd,=0wm=1,---,p)and

1,  with probability 0.1;
d,, =10, with probability 0.8;  for u # v.
—1, with probability 0.1;

Under each model we generate random samples X; € R? (i = 1,--- , n) by two different scenarios:

(1) X; are independently drawn from multivariate z-distribution ¢,(0, X) with freedom v = 4.5;

(i1) X; are independently drawn from multivariate skewed #-distribution st,(0, X, €) with freedom
v = 5 and skew parameter € = 10.

In each simulation setting we adopt the following two cases of the missingness for the data matrix
Y = X;,---, X)) with X; = (Xjq,--- ,X,-,,)T which proposed by Cai and Zhang [15]. The first case
is missing uniformly and completely at random(MUCR) in which every entries Xj; are observed with
probability 0 < p < 1. The second case is missing not uniformly but completely at random(MCR) in
which Y is divided into four equal-size parts,

Y Yo
Y =
[YZI Y

Pyen
],Yu, Y, Yor, Yy e R?72

where every entries of Y, Y., are observed with probability 0 < pV < 1 every entries of Y5, Y,
are observed with probability 0 < p® < 1.

Moreover, for each procedure we set p = 50,200,300 and n = 50, 100, 200 respectively and 50
replications are used. Meanwhile, we choose the soft thresholding rule and measure the errors by
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the spectral and Frobenius norm respectively in each setting. The tuning parameter in thresholding
estimator is chosen by 10-fold cross-validation which is explained in Section 4 of Cai and Zhang [15],
and unspecified tuning parameters in the generalized pilot estimator are chosen by the method
suggested in Section 6 of Avella-Medina et al. [11].

Tables 1 and 2 demonstrate that thredsholding estimators (i‘.j‘q)f and (i‘.*T)T perform better than the
adaptive thresholding estimator £ under both MUCR and MCR settings. Moreover, thresholding
generalized Huber estimator (i‘.;)’ outperforms thresholding generalized truncated mean estimator
()i’})’. We also find that the errors decrease if sample size n gets larger. Meanwhile, we observe that
the errors under Model 1 is larger than under Model 2 since the covariance matrix in Model 1 is more
dense than in Model 2. All these numerical results are consistent with our theoretical results.

Table 1. Means errors (with standard errors in parentheses) for three kinds of thresholding
estimators with 7-distribution.

Spectral norm

Frobenius norm

(p.n) Lo ) ) Lo &5 (Ep)
Model 1, MUCR, p = 0.5
(50, 50) 6.59(0.09) 4.21(0.03) 5.14(0.01) 11.13(0.09) 8.28(0.02) 9.24(0.02)
(50,200)  3.78(0.04) 2.07(0.06) 2.28(0.02) 5.66(0.01) 3.15(0.04) 4.06(0.01)
(200, 100)  5.62(0.02) 3.67(0.02) 4.42(0.03) 16.17(0.02) 13.02(0.03) 13.91(0.05)
(200, 200)  4.46(0.03) 2.59(0.02) 3.02(0.01) 11.39(0.03) 8.49(0.01) 9.45(0.07)
(300, 200) 4.97(0.02) 2.92(0.07) 3.63(0.04) 15.80(0.04) 12.73(0.03) 13.68(0.06)
Model 2, MUCR, p = 0.5
(50, 50) 5.72(0.03)  3.58(0.02) 4.29(0.01) 9.12(0.08) 5.34(0.02) 6.93(0.02)
(50,200)  3.45(0.06) 1.65(0.01) 2.12(0.02)  5.23(0.03) 2.17(0.04) 3.41(0.06)
(200, 100)  5.31(0.03)  3.26(0.08) 4.13(0.04) 11.88(0.01) 8.54(0.03) 10.07(0.04)
(200, 200)  3.89(0.02) 1.92(0.01) 2.96(0.03) 8.96(0.01) 5.46(0.02) 6.84(0.05)
(300, 200) 4.27(0.02) 2.14(0.02) 3.48(0.04) 11.51(0.02) 8.12(0.03) 9.72(0.05)
Model 1, MCR, o = 0.8, p@ = 0.2
(50, 50) 6.42(0.01) 4.12(0.01) 4.93(0.02) 10.79(0.02) 7.90(0.09) 9.12(0.03)
(50,200)  3.65(0.04) 1.96(0.03) 2.16(0.02)  5.42(0.04) 2.86(0.01) 3.96(0.02)
(200, 100)  5.47(0.06)  3.55(0.02) 4.32(0.04) 15.66(0.02) 12.93(0.02) 13.77(0.06)
(200, 200)  4.19(0.05) 2.38(0.01) 2.74(0.04) 11.15(0.01) 8.32(0.02) 9.26(0.05)
(300, 200) 4.52(0.03) 2.63(0.05) 3.25(0.05) 15.48(0.04) 12.56(0.01) 13.18(0.07)
Model 2, MCR, o = 0.8, p?@ = 0.2
(50, 50) 5.48(0.01) 3.31(0.09) 4.28(0.03) 8.97(0.08) 5.19(0.01) 6.62(0.02)
(50, 200) 3.03(0.02) 1.31(0.02) 1.97(0.01) 5.12(0.03) 2.02(0.04) 3.47(0.03)
(200, 100)  5.15(0.04) 3.15(0.02) 4.09(0.03) 11.56(0.04) 8.25(0.03) 9.86(0.04)
(200, 200)  3.54(0.03) 1.72(0.01) 2.68(0.03) 8.61(0.01) 5.36(0.02) 6.73(0.06)
(300, 200) 3.96(0.07) 2.08(0.03) 3.04(0.05) 11.35(0.02) 8.01(0.02) 9.69(0.07)
AIMS Mathematics Volume 8, Issue 9, 21439-21462.
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Table 2. Means errors (with standard errors in parentheses) for three kinds of thresholding
estimators with skewed #-distribution.

Spectral norm Frobenius norm

(p:1) z (E;)" &) z &) &)
Model 1, MUCR, p = 0.5
(50, 50) 8.98(0.04) 7.34(0.03) 8.03(0.04) 12.44(0.02)  9.74(0.01) 10.79(0.02)
(50,200) 4.69(0.07) 3.15(0.08) 3.68(0.01) 6.06(0.08) 3.83(0.03) 4.65(0.03)
(200, 100)  8.17(0.03)  6.88(0.04)  7.53(0.03) 18.32(0.05) 15.41(0.05) 16.93(0.06)
(200, 200)  5.93(0.01) 4.54(0.09) 5.11(0.01)  12.58(0.06) 9.93(0.02) 11.07(0.05)
(300, 200) 6.98(0.02) 5.85(0.02) 6.06(0.04) 18.19(0.04) 15.34(0.03) 16.51(0.06)
Model 2, MUCR, p = 0.5
(50, 50) 7.67(0.01) 5.41(0.03) 6.34(0.04) 10.31(0.08) 8.68(0.08) 9.26(0.03)
(50,200)  4.15(0.02) 1.88(0.06) 2.65(0.03)  5.49(0.01) 3.24(0.04) 4.01(0.02)
(200, 100)  7.42(0.01) 5.14(0.09) 6.01(0.02) 15.45(0.02) 13.73(0.03) 14.39(0.05)
(200, 200)  4.88(0.03) 2.64(0.02) 3.60(0.08) 10.63(0.01) 8.89(0.02) 9.37(0.06)
(300,200) 5.41(0.01) 3.17(0.02) 4.32(0.06) 15.30(0.02) 13.36(0.04) 13.95(0.05)
Model 1, MCR, pV = 0.8, p» =0.2
(50, 50) 8.75(0.02)  7.16(0.04) 7.84(0.04) 12.23(0.09)  9.46(0.02) 10.55(0.01)
(50,200) 4.36(0.08) 3.03(0.05) 3.59(0.03) 5.80(0.01) 3.62(0.06) 4.42(0.02)
(200, 100)  7.99(0.03) 6.52(0.02) 7.38(0.04) 18.08(0.03) 15.29(0.03) 16.54(0.06)
(200, 200)  5.81(0.02) 4.34(0.03) 4.96(0.01) 12.36(0.02)  9.64(0.04) 10.78(0.05)
(300,200) 6.69(0.07) 5.48(0.01) 5.92(0.03) 18.12(0.03) 15.25(0.05) 16.49(0.07)
Model 2, MCR, pV = 0.8, p® =0.2
(50, 50) 7.58(0.02) 5.22(0.04) 6.27(0.05) 10.22(0.03) 8.36(0.03) 8.83(0.02)
(50,200) 4.06(0.06) 1.84(0.02) 2.48(0.05) 5.26(0.04) 2.95(0.06) 3.72(0.03)
(200, 100)  7.14(0.02)  5.06(0.07)  5.95(0.04) 15.34(0.01) 13.36(0.05) 14.07(0.06)
(200, 200)  4.76(0.02)  2.42(0.01) 3.36(0.08) 10.46(0.03)  8.77(0.03) 9.16(0.06)
(300,200)  5.30(0.01) 3.08(0.02) 4.18(0.06) 15.08(0.09) 13.06(0.05) 13.74(0.05)

6. Conclusions

In this paper, we propose the generalized pilot estimator in the presence of incomplete heavy-
tailed data. Moreover, two kinds of generalized pilot estimators are provided under the bounded
fourth moment assumption while lots of previous studies hinged upon the sub-Gaussian condition.
In addition, we establish the thresholding pilot estimator for a family of sparse covariance matrices and
give the convergence rates in terms of probability and expectation respectively.

In the future, we may consider the compositional data with missing data under lower bounded
moment assumption by referring Li et al. [20]. Moreover, we can adopt the different methods
to estimate the sparse covariance matrix with incomplete data such as the proximal distance
algorithm [21] or continuous matrix shrinkage [22].
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Appendix

In order to show Example 2.1 and Example 2.2 satisfying condition (4.12), we introduce a
Proposition A.1.

Proposition A.1. Let max E|X,[* < k*, EX, = w,, E(X,X,) = ., and Assumption 1.1 holds. If i’ and

1<u<p

i, satisfy

;) < A 1Xul, (A1)
i€A

) S 1B ) X Xal (A2)
ieB

where A, B C{1,--- ,n}. Then, £* = (6%) pxp = ({LL, — [L) pxp ObeYSs (4.12).
Proof. It suffices to prove

lorw| < 1, (A.3)
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Elo [* < 1.

By max E|X,|* < k*, one knows E|X,| < (B|X,|*)!* < k and

1<u<p

EIX,X,| < (EX2)?(BX?)? < (BIX,[Y)EX, N7 < K.

Thus, it holds
ol < BIX.X,| + EBIXDELX,) <2k 51

which reaches (A.3).
For (A.4), one observes

Blo, I = Elf;, - i < Bl + Bl

According to (A.1) and Jensen’s inequality, it follows
1 4
Bl SE|— > 1Xul| <EIXJ* <k
Al ZA:
Furthermore, upon combining Cauchy—Schwarz inequality leads to
1
Bl < (Bl EBlilt) <k* < 1.
Similarly, (A.2) implies
1 2
Elg, P SE|— ) IXuXul| <EIX,X[.
B ;‘

By Cauchy-Schwarz inequality and max E|X,[* < k*, one finds

<u<p

1
XX < BIXh: (BIX) <k
Hence,
Bl < k* < 1.

Finally, the expected conclusion (A.4) follows from (A.5)—(A.7).
Proposition A.1.

(A.4)

(A.S)

(A.6)

(A.7)

This completes the proof of

O

Now, based on Proposition A.1 we verify two kinds of generalized pilot estimators (Example 2.1

and Example 2.2) satisfying (4.12).

For the generalized truncated mean estimator i*r = ((ﬁ’})uv - (ﬁ*T)”(ﬁ*T)v) o it is easy to see that
pXp

(f3)us ({7)uw Obey (A1), (A.2) respectively.
By (2.14), we know

n n

Gl < ni D IXil = ni D XSl = %Z X

*
u =1 u =1 U jeA,
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where A, = {i : §;, # 0} and |A,| = n;,. Similarly, it holds

, 1
Epnl < — D 1XaXal

uv jeA,,
with A,, = {i : 3,5, # 0} and |A,,| = n,,. The above two inequalities imply ({}),, (fi}). satisfying

(A.1), (A.2) respectively.
In fact, it is hard to check the generalized Huber estimator

£y = (G = i)y
satisfying (4.12) due to the structures of (f},), and ({},)., being unclear. But we can consider a special
case.

Proposition A.2. Let A, ={i : S;,, #0}, A, ={i : S.,.S,» # 0} If a, @, defined in (2.9) and (2.10)
obey
a, > max X;, — min X;,, @,, > max X;,X;, — min X;,X;,

i€A, i€A, €A,y €Ay,

respectively. Then, ({i},),, (fiy)uw satisfy (A.1), (A.2).
Proof. Fori e A,, it holds

X — (max X — ozu) > min X;, — max X;, + «, > 0,
i€A i€ icA

u Au €AY

X, — (min X, + a'u) <maxX;,, —minX;, —a, <0.
i€ icA

u i€A, i€A,

Obviously, (2.9) is equivalent to
> oK = @) = .

i€A,

By the definition of ¥, (x), we have

Z Yo, (Xiu - (max Xiuw — a/u)) >0,

i€A,

i€A,

Z Va, (X,-u — (r_nin X, + au)) < 0.
i€A,

i€A,

Note that », ¢, (X, — (fi},),) is the continuous and decreasing function about (fi},),. Then, the

i€A,
solution of equation }; v, (X;, — (&i;,)) = 0 belongs to the interval (mf\tx X — ay, m/i4n X + ay).
i€A, i€A, i€A,
Hence, we obtain max X;, — a, < (fi},), < min X;, + ,, and
{iEAl,} iGAu

-, < Xiu - (ﬂ;)u < ay.

Furthermore, the above inequality and definition of i, (x) implies

Z wau(Xiu - (ﬁ;{)u) = Z(Xm - (ﬁ;l)u) = Z Xiu — n:(ﬁ;l)u

i€A, i€A, i€A,
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Therefore, (},), = (n:;)‘1 Dica, Xiu satisfies (A.1).
Following the similar discussion, we can derive (fi},),, satisfying (A.2) with

@, > max XiuXiv - H}gn XiuXiv-
1€A,y

€A,y uy

O

*

In fact, the condition in Proposition A.2 is easy to satisfy, since log p = o(n;, .

lead to large enough «, and a,,.

* * *
yandn; . < n;, <n,
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