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Abstract: For a class of Stokes eigenvalue problems including the classical Stokes eigenvalue problem
and the magnetohydrodynamic Stokes eigenvalue problem a residual type a posteriori error estimate
of the mixed discontinuous Galerkin finite element method using P, — P;_; element (k > 1) is studied
in this paper. The a posteriori error estimators for approximate eigenpairs are given. The reliability
and efficiency of the posteriori error estimator for the eigenfunction are proved and the reliability of
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theoretical predictions and indicate that the method considered in this paper can reach the optimal
convergence order O(dof = ).
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1. Introduction

Stokes eigenvalue problem is of great significance because of its role in the stability analysis of
fluid mechanics. Therefore, it is of great interest to study efficient numerical methods for solving this
problem (e.g. see [1-8]).

The a posteriori error estimates of the classical Stokes eigenvalue problem based on the velocity-
pressure formulation received much attention from scholars. For example, the authors in [9-11]
studied the low-order conforming mixed method and Jia et al. [12] and Sun et al. [6] explored the
low-order non-conforming finite elements. Since the accuracy of low-order elements is not high
Gedicke et al. [1] used the Arnold-Winther hybrid finite element method to analyze the a posteriori
error estimation based on the stress-velocity formulation in R? and Gedicke et al. [2] adopted the
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divergence-conforming discontinuous Galerkin finite element method (DGFEM for short) to discuss
the a posteriori error estimate for velocity-pressure formulation on shape-regular rectangular meshes.
Lepe et al. [13] proposed a mixed numerical method to study the error estimates for a vorticity-based
velocity-stress formulation of the Stokes eigenvalue problem.

In this paper, for a class of Stokes eigenvalue problems (see (2.1)), including the classical Stokes
eigenvalue problem in R? (d = 2,3) and the magnetohydrodynamic (MHD) Stokes eigenvalue
problem et al. based on the velocity-pressure formulation we study the residual type a posteriori error
estimates of the mixed DGFEM using Py — P;_; (k > 1) element on shape-regular simplex meshes. For
the Stokes equations the DGFEM was researched by [14-19] which laid a foundation for us to study
further the Stokes eigenvalue problem. Among them, Badia et al. [14] proved the well-posedness of
discrete DG formulation and studied the a priori error estimate of DGFEM with P, — P;_; element
without using the discrete inf-sup condition. Our main work is as follows:

(1) We present the a posteriori error estimators for approximate eigenpairs. Referring to [20, 21],
using the enriching operator (see [22,23]) and the lifting operator (see [24,25]) we prove the reliability
and efficiency of the estimator for eigenfunctions. We establish an identity (see Lemma 3.8) and
use it to analyze the reliability of the estimator for eigenvalues. The characteristic of the adaptive
DGFEM discussed in this paper is that for the Stokes eigenvalue problem in two and three-dimensional
domains due to the usage of high-order elements it can capture smooth solutions and achieve the
optimal convergence order for local less smooth solutions (eigenfunctions that have local singularity
or local low smoothness) on adaptive locally refined graded meshes.

(2) We implement adaptive computing and the numerical results confirm our theoretical predictions
and show that our method is stable, efficient and can obtain high-accuracy approximate eigenvalues.
In the existing literature on the classical Stokes eigenvalue problem, Gedicke et al. [1,2] presented the
approximate eigenvalues of 11, 10 and 9 significant digits in the unit square, the L-shaped domain and
the slit domain, respectively, which are the most accurate approximations in the existing literature. In
this paper, we obtain approximate eigenvalues that have the same accuracy as those in [1,2].

Note that C in different positions in this article represents different positive constants which is
independent of mesh size 4. We use a < b to represent a < Cb and a = b to representa < b and b < a.

2. Preliminaries

Consider the following class of Stokes eigenvalue problems:

—uAu + Au + Vp = Au, in Q,
diva=0, in Q, (2.1)
u=0, on 0Q,

where Q c R (d = 2,3) is a bounded polyhedral domain, u = (uy, ..., uz)" is the velocity of the flow,
p is the pressure, 4 > 0 is the kinematic viscosity parameter of the fluid, A is the eigenvalue of the
problem (2.1) and A is a d X d symmetric semi-definite matrix whose elements belong to L™ (€2).

The problem (2.1) includes the classical Stokes eigenvalue problem in R? (d = 2,3) and the MHD
Stokes eigenvalue problem et al. When A is a zero matrix (2.1) is the classical Stokes eigenvalue
problem. In the case of d = 2 when
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H? 0

— 2 0

A = (Ha) ( 0 0 )
the problem (2.1) is the MHD Stokes eigenvalue problem (see [7, 8]) where H, is the intensity of the
externally applied magnetic field on the vertical direction, i.e., magnetic field H = (0, Hy, 0), and Ha

is the Hartmann number (see [7, 8]) and when

o 0 0
a-a g )

the problem (2.1) is the MHD Stokes eigenvalue problem while the magnetic field is applied
horizontally.

For the sake of narrative simplicity we take u = 1 in this paper.

Let H?(Q2) be the Sobolev space on Q of order p > 0 equipped with the norm || - ||, o (denoted by

d
|| - Il, for simplicity). Hé(Q) = {z € H'(Q),zlsa = 0}. We denote ||zl|, = ; llzill, for z = (z1,--+ ,24) €

HP(Q)?. We denote by (-,-) the inner product in L*(Q)¢ which is given by (u,7) = fQ uzdx (d = 1)
and (u,z) = fQu -zdx (d = 2,3). Define X = Hy(Q)? with the norm ||z|lx = (Vz, Vz)? and define
W= L(z)(Q) ={o € L*(Q): (0, 1) =0}

The weak formulation of (2.1) is given by: Find (4, u, p) € R X X X W, |jul|p = 1 such that

A(u,z) + B(z, p) = A(u,z), VzeX, (2.2)
B(u,0) =0, YoeW, (2.3)

where

A(,z) = (Vu,Vz) + (Au, 2),
B(z,0) = —(divz, 0).

Let 7, = {7} be a regular simplex partition of Q with the mesh diameter & = mgx h, where h; is
T/

the diameter of element 7. We use 8;1 and 82 to denote the set of interior faces (edges) and the set of
faces (edges) on 0Q, respectively. &, = 8;'1 U 82. We use hp to denote the measure of F € &,. We
denote by (-, ), and (-, -)r the inner product in L*(t) and L>(F), respectively. We use w(t) to represent
the union of all elements which share at least one edge (face) with 7 and use w(F) to represent the
union of the elements having in common with F.

The broken Sobolev space is defined by

H'(Q,T,) =z € L*(Q) : 2|, € H' (1), V1 € T,).

For any F € &, there are two simplices 7+ and 7~ such that F = 7" N 7~ (e.g. see [14]). Let n* be
the unit normal of F pointing from 7* to 7~ and let n~ = —n*.
For any ¢ € H'(Q,7;) we denote its jump and mean on F € &, by [¢ll = ¢'n* + ¢'n~ and

{} = 2(p* +¢"), respectively, where ¢* = ¢|.+. For ¢ € H'(Q, 73,)¢ we denote by [¢]] = ¢*-n*+¢™-n"
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the jump and {p} = %(go* +¢7) the mean of g on F € &,. We also denote by [¢ll = ¢*@n"+p~@n" the

full jump of @ on F € &, where ¢ ® n = [@in ;11 j<a> ¢ = (i), = (n;). For tensors y € H'(Q, 7)™
we denote by [xy] = x'n™ + y n~ the jump and {y} = %(,\/r +x ") themeanon F € &),

For the sake of simplicity, when F € & by modifying the above definitions appropriately, we obtain
the jump and the mean on 9. That is to say, we modify ¢~ = 0 (similarly, ¢~ = O and y~ = 0) to
obtain the definition of jump on dQ and modify ¢~ = ¢*(similarly, ¢~ = ¢ and ¥~ = x*) to obtain the
definition of mean on 9.

The discrete velocity and pressure spaces are defined as follows (see [7]):

Xy, = {2y € LH(Q)? : 73}, € Pu(z)?, V7T € T,
Wy = {on € W : oplr € Pt (1), V7T € T},

where P;(7) is the space of polynomials of degree less than or equal to k > 1 on 7.
The DGFEM for the problem (2.1) is to find (A, w,, pr) € R X X, X Wy, |lusllo = 1 such that

Ap(uy, zp) + Bi(zp, pr) = Ay, 2,), Vz, € X, (2.4)
By(uy,0,) =0, Vo, € Wy, (2.5)

where

Ay, z) = ) f Vu, : Vzdx + ). f Awy - zydx - ) f (V) : [z4]ds

e, YT e, YT Fe&, F
= f (Vzi) : [wlds + ) f hl[[%]] : [z]1ds, (2.6)
FES/1 F FGS;, F F
B2, 00) = = )| f oudivaydx + ) f {onHlz,1ds. 2.7)
eTy VT Feg, VF

Here, y/hp is the interior penalty parameter. We select y = C;k*> with C; = 10 in the actual numerical
implementations from Remark 2.1 in [26].
Define the DG-norm as follows:

Y
lzally = > llzall} .+ > f lzlds, on X +X: (2.8)
T€Th Fe&), a F
h 1
llzull® = llz4ll; + Z f—Flehlzds, on X, +H™(Q" (s > 5)- (2.9)
Feah F 7
Note that || - ||, is equivalent to ||| - ||| on X,.

From [27] we know that the continuity and coercivity properties hold:

1
|Anuy, 2| S lwlll llzalll, Y g,z € X + H(Q) (s > 5),
lwill; S An(uy,wy), Yuy, € X,
We consider the boundary problem : Given g € (L*(Q))¢,

—-Auf + Auf® + Vps =g, in Q,
diva® =0, in Q, (2.10)
ut =0, on 9Q.
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From the Lax-Milgram theorem we have the existence and uniqueness of the velocity u in the space
7 ={z e X:b(z,0) =0,Y0 € W}. From the well-known inf-sup condition (see [28]):

B(z, 0)
Blloll2) < sup ,
2€X,2+0 ||z||x

VYoeW,

the stability of the pressure holds.
The weak formulation of (2.10) reads: Find (ué, p?) € X X W such that

A(u®,2) + B(z, p*) = (g,2), VYVzZ€X, (2.11)
B(u,0) =0, YoeW, (2.12)

and its DGFEM form reads: Find (uf, p}) € X, x W), such that

Ay(uy,zy) + By(zp, p}) = (8.21), V24 € X, (2.13)
Bu(uf,00) =0, Vo, € W, (2.14)

We assume that the following regularity is valid: For any g € (L*(Q))? (d = 2,3) there exists

(¢, p?) € (H"(Q) x H"(Q)) N (WHP(Q) x W'(Q)) (3 < r <1, p> 24) satisfying (2.10) and

]l + PN < Cligllo, (2.15)

where C is a positive constant independent of g.
From Lemma 6.5 in [27] we can obtain the consistency of the DGFEM that is to say when (u¥, p?)
is the solution of the boundary problem (2.10), there hold the following equations:

Ay(ué,z) + By(zy, p°) = (8, 21), Yz, € X, (2.16)
B(u®,0,) =0, Vo, € W, (2.17)

From (2.13), (2.14), (2.16) and (2.17) we have
Ap(u® —uj,z,) + By(zs, p° — pf) =0, Vz, €Xp, (2.18)
Buy(u® —uf,0,) =0, Vo, €W, (2.19)

Badia et al. [14], Cockburn et al. [29], Hansbo et al. [30] and Schétzau et al. [25] proved that (2.13)
and (2.14) are well defined and gave the a priori error estimate. From [14] we obtain the following
lemma.

Lemma 2.1. Assume that (ué, p%) € H'"(Q) x H'(Q) (r < s < k) with g € H'(Q)Y (0 <l < k+1).
Then,

l[u® = wflly + lp* = pillo < A AElle + P81 + A I gl (2.20)

Proof. Since the bilinear form A(-, -) is coercive on X, A,(:,) is also coercive on X,. Using the proof
method of Theorem 4.1 in [14] we can obtain (2.20).

Let [, : XN CYQ)?Y — X, n X be the conforming element interpolation operator and let
9y, . H(Q) — W, be the local L? projection operator satisfying ¢,p|, € Px_;(r) and

f (p—p)zdx =0, Yz € P 1(1), YT €T,
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We introduce the following auxiliary problem before estimating the error of velocity in the sense
of L? norm:

A(w,z) + B(z,0) = (v —u;,z), VzeX, (2.21)
B(w,v) =0, VveW. (2.22)

Using (2.15), we have
ol + lloll- < [uf = ullo. (2.23)

From Theorem 6.12 in [27] using the Nitsche’s technique can prove the following lemma.
Lemma 2.2. Suppose that the conditions of Lemma 2.1 and (2.15) hold. Then,

u® —ullly < 2 (e — willl + llp* — pllo). (2.24)
Proof. From (2.18) and (2.19) we can derive

Ju® — uéll} = Ay(w,u® —uf) + B, (uf — uf,0)
= Ap(u® —uf, w - [w) — Ay(u® —uf, w) + B,(u® —uf, 0 — 9,0) + By(u® —uf, 9,0)
= A0 - uf, 0w - L) - By(Lw, p* - p;) + By(u® —u},0 — 9,0)
=FE +E,+E;. (2.25)

Using the continuity of A,(-, -) and the approximation property of I, we obtain
1E1] < v = wlll llw = holl < Al = wglll ol

Since divw = 0, w € [Hy(Q)]%, [w] = 0 and [[,w] = 0,YF € &, we have

|E>| = | = By(lyw, p* — pHl = Bu(w — Liw, p* — p;)
= |- (p* - p.divw - L) + Y f{pg - pilllw - Liwlds|
FE(S;, F

S Pt = pillollwlls-
Using the approximation property of 1,0 we can get

1
2

. h
|E5| < llo — Fnollolldiv(u® —uf)llo + [Z f 7F|{Q - ﬁhQHZdS) lu® —uill,

Fe&y

< W'l = wyllslloll-

Substituting E, E,, E3 into (2.25) and using (2.23) we obtain (2.24). The proof is completed.
From the inf-sup condition and [14] we know that (2.11) and (2.12) are uniquely solvable and stable.
Then, we define

T: Q)Y —>X, Tg=ud,
S:L*(Q)Y - W, Sg=p°
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and it is valid that
ITglli +1ISgllo < [1gllo- (2.26)
From [14] we also know that (2.13) and (2.14) are uniquely solvable and stable and we define

Ty : LX(Q) > X, Tig =uf,
Si: LX) > Wy,  S,g=p.

Hence,
T glln + IS gllo < ligllo- (2.27)
Thus, (2.2), (2.3) and (2.4), (2.5) have the following equivalent operator forms, respectively:

ATu = u, S(Au) = p, (2.28)
A Thu, = wy,  Sp(Apuy) = py. (2.29)

Next, we will derive the error estimates for the eigenvalue problem.
From (2.24), (2.20) and (2.15) we have

T, —Tllp = 0, (h— 0). (2.30)

Thus, we can obtain the following Lemma 2.3 (see Lemma 2.3 in [31]) from the Babuska-Osborn
spectral approximation theory [32,33].

From (2.8) and (2.9) we know that ||| - ||| is a norm stronger than || - ||, i.€., ||z]lx < |l|zl||. Additionally,
we have
I = willl” < flu = wll; + Z h2 = Lyufi,,.. (2.31)
T€T)

To show the validity of (2.31), using the trace theorem on the reference element and the scaling
argument we have for any 7 € 7, that

_1 1 1
Wlloor S he*lWllo. + he *IWle, YW € H'(7), 1 € (5, 1], (2.32)

and from the inverse inequality and the interpolation estimate and taking w = V(u — [;u) in (2.32) we
deduce

DV =l > ARV = w)lf > eIV = Ll

Fe&y, Fe&y Fe&y

< Zr: IV = wy)lf5 - + ZT:(IIV(H — L5, + b lw - Lul,,.)
T€TH T€S

2 2 2
<l —wif + > W= Ll
T€Th

By the above inequality and (2.9) we obtain (2.31).
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Theorem 2.1. Let (4,u, p) and (A, u;, p,) be the jth eigenpair of (2.2), (2.3) and (2.4), (2.5),
respectively. Assume that the regularity estimate (2.15) is valid and (u, p) € H'*$(Q)? x H*(Q) for
some s € [r, k]. Then,

[lw, —ully S A (la—wll, + [Ilp = pallo), (2.33)
|y — A < B, (2.34)
o —wylly + lp = pallo < B (Malli+s + Iplls)- (2.35)

Proof. In (2.11)—(2.14), we take g = Au then we obtain u®¥ = ATu, ui = AT,u, p® = ASu and
P} = AS,u. Hence, using (2.20) we deduce

[ATu — AThull, + [I4Su — ASulle < A(llallies + [Iplls)- (2.36)
By using (2.16), (2.18), (2.19) and (2.36) we obtain

(T = Tyu,u) = A,((T = T))u, Tu) + B,((T — T)y)u, Su)
= Ay(Tu - Tyu, Tu — Tyu) + Ay(Tu — Tyu, T,u)
+ 2B, (Tu — Tu, Su — S,u) + B,(Tu — Tyu, 2S,u) — B, (Tu — Tyu, Su)
=A,(Tu-Tyu, Tu — Tyu) + 2B,(Tua — Tyu, Su — Spu)
+ (Ap(Tu = Tyu, Tyu) + B, (Tyu, Su — S,u))
+ B,2Tu — Tyu, S,u) — B,(Tua, Su)
= A,(Ta - Tyu, Tu — Tyu) + 2B,(Ta — Tyu, Su — Spu)
S K (Il + 11plls)°. (2.37)

From Lemma 2.3 in [31] we know that

llw, —ullo < (T = Tyullo, (2.38)
[ = A < (T = Tp)u,w) + [T = Tp)ulfg. (2.39)

Substituting (2.37) and (2.24) into (2.39) we obtain (2.34).
Applying the triangle inequality and (2.27) we get

| lu =yl = [[ATa = ATpull, | < (|4, Thu, — AThul, < [[Apu, — Aullo, (2.40)
lp = pallo = lIASu — ASyullg | < [[4x:Spu, — ASpully < [|4w, — Aullo. (2.41)

From (2.24), (2.38) and (2.39) we deduce

Ay, — Aully < |4y — A + [Ju, —ully < [[ATa — ATpully
<S W (||ATa — AT ||, + [|[ASu — AS,ullp). (2.42)

Then, from (2.40)—(2.42) we obtain
[lu —wylly + lIp = pallo = [|ATa — ATyull, + [[ASu — AS,ullo. (2.43)

Thus, we get (2.33).
Combining (2.43) with (2.36) we get (2.35).
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3. The a posteriori error estimates

Let (A5, uy, pp) € R* X X, X W), be an approximate eigenpair. First, for each element 7 € 7, we

introduce the residuals:

2 2 2 N
Mg, = hellwuy, + Auy, — Awy, = Vpllg - + lldivag|fg .

1
M=5 Dy hellCpal = V)l 1.

Fcor\oQ

where I denotes the d X d (d = 2, 3) identity matrix. Next, we introduce the following estimator ;, to

measure the jump of the approximate solution uy:

mo= L yh i+ > e @l .

FCor,FeE] FCdr,FeE)
The local error indictor is defined as
2_ 2 2 2
e =Mk, T Mg, 175,

Then, the global a posteriori error estimator is defined as

m=( M.

T€Th

We denote 6, =int{ |J T;,7; € 7} for T € 7, and use 6 to represent the set of all elements which

TiNT#0

share at least one node with face F. We denote by z’ the Scott-Zhang interpolation function [34], then

z' e XNX, and

I 1
1z = Z'llor + hellV(Z = 2)lor S helzhg,, VT €T,
1
/ 1
lz —z'llo.r < hrlelie,, YF Cor

Denote

Z = {0 € LX) : o], € Pu(t)™ 1 € T3).
= - -

The lifting operator L : X(h) — Zh is defined by

codx = :{o}ds, ¥ ,
LL(Z)t_)x ZfF[[z]] {o}ds QEZh

Fe&}
i

and has the following property (see [24,25]):

_1
L@ < ) M T2l e V2 e X+ X,

Fe&l

3.1
(3.2)

(3.3)

(3.4)
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Using the lifting operator, we define the following form:
Ay )t X+ X)X (X +X,) - R (3.5)
by

Ay(W,z) = Z f Vw : Vzdx+z f AW - zdx — f L(z) : Vwdx

€T, T€Th TETh

_ Z flj(w) Vzdx + Z f—[[w]] [zllds, YzeX+X, (3.6)

€T Fe&y

Note that Aj, = A;, on X;, X X;, and A = A, on X x X. The DGFEM presented in (2.4) and (2.5) is
equivalent to finding (4, uy, py) € R™ X X, X W), and satisfying
AW zy) + Bu(zp, p) = AW, z1), V2 € X (3.7)
Bu(wy, 01) =0, VYo, € Wy

Lemma 3.1. Let (u®, p%) and (uh, ph) be the solutions of (2.11), (2.12) and (2.13), (2.14), respectively.
Then,

I Sl + 1 = il = sup £ AW D)~ Bl py)
h h

0#2€X ||zl

+ inf [juj — z]l. (3.8)

Proof. For Yu € X, from (2.11) we have

Ay —d,ué—1) = Ay ud —i)—A,d,ué - 1)

(g, uf — ) — B(u® — @, p*) — Ay(ué, uf — @) + Ay(uf — @, u - ).

For Yu € X, p € W we have

Bu(u® — @, p* — p) = B,(u® — 0, p¥) — B, (v’ -, p}) — By(u® — @, p — pf).

Combining the above two equations and taking z = u® — u we obtain

llu® —alll|zll, + B(z, p* - p)
:(g7 Z) - B/’l(z’ pg) - Ah(ui7 Z) + Ah(ui - ﬁa Z) + Bh(za pg) - Bh(Z7 pi) - Bh(z p ph)

=(g,2) - Ay, 2) - By(z, p) + Ay(ul — 0, 2) — By(z, p — p). (3.9)
From the well-known inf-sup condition we obtain
B(z, p* — p)
sup ——————— 2 [Ip* = pllo.
2eX 1|

Dividing both sides of (3.9) by ||z||;, and taking supremum for z € X we get

.z) — A, (U, z) — B,(z, p°
I = il + (1% — Bllp < sup B2~ 2t 2) = B2 by

zeX ||zl

+ [ué =l + 115 — pllo, Y(@, p) € X x W.
(3.10)
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Using the triangle inequality we obtain

u® —will, + 11p* = pillo

(g.2) — Ay(uf, z) — By(z, p¥) i i L
< sup ”hZ” P =l + 15 - pillo, V(@ p) e XXW.  (3.11)
zeX h

Since (u, p) is arbitrary and jnwf/ Ilp — pillo = 0, the part < in (3.8) is valid. The other part > in (3.8) is
pE

obvious.

Lemma 3.1 can be extended to the eigenvalue problem.
Theorem 3.1. Let (4,u,p) and (A, uy, p;) be the jth eigenpair of (2.2), (2.3) and (2.4), (2.5),
respectively. Then,

[An(u — . 2) + Bz p— py)l .
o= wilh + l1p = pally = sup ==t B PR inf g — 2l + [, — Aulo. (3.12)

0#zeX |||

Proof. Using (2.26) and (2.27) we can obtain

la —wglln + [lp — pallo (3.13)
||/1Tll - /lthlh + /lthlh - /lhThllh”h + ||/lSll - /thllh + /thllh - /thhuh”h
< AnTa, = 4 Tawlly + |ApSuy, — Spugll, + [[Aw = Auylo.

In (2.11)—~(2.14) we take g = A,u, and obtain u® = 2,Tu,, uf = 2, Tpu,, p* = A4,Su, and p =
AnSpuy. Therefore, from (3.8) we have
14nTw, — 4 Thwglly + (|24xSay, — ASpugllo
< [(Anwy, ) — Ay(4,Thuy, 2) — By(z, Sp(A,up))|
sup

- 0#zeX ||zl

From (2.11) with g = A,u;, (2.26) and (2.27) we deduce

+ inf ||u;, — z||;,. (3.14)
zeX

|(Antn, 2) — Ay (A Toy, 2) — By, Sy(Aauy)|
= | A4 Tuy, 2) + By(z, S(4w) — Ay(4Thwy, 2) — By(z, Sp(u,))]
= |Au (4, Tuy — 4, Ty, 2) + By(z, S(Apuy) — Sp(Ayuy)|
= |A,(1,Tu, — ATu + u — wy, z) + By(z, S(uy) — S(w) + p — p)l
< Ay -, 2) + By(z, p — p)l + Cllw, — Aullllzl;. (3.15)

Substituting (3.15) into (3.14) gives us

|4, Tay, — A Truplly + [|ApSwy, — ApSpuglo

Ap(u — +B - Dn
< sup (=W, 7) + Bylz, p ”’)'+C<||Ahuh—ﬂu||o+;g§||uh—z||h). (3.16)

0#zeX |4]2

Theorem 2.1 indicates that ||4,u;, — Aul|y is a small quantity of higher order compared with |ju —
Wl + llp — pullo- From (3.16) and (3.14) the side < in (3.12) is true. The other side > in (3.12) is
obvious.
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Lemma 3.2. Under the conditions of Theorem 2.1,

Ap(u—u,,z) + Bu(z,p — pn) < Z (r. + 1E, + ny) l1zll, + |Aa = Lugllollzll, Vze X
T€T),

Proof. Using (2.7), (3.6), (3.7) and the Green’s formula we deduce that

Ay =y, 2) + By(z, p — pi)
=A,(u,2) — Aj(wy, 2) + By(z, p) — Bz, pp)
=A(u,z) — Ay(uy, z) — By(z, py)

:Aqu-zdx—ZfVuh:Vzdx—ZfAuh-zdx+Z L) : Vudx

T€Th T€TH €Ty T€T) T
£y f L) : Vadx+ Y f Lwl : zlds + ) | divapydx
T F hF — - T
€Ty Fegy, T€T)
8llh
:ﬂZfTu-zdx+ZfTAuh~zdx—Z Z fFa—ans—Z TAuh-zdx
T€Th T€Th T€T), FCor €T
+ Z fL(z) : Vu,dx + Z f.l:(uh) : Vzdx — Z Vpy, - zdx
T, YT e, ¥7 T, YT
+Z Z fphz-nds.
T€T), FCor F

By z/ € X N X, and (2.2)~(2.5) we obtain

(3.17)

(3.18)

Ay —w,2) +By(z, p - pi) = Apu - w,z—2) + Bz =2, p—pi) + Y [ (Au— Ay - 2'dx.

e, V7

Using (3.6), the Cauchy-Schwartz inequality, (3.1) and (3.2), (3.18) can be written as follows:

Ap(u—uy,z) + By(z, P — DPn)

:ﬂqu-(z—zI)dx+ZfAuh-(z—zl)dx—ZZf%-(z—z’)ds
T T F

T€Th €Ty, T€T), FCor
- Z f Aw, - (z — z)dx + Z f Lz —17'): Vaydx + Z f L) : V(z - 7")dx
e ¥7 €T V7 el VT
- Z prh (2 —2)dx + Z Z fph(z —7') - nds + Z (u— A, - z'dx
T, YT €Ty, Fcor F T, Y7
9
= Z f(Auh + Au, — Au, — Vpy) - (z — z))dx — Z Z f A (z —z')ds
T F an
T€T), €T, FCor
+ Z f Lz —17'): Vaydx + Z L) : V(z - 7)dx
7Ty, T T€Ty, T
+Z Z fph(z—z’)-nds+ Z (Au — ,u,) - zdx
reTy, Fcar Y F T, Y7
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—Z (Auh+/1huh—Auh—Vph) (z—z)dx+Z Z f(phl Vu,)n - (z — z')ds

€T, 7T} FCOT\0Q
+ Z f Lz—17'): Vaydx + Z f L) : V(z - z)dx + Z f (Au — A,u,) - zdx
T€T) €Ty, T€T)
=B+ B>+ By + B4 + Bs. (319)

Next, we will analyze each item on the right-hand side of (3.19). Using the Cauchy-Schwartz inequality
and the approximation property (3.1) and (3.2), we have

Bil < ) l1Aw; + dywy = A, = Vpylloliz = 2o

T€T)

2
< D hellAwy, + A, = Aw, = Vpylo.llzll

T€T)
1
2

= (Z REAw, + A, = Aw, — Vphné,r) -
T€T)
From (3.2) we deduce

1
Bl =15, D fF [Pl = Va1l - (2 — 2')dls]

€T}, FCoT\0Q

<> D lpsl = Vuylllo sCh el o,

T€T), FCOT\0Q
1

s(z >, (hé||[[phI—Vuh]1||o,F>2] Izl

T€T ), FCOT\0Q

For the third term, by the properties of the interpolation function z/ we know [z — z]] = 0. Therefore,
from the definition of lifting operation £ we have

B3_ f,g(z—z) Vu,ds = Zf{Vuh}:[[z—z’]]dszo
TTh Fegy, Fo

By the Cauchy-Schwartz inequality, (3.4) and (3.1) we obtain

B <| ) ||1:(uh)||5,,] [Z IV(z — z’)||§,,]

T€Th T€Th

Z IIh;% Tua 5. (Z IV(z - z1)||(2)’T)

Fegl, T€Th

N

1
2

_1
D Tl | izl

Fe&|

A

For the last term of (3.19) we get
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Bs= > | (- ) - 2dx < [|Au = dwglollzll.
T€T) T
Substituting B;—Bs into (3.19) results in (3.17).
In [22, 23], the authors constructed the enriching operator Ej, : X, — X, N X by averaging and

proved the following lemma.
Lemma 3.3. It is valid the following estimate:

o, = Bl $ > yhe sl e+ > vhi' I, @ mff . (3.20)
Fe&| Fe&)
Theorem 3.2. Suppose that the conditions of Theorem 2.1 hold. Then,
lla = wlly + llp = pallo < 17 + |40, — Aullo. (3.21)

Proof. Substituting (3.17) and (3.20) into (3.12), we obtain (3.21).

Let b, and by be the standard bubble function on element 7 and face F (d = 3) or edge F (d = 2)
of 7, respectively. Then, from [20,21,35] we obtain the following lemma.
Lemma 3.4. For any vector-valued polynomial function z, on 7,

IZillo.c < 1162 Z4llo < (3.22)
Ib:zllo.- < l|Znllo.- (3.23)
IV(bzllo- S b lIZallo.q- (3.24)

For any vector-valued polynomial function o on F it is valid that

Wbecallo.r < llollo.r, (3.25)
lorllo.r < 116} o - (3.26)

Furthermore, for each bro there exists an extension o, € Hé (w(F)) satisfying op|p = brpo and

losllor < i llollor, VT € w(F), (3.27)
IVobllo- < By Pllollos, YT € w(F). (3.28)

Using the standard arguments (see, e.g., Lemma 3.13 in [36]) and Lemmas 7 and 8 in [2], we can
deduce the following local bounds.
Lemma 3.5. Under the conditions of Theorem 2.1,

nr, S IV =w)llor + llp = pallor + helldpu, — Aullo, (3.29)
3
nr, S IV =upllowe + lp = Pallo.we + ( Z hl|du — ﬁhuhH(z),T) ; (3.30)
T€W(T)
no= > yhllw-ull e+ > v - wenl,. (3.31)
FCor,Fe&| FCot,FeE)
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Proof. For any T € 7, define the function R and K locally by
R|, = 4w, + Au;, — Au, — Vp,, and K|, = h’Rb,.

From (3.22) and using Au + Au — Au — Vp = 0, we have
RIRIE, < f R (H2Rb;)dx
= f(/lhuh + Allh — Auy, — V])h) - Kdx

= f(/lhuh + Au;, — Au, — Vp, — (Au + Au — Au - Vp)) - Kdx

= fA(uh —u)- Kdx - fV(ph -p)-Kdx+ f(/lhuh —Au) - Kdx — fA(uh —u) - Kdx.

T T T

Using integration by parts and Kl5, = 0, we obtain

BRI, < f V(u-u,) - VKdx + f (pn — p)divKdx + f (A, — Au) - Kdx + f A(a, — u) - Kdx.

T

Applying the Cauchy-Schwartz inequality yields

RARIG, < (V@ = wpllox + lIp = pallor + el = Aullo- +hellAw, — Aullo) (IIVKIIO,T + hllllKllo,T) :
(3.32)

From (3.23) and (3.24) we get
IVKllo~ + A7 IKllox < hellRllo.r-

Dividing (3.32) by Ah.||R]|pr and noting ||V - w|lp = ||V - (u; — w)|lp, we obtain (3.29).
For any interior edge F € &) let the functions R and © be such that

Rlr = [psl = Vu,Jllr and ©® = hpRbp.
Using (3.26) and [[pI — Vu]l|r = 0 we get
hellRIE - fF R (hpRbp)ds = fF [(ps = P = V(w, —w)] - Ods.
Applying the Green’s formula over each element of w(F) we derive
hellRIG - < fF [((pr — p)I=V(u, —w))] - Ods

=C( > [A@-w)+V(p-p))-Odx— Y [ (V-w)-(p-p)) : VOdx).

rew(F) VT Tew(F) VT

Using Au + Au — Au — Vp = 0 we deduce
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hF”RH(Z)F < Z f(/lhuh + Auy, — Auy, — Vph) - Odx + Z (/lu - /lhllh) - Odx

rew(F) YT Tew(F) YT
+ Y | Va-uw)+(p-pdD: VOdx+ > | (Au-Auy)- Odx
Tew(F) YT Tew(F) YT
=T+ T, +T5+ Ty, (3.33)

Using the Cauchy-Schwartz inequality, (3.27) and (3.28) yieids

1/2
Tis| ) nir] (Z g(cT
TewW(F)

1/2 1/2
2 1/2
s[z nR,) hy IRl
T€W(F) TEW(F)

1/2
2 2 1/2
ns| ) (thﬂu—AhuhnO,,)] R IRl
Tew(F)

1/2
Tys| > (V@ -w)l, +lp - phué,f)] hi* IRl

Tew(F)

1/2
Tis| ), (hinAu—Auhllé,T)] hi*IRllo r-

TewW(F)

Combing the above estimates of Ty, T,, T3 and T}, dividing (3.33) by h;/ 2||R||0’p and summing over all
interior edges of 7 gives us (3.30).

For any F € 82((2), [u]l = 0 and for any F' € &, N 0Q, u® n = 0. Therefore, we obtain (3.31) and
finish the proof.
Theorem 3.3. Suppose that the conditions of Theorem 2.1 hold. Then, the a posteriori error estimator
n, 1s efficient:

;< Z (= willg. + 11p = pallg  + A2llAw = Awlf5 ), (3.34)
TEW(T)
2 2 2 2 2
m, S =l +llp = pull” + Z helldw — Apugfg (3.35)
T€T)

Lemma 3.6. Let (4, u, p) and (4, uy, py) be the eigenpairs of (2.2), (2.3) and (2.4), (2.5), respectively.
Then,

A=A =A(u—w,u—w) +2B,(u —w,, p— pp) — A0 —wy,u —uy). (3.36)
Proof. By using (2.16) and (2.17) we get

Ap(u, zy) + Bp(zp, p) = A0, z,), Vz, € X, (3.37)
Bu(w,0,) =0, VYo, € W,. (3.38)
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From (2.2) and (2.3) with (z,0) = (u, p), (2.4) and (2.5) with (z,,0,) = (uy, p) and (3.37), (3.38) we
deduce

Ap(u—wy,u—w,) +2B,(u—uy, p - pp) — A(u—uy,u—w,)
= Ay(u,u) - 2By(u, u,) + Ay(uy, v,) + 2Bg(u, p) — 2B, (uy, p)

=2B(u, py) + 2B, (uy, pp) — A(u,u) + 22(u, ) — A(wy, uy,)
= Ay, up) — Ay, wy) = A4, — A

We complete the proof.
Theorem 3.4. Under the conditions of Theorem 2.1,

A=Al s 73+ ) B (u = L, +llp = 9uplP). (3:39)

T€TH

Proof. Theorem 2.1 indicates that |ju — ||y is a term of higher order than ||lu —w,l||| +||p — pxllo- Hence,
from (3.36) and (3.21), we obtain

A= A4l < M= wllP + 1lp = palls + D~ hellp = pal e
Fe&),

Thus, from (2.39) and (3.21) we obtain (3.39).

Remark 3.1. Theorem 2.1 indicates that [|1,u;, — Au||y is a small quantity of higher order than |ju —
w,|ln+1p— pallo- Theorems 3.2 and 3.3 show that the estimator 1, for the eigenfunction error |ju—uy||, +
llp — pnllo 1s reliable and efficient up to data oscillation. Therefore, a good graded mesh is generated

by the adaptive algorithm for the estimator, which makes the eigenfunction error |ju — wy||, + |[p — pallo

reach the optimal convergence rate O(do f‘%). Hence, from [37-39] we can look forward to getting
> R (u—Iu?, +|p—-9,pl?) < dof . Thereby from (3.39) we have |1 — A, < dof 7. Therefore,

1+r1
T€TH
we think nfl can be regarded as the error estimator of A4,,.
Remark 3.2. Based on [17], for the problem (2.1) all analysis and conclusions in this paper are valid
for the mixed DGFEM using the Q; — Q;_; element.

4. Numerical experiments

When A is a multiple eigenvalue the exact eigenfunction approximated by the discrete eigenfunction
will change with the change of mesh diameter. In order to implement the adaptive algorithm better, we
will conduct our numerical experiments on simple eigenpairs (multiplicity 1).

Based on [40-42], we design an adaptive DGFEM algorithm (ADGFEM) by adopting the standard
adaptive loop with the steps solve, estimate, mark and refine with the a posteriori error estimator given
in Section 3. We compile our program with the help of the iFEM package [43] and solve the matrix
eigenvalue problem by means of the command "eigs’ in MATLAB.

We adapt the following symbols in our tables:

[: the [th iteration.

Aip,: the kth approximate eigenvalue at the /th iteration.

dof: the degrees of freedom at the /th iteration.
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4.1. The numerical results for the classical Stokes eigenvalue problem
4.1.1. The results for two-dimensional domains

The experiment is conducted in three two-dimensional domains the slit domain Qg; = (-1, 1)\
{0 < x <1,y =0}, the L-shaped domain ©; =(-1,1)?\ [0,1] x [-1,0] and the unit square domain
Qquare = (0, 1)%. In the step mark we select the parameter 8 = 0.5, and the initial mesh mp, With
ho = 1—‘/65 for the above three two-dimensional domains.

The reference values for the first eigenvalue of the classical Stokes eigenvalue problem are
Aigie = 299168629, A, = 32.13269465 and A;puere = 52.344691168 for Qg Q; and
Q,quare, TESPEctively (see [1,2]) and the reference value for the fourth eigenvalue reads A4 spuare =
128.209584313 in Qquqre (see [2]). We choose the values Ay = 40.1527333966 and A4; =
48.9835839778 as the reference values for the Q;, and Q; respectively, which are obtained by adaptive
procedure using P; — P, element with as much degrees of freedom as possible.

The error curves for the first eigenvalue of the classical Stokes eigenvalue problem are shown in
Figures 1-3 and the fourth eigenvalue are shown in Figures 4—6. The adaptive refined meshes for the
first eigenvalue of the classical Stokes eigenvalue problem by the ADGFEM are shown in Figure 7.

} ‘ — _ - -
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Figure 1. The error curves of the first eigenvalue by the ADGFEM using P,—P; element (left)
and P; — P, element (right) for the classical Stokes eigenvalue problem in Q.
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Figure 2. The error curves of the first eigenvalue by the ADGFEM using P,—P; element (left)
and P; — P, element (right) for the classical Stokes eigenvalue problem in Q;.
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Figure 3. The error curves of the first eigenvalue by the ADGFEM using P, —P; element (left)
and P; — P, element (right) for the classical Stokes eigenvalue problem in €2,4rc.
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Figure 4. The error curves of the fourth eigenvalue by the ADGFEM using P, — P
element (left) and P; — P, element (right) for the classical Stokes eigenvalue problem in Q.
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Figure 5. The error curves of the fourth eigenvalue by the ADGFEM using P, — P,
element (left) and P; — P, element (right) for the classical Stokes eigenvalue problem in €2;.
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Figure 6. The error curves of the fourth eigenvalue by the ADGFEM using P, — P,
element (left) and P; — P, element (right) for the classical Stokes eigenvalue problem
in quuare-

Figure 7. The adaptive meshes for the first eigenvalue of the classical Stokes eigenvalue
problem by the ADGFEM at [ = 25 refinement times using P; — P, element in Qg;, (left) and
Q, (right).

We observe from Figures 1-6 that the error curves and error estimators curves for ADGFEM are
both almost parallel to the straight line with a slope of —k which indicates that the error estimators are
reliable and efficient and the adaptive algorithm can achieve the optimal convergence order. This is
consistent with our theoretical results. We also observe from the error curves that under the same do f
the approximations obtained by the ADGFEM are more accurate than those computed on uniform
meshes.

The approximations of the first eigenvalue obtained by P; — P, element in Q;;, €7 and Q44 are
listed in Tables 1-3, respectively. These eigenvalues have the same accuracy as those in [1,2] which
achieve 9, 10 and 11 significant digits in Q;;, 7 and Q4. Tespectively. Furthermore, it shows that
our method is effective. The approximations of the fourth eigenvalue obtained by P; — P, element in
Qgir, Qp and Q4. are listed in Tables 4-6, respectively.
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Table 1. The approximation of the first eigenvalue of the classical Stokes eigenvalue problem

in Qg;, obtained by the ADGFEM using P; — P, element.

l dof A1y l dof A1y

1 53248 29.950023991 26 63206 29.916921865
5 53560 29.917626784 30 73424 29.916878484
10 54028 29.917180037 35 110630 29.916865373
15 54756 29.917731006 40 175812 29.916863378
25 61412 29.916940636 50 537862 29.916862882

Table 2. The approximation of the first eigenvalue of the classical Stokes eigenvalue problem

in Q; obtained by the ADGFEM using P; — P, element.

[ dOf /7.1’;,, [ dOf /7.1’;,,

1 39936 32.155997914 27 53612 32.132716405
5 40248 32.139031080 31 75140 32.132699385
15 41288 32.134171324 41 229424 32.132694780
24 48880 32.132752576 50 703092 32.132694653
25 50128 32.132737367 51 796276 32.132694652
26 51688 32.132725042

Table 3. The approximation of the first eigenvalue of the classical Stokes eigenvalue problem
in Q,gyqr. Obtained by the ADGFEM using P; — P, element.

[ dOf /ll,hl [ dOf /ll,h,

1 53248 52.3446926681 10 273780 52.3446911721
5 95316 52.3446912380 14 610376 52.3446911684
8 170612 52.3446911794 17 1186328 52.3446911679
9 220324 52.3446911751

Table 4. The approximation of the fourth eigenvalue of the classical Stokes eigenvalue
problem in Qg;, obtained by the ADGFEM using P; — P, element.

! dof Aa ! dof Aan

1 53248 40.156511989%4 27 106860 40.1527357945

15 55068 40.1528559112 41 457002 40.1527334275

25 91416 40.1527379227 51 1421836 40.1527333968

26 99788 40.1527369150 52 1618838 40.1527333966
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Table 5. The approximation of the fourth eigenvalue of the classical Stokes eigenvalue
problem in ), obtained by the ADGFEM using P; — P, element.

l dOf /14’;” [ dOf /14’;,1

1 39936 48.9840225306 15 147472 48.9835843422
2 39988 48.9836097839 16 180648 48.9835842150
5 40560 48.9836170562 19 313248 48.9835840155
10 73112 48.9835869187 24 807768 48.9835839802
13 101920 48.9835847163 27 1414244 48.9835839778
14 120952 48.9835845197

Table 6. The approximation of the fourth eigenvalue of the classical Stokes eigenvalue
problem in Q. obtained by the ADGFEM using P3; — P, element.

[ dOf /14’;,[ [ dOf /14,;,[

1 53248 128.2096127378 10 299052 128.2095843960
2 64376 128.2095967670 11 365664 128.2095843475
7 143312 128.2095846555 16 1057888 128.2095843150
8 187824 128.2095845453 17 1302184 128.2095843141
9 240084 128.2095844591

4.1.2. The results for three-dimensional domains

The experiment is conducted in two three-dimensional domains: Q; = (0,1)* \ {0 < x < 0.5,0 <

y <0.5,0.5 <z < 1}and Q, = (0, 1)>. In computation we select the initial mesh 7y, With hy = % and

6 =0.25.
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0.06 \\ RN —— error on adaptive mesh |
- — — — -The line with slope -2

NP
Error of the smallest eigenvalue

o
Q
N
|
|
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Figure 8. Adaptive mesh after /=12 refinement times (left) and the error curves (right) of the
first eigenvalue by the ADGFEM using P; — P, element for the classical Stokes eigenvalue
problem in €2;.
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Figure 9. Adaptive mesh after /=5 refinement times (left) and the error curves (right) of the
first eigenvalue by the ADGFEM using P; — P, element for the classical Stokes eigenvalue

problem in €2,.

The reference values for the first eigenvalue of the classical Stokes eigenvalue problem are Ag, =
70.98560 and Aq, = 62.17341 for the domains €, and €, respectively, which are calculated by adaptive
procedure with as much degrees of freedom as possible.

The adaptive refined meshes and the error curves are shown in Figures 8 and 9. We observe from
Figures 8 and 9 that the error estimators are reliable and efficient and the adaptive algorithm achieve
the optimal convergence order.

4.2. The numerical results for the MHD Stokes eigenvalue problem

V2

We conduct experiments in €y and Qgq.. We select 8 = 0.5 and the initial mesh 7, with hy = ¢

for the above two two-dimensional domains.

For the MHD Stokes eigenvalue problem with Ha = 5, we choose the values A; square
64.68920947 and A, 1, = 40.2764915 as the reference values for ... and €;, respectively, and while
Ha = 30, we choose the values A yjuqre = 234.34458093 and A, ; = 125.24247135 as the reference
values for Q... and Q; respectively. These reference values are obtained by the ADGFEM using
P; — P, element with as much degrees of freedom as possible.

The error curves for the first eigenvalue are shown in Figures 10 and 11 and the adaptive refined
meshes for the first eigenvalue of the MHD Stokes eigenvalue problem by the ADGFEM are shown
in Figure 12. We observe from Figures 10 and 11 that the error curves and error estimators curves
are both approximately parallel to the line with slope —k, which indicates that the error estimators are
reliable and efficient and the adaptive algorithm can achieve the optimal convergence order.

The approximations of the first eigenvalue for the MHD Stokes eigenvalue problem in €. using
P; — P, element are listed in Tables 7 and 8, from which we can see that the approximate eigenvalues
also has high accuracy.

We also use the ADGFEM with P, — P,_1(k = 1,2) element to calculate the classical Stokes
eigenvalue problem and the MHD Stokes eigenvalue problem. The numerical results indicate that
the discrete formulations are stable and effective. Due to article length limitations, these results are not
listed in the paper.
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Figure 10. The error curves of the first eigenvalue by the ADGFEM using P; — P, element
for the MHD Stokes eigenvalue problem with Ha = 5 in 4. (left) and Q; (right).
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Figure 11. The error curves of the first eigenvalue by the ADGFEM using P; — P, element
for the MHD Stokes eigenvalue problem with Ha = 30 in Q4,4 (left) and Q; (right).

Figure 12. The adaptive meshes for the first eigenvalue of the MHD Stokes eigenvalue
problem when Ha = 5 by the ADGFEM at [ = 25 refinement times using P; — P, element in
Q; (left) and at / = 8 refinement times using P3 — P, element in Q44 (right).
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Table 7. The approximation of the first eigenvalue of the MHD Stokes eigenvalue problem

with Ha = 5 in Q4 obtained by the ADGFEM using P; — P, element.

l dOf ll,hl ! dOf /ll,hl

1 53248 64.689210998 5 155844 64.689209484
2 66664 64.689209879 6 238108 64.689209476
3 89180 64.689209585 7 343720 64.689209472
4 114036 64.689209503 8 482144 64.689209470

Table 8. The approximation of the first eigenvalue of the MHD Stokes eigenvalue problem

with Ha = 30 in Q4. obtained by the ADGFEM using P; — P, element.

[ dOf /11’;” [ dOf /11’;”

1 53248 234.34471492 6 225472 234.34458119
2 57720 234.34462502 7 332124 234.34458104
3 73944 234.34459345 8 494832 234.34458097
4 106600 234.34458500 9 738192 234.34458094
5 158964 234.34458219 10 994656 234.34458093

5. Conclusions

In this paper, for a class of Stokes eigenvalue problems including the classical Stokes eigenvalue
problem in R¢ (d = 2,3) and the MHD Stokes eigenvalue problem et al, based on the velocity-pressure
formulation we studied the residual type a posteriori error estimates of the mixed DGFEM using P, —
Pi—1 (k > 1) element on shape-regular simplex meshes. We proposed the a posteriori error estimator
for approximate eigenpairs and proved the reliability and efficiency of the estimator for eigenfunctions
and also analyzed their reliability for eigenvalues. The characteristic of the adaptive DGFEM is that
it can use high-order elements and capture local low smooth solutions and can achieve the optimal
convergence order O(do f ~%) in two and three-dimensional domains. Our method is easy to implement
on existing software packages. The numerical results confirmed our theoretical predictions and showed
that our method is stable, efficient and can obtain high-accuracy approximate eigenvalues.
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