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Abstract: In this paper, we propose a new Newton method for minimizing convex optimization
problems with singular Hessian matrices including the special case that the Hessian matrix of the
objective function is singular at any iteration point. The new method we proposed has some updates
in the regularized parameter and the search direction. The step size of our method can be obtained by
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1. Introduction

We consider the convex optimization problem as follows:

min
x∈Rn

f (x), (1.1)

where f : Rn → R is twice continuously differentiable. We denote the gradient and the Hessian matrix
of f at x by g(x) = ∇ f (x) and G(x) = ∇2 f (x), respectively. ∥·∥ denotes the Euclidean norm. The
function f (x) is convex and differentiable, so if

g(x∗) = 0, x∗ ∈ Rn, (1.2)

then, x∗ will be a solution of (1.1).
In order to solve (1.1), there are many different kinds of methods [1–8]. Almost all of these methods

use line search to get a sequence {xk}:

xk+1 = xk + αkdk,
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where αk > 0 is the step size, dk is the search direction and it is descent, that is to say f (xk+1) < f (xk).
To simplify the notation, in this paper, we set gk = g(xk) and Gk = G(xk) which denote the

gradient and the Hessian matrix of f at xk, respectively. Similarly, the ideas of some optimization
methods can also be used to solve systems of nonlinear equations, such as the cubic Newton-like
method [9], Chebyshev-like method [10,11] and high order hybrid method [12]. These methods
are used to solve systems of nonlinear equations by improving the original optimization methods.
Therefore, the application and promotion of all kinds of classical optimization methods are very
extensive. Among these efficient optimization methods, the classical Newton method is famous
for its quadratic convergence property, but when we use classical Newton method to solve convex
optimization problems, it has to satisfy the condition that the Hessian matrix of the objective function
is positive definite. However, the Hessian matrix of the objective function is not always positive
definite. Especially, when Gk is not positive definite but it is nonsingular, the Newton search direction
dk = −G−1

k gk may not be a descent direction, then we use −dk as the search direction instead.
But when Gk is singular, we could not calculate G−1

k , so the search direction is not well defined.
That is to say, if the Hessian matrices are singular, the classical Newton method may not work
well. It is too difficult to ensure Hessian matrices of f (x) are nonsingular everywhere. So, how
to solve the optimization problem with singular Hessian matrix is very important. In particular,
when the Hessian matrices of the objective function f (x) are singular at any iteration point, such as
f (x) = 1

2

∑n−1
i=1 (xi − xi+1)2 + 1

12

∑n−1
i=1 αi(xi − xi+1)4, research on how to quickly and effectively solve the

minimum value of this kind of special function is not common.
In the following chapters, this paper will put forward a new Newton method to solve this

kind of optimization problem with special objective function. For the cases when Gk might be
positive semidefinite, there are many modifications of the classical Newton method which can solve
optimization problems effectively and satisfy global convergence as well [13–16]. Goldfeld et al. [17]
first proposed a modified Newton method to solve some optimization problems when their Hessian
matrices are not positive definite. The framework of the method is as follows:
Algorithm 1.1
step 1: Set Gk = Gk + νkI, if Gk is positive definite, νk = 0; otherwise, νk , 0.
step 2: Compute the Cholesky factorization of Gk, Gk = LkDkLT

k .
step 3: Compute dk by Gkdk = −gk.
step 4: Set xk+1 = xk + dk.

In Algorithm 1.1, they add a new parameter νk. In step 1, they set νk > 0, but it could not be too big
because it should be a little bit bigger than the absolute value of the minimum negative eigenvalue of Gk.
In step 2, Gk is a symmetric positive definite matrix, so it has a Cholesky factorization Gk = LkDkLT

k ,
where Lk is a lower triangular matrix with diagonal identity and Dk is a diagonal matrix. How to
determine the value of νk is the key to this method. Gill and Murray [18] proposed a modified Cholesky
factorization algorithm to get νk. They set νk = min{b1, b2}, where b1, b2 are two upper bounds on νk,
and b1, b2 can be calculated as follows. In order to get b1, they apply the modified algorithm to Gk,
and they have Gk + E = LkDkLT

k . E is a diagonal matrix and it has positive diagonal elements. If Gk

is positive definite, E = 0 and they set νk = 0, otherwise, they compute an upper bound on νk by the
Gerschgorin disk theorem, which is defined as follows:

b1 = | min
1≤i≤n
{(Gk)ii −

∑
j,i

|(Gk)i j|}| ≥ |min
i
λi|,
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where λi is the eigenvalue of Gk. Besides that, they let b2 = maxi{eii}, where eii is the diagonal element
of E and b2 is an upper bound on νk. The new Cholesky factorization algorithm can also work well
when Gk is not positive definite.

In order to deal with more cases when Gk is a positive semidefinite matrix, in addition to
the Cholesky factorization method described above, more and more people are trying to use
the regularization method. Classical Tickonov regularization of the cost function is a common
regularization method. The essence of classical Tickonov regularization is to transform the singular
covariance matrix inversion into the non-singular matrix inversion by adding a very small perturbation
λ > 0 to each diagonal element of the covariance matrix of the non-full rank matrix A, so as to greatly
improve the numerical stability of solving the non-full rank matrix Ax = b, where b is a vector, the
perturbation λ is also called the regularization parameter. This regularization idea can also be applied
to the Newton method for solving convex optimization problems when Gk is positive semidefinite.
In recent years, the regularized Newton method is another more common modified Newton method
which adds a regularized parameter µk > 0 to avoid the case when Gk is singular [19–22]. The search
direction dk can be obtained by

(Gk + µkI)dk = −gk. (1.3)

Recently, there are many different kinds of definitions of µk. In [23] Polyak proposed a regularized
Newton method with µk = ∥gk∥. Ueda and Yamashita also proposed a regularized Newton method [24],
they set

µk = Λk + c∥gk∥
δ, Λk = max{0,−λmin(∇2 f (xk))},

where c > 0 is a positive constant, δ ≥ 0 and λmin(∇2 f (xk)) is the minimal eigenvalue of the square
matrix ∇2 f (xk). Besides that, they [25] proposed an adaptive regularized Newton method in which

µk = max{0,−λmin(∇2 f (xk))} + σk∥gk∥
δ,

where σk > 0 is defined as the adaptive regularized parameter and δ ≥ 0.
In order to solve the convex optimization with singular Hessian matrices more quickly and

effectively, there are also some updates in the search direction dk. For some given definitions of µk,
normally, the search direction can be obtained by

dk = −(Gk + µkI)−1gk. (1.4)

Fan and Yuan [26] proposed a regularized Newton method which can be applied to solve convex
optimization problems with singular Hessian matrices, and they proved the method had quadratic
convergence. In their method, the modification of dk is crucial. The search direction of the classical
Newton method is dN

k = −G−1
k gk, and if Gk is singular we may need to compute the Moore-Penrose

step dMP
k = −G+k gk, which is the solution of mind∥gk + Gkd∥2. The G+k can be obtained by singular

value decomposition, but sometimes it is inhibitory. In order not to compute dMP
k , Fan and Yuan first

give the regularized parameter µk = σk∥gk∥ where σk > 0 is an adaptive regularized parameter and dk

is the solution of (Gk + µkI)d = −gk. The parameter µk makes an error between dk and dMP
k , so they

replace −gk by −gk + µkdMP
k . Then, they have (Gk + µkI)d = −gk + µkdMP

k , and dMP
k is a solution of it.

Finally, they replace the dMP
k with dk, which is the best approximation they can obtain. So they have

(Gk + µkI)d = −gk + µkdk, the solution of it is a correction of dk, which is defined by sk. They set

sk = dk + d̃k, d̃k = (Gk + µkI)−1µkdk. (1.5)
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So, sk is closer to dMP
k than dk.

In [27], Zhou and Chen proposed a regularized Newton method and they proved the cubic
convergence of it under the constraint of local error. In their method, they also modified the search
direction dk, and they set sk = dk + d̂k, where d̂k is the solution of

(Gk + µkI)d = −g(yk), yk = xk + dk, µk = σk∥gk∥, (1.6)

where σk > 0 is also an adaptive regularized parameter.
The similarity between the methods in the above two articles is that they all update the iteration by

xk+1 = xk + sk without line search. Li et al. [28] proposed two inexact regularized Newton methods
which have local quadratic convergence under a local error bound condition, the search directions of
two methods are different, one of them is that

(Gk + µkI)dk + gk = rk, ∥rk∥= O(∥gk∥
2), µk = C∥gk∥, (1.7)

another is that
(Gk + µkI)dk + gk = rk, ∥rk∥≤ αµk∥dk∥, µk = C∥gk∥, (1.8)

where α ∈ (0, 1), C > 0. It is clear that the dk of (1.7) and (1.8) are not exactly the same as (1.4), but
when rk = 0, they are the same.

In this paper, we propose a new Newton method to solve some special convex optimization problems
whose Hessian matrices of the objective functions are singular everywhere. To begin with, we define
a new regularized parameter µk = σk∥gk∥

δ, where σk > 0 is an adaptive regularized parameter and
0 < δ ≤ 1. As for the modification of search direction, we will make sure it is a descent direction and
when the Hessian matrices of f (x) are singular it can also work well. In this case, we define a new
search direction as follows,

d̄k = (Gk + µkI)−1νµ2
kdk, (1.9)

where dk is the same as (1.4). And in order to obtain satisfactory results, we add the parameter ν > 0
is a constant. Different from that in [26] and [27], we use Armijo backtracking line search along d̄k

to get the step size αk. In a large number of numerical experiments, we can see that the calculation
result is better when 10 ≤ ν ≤ 50. The new search direction d̄k allows our method to maintain the
fast convergence of classical Newton method and by the numerical experiments we can see that it will
increase computational efficiency.

The paper is organized as follows: In Section 2, we introduce the new Newton method in detail.
In Section 3, we present the global convergence analysis of the algorithm. We show some numerical
experimental results in Section 4. In the end, we will give the conclusion of this paper in Section 5.

2. The algorithm

In this section, we give the new Newton method. As we know, f (x) is convex and Gk is the Hessian
matrix of f (x), Gk is symmetric positive semidefinite. Obviously, Gk + µkI is positive definite. Firstly,
we can get dk by solving

(Gk + µkI)dk = −gk, (2.1)

and by (1.9) we know that d̄k is the solution of

(Gk + µkI)d = νµ2
kdk. (2.2)
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Then, we have
d̄T

k gk = −νgT
k (Gk + µkI)−2µ2

kgk < 0, (2.3)

where d̄k is the same as (1.9) and we can see that d̄k is always a descent direction for f (xk) at xk. We
use the Armijo backtracking line search to obtain αk. The adaptive parameter σk will be updated by
using the trust region method like that in [21] which thinking of σk as the trust region radius, and the
parameters γ1, γ2 are used to adjust the reduction and expansion of the trust region radius.

Next, we will give the algorithm of our new method.
Algorithm 2.1
step 0: Given x0 ∈ Rn, σ0 ≥ σmin, 0 < δ ≤ 1, 0 < β < 1, 0 < γ1 < 1 < γ2, 0 < η1 < η2 ≤ 1, 0 < η <
1, σmin > 0, 0 < τ ≤ 1,ν > 0. Set µ0 = σ0∥g0∥

δ and k = 0.
step 1: If ∥gk∥= 0, stop. Otherwise, compute dk and d̄k by solving (Gk + µkI)dk = −gk, (Gk + µkI)d̄k =

νµ2
kdk successively.

step 2: Execute Armijo backtracking line search along d̄k. Compute qk by

qk =

 f (xk), i f k = 0;
τ f (xk) + (1 − τ)qk−1, i f k ≥ 1.

(2.4)

Set i = 0, α(i)
k = 1.

while f (xk + α
(i)
k d̄k) > qk + ηα

(i)
k gT

k d̄k

α(i+1)
k = βα(i)

k
i = i + 1

end while.
Set αk = α

(i)
k , xk+1 = xk + αkd̄k.

step 3: Compute µk+1 as

σk+1 =


max{σmin, γ1σk}, i f αk ≥ η2;
σk, i f η1 ≤ αk < η2;
γ2σk, i f αk < η1.

(2.5)

And µk+1 = σk+1∥gk+1∥
δ.

Set k = k + 1, and go to step 1.

3. Convergence analysis

In this section, we suppose that the gradient of f (x) at the initial point x0 exists, that is to say g0 , 0.
We first give two assumptions.
Assumption 3.1. By Algorithm 2.1, we can get the set {xk}which is contained in a compact setΩ ⊂ Rn.
Assumption 3.2. The Hessian matrix Gk satisfies ∥Gk∥≤ mG, mG > 0.

Lemma 3.1. Let the set {xk} is infinite and satisfy Assumption 3.1. Suppose that ∥gk∥> 0 for all k ≥ 0.
Then,

qk ≥ f (xk) and qk > qk+1, k ≥ 0. (3.1)
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Proof. We use induction to prove this lemma.
By (2.4) we know q0 = f (x0). From the Armijo backtracking line search rule, f (x1) = f (x0+α0d̄0) ≤

f (x0)+ ηα0gT
0 d̄0 < f (x0) = q0. In addition, q0 − q1 = τ[q0 − f (x1)] > 0. So, when k = 0, the conclusion

of this lemma holds.
Next, we assume that qk−1 ≥ f (xk−1), and qk−1 > qk hold for some k > 1.
As we know, d̄k−1 is a descent direction and qk−1 ≥ f (xk−1), so in Algorithm 2.1, the linear search

rule is well defined. Hence, f (xk) = f (xk−1 +αk−1d̄k−1) ≤ qk−1 + ηαk−1gT
k−1d̄k−1 < qk−1. By the definition

of qk, qk − f (xk) = (1 − τ)[qk−1 − f (xk)] ≥ 0. Since qk ≥ f (xk), we have f (xk+1) < qk by the line search
rule. Therefore, qk − qk+1 = τ[qk − f (xk+1)] > 0. □

The regularized parameter µk = σk∥gk∥
δ, then if ∥gk∥> 0, Gk +µkI is positive definite. Then, we will

give both an upper bound and a lower bound of −gT
k d̄k in the following lemma.

Lemma 3.2. Suppose Assumption 3.2 holds. If ∥gk∥> 0, then we have

−gT
k d̄k ≥

νµ2
k∥gk∥

2

(mG + µk)2 , (3.2)

and
−gT

k d̄k ≤ ν∥gk∥
2. (3.3)

Proof. By the definition of dk and d̄k, we have

dk = −(Gk + µkI)−1gk (3.4)

and
d̄k = −(Gk + µkI)−2νµ2

kgk. (3.5)

In order to complete the proof, we just do the calculation.

−gT
k d̄k = νgT

k (Gk + µkI)−2µ2
kgk

≥
νµ2

k∥gk∥
2

λ2
max(Gk + µkI)

=
νµ2

k∥gk∥
2

[λmax(Gk) + µk]2 .

Since ∥Gk∥≤ mG, the lower bound has been obtained.
Next, we prove the upper bound.

−gT
k d̄k = gT

k (Gk + µkI)−2µ2
kgk

≤
νµ2

k∥gk∥
2

λ2
min(Gk + µkI)

=
νµ2

k∥gk∥
2

[λmin(Gk) + µk]2

≤ ν∥gk∥
2.

Since Gk is positive semidefinite, we have λmin(Gk) ≥ 0. This finishes the proof. □
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As for ∥d̄k∥, we will give an upper bound of it in the next lemma.

Lemma 3.3. If ∥gk∥> 0 for all k ≥ 0, then,

∥d̄k∥≤ ν∥gk∥. (3.6)

Proof. By the definition of d̄k, we have

∥d̄k∥ = ∥−(Gk + µkI)−2νµ2
kgk∥

≤
νµ2

k∥gk∥

λ2
min(Gk + µkI)

=
νµ2

k∥gk∥

[λmin(Gk) + µk]2 .

Since Gk is positive semidefinite,
∥d̄k∥≤ ν∥gk∥,

so we can prove (3.6). □

In addition to the upper bound of ∥d̄k∥, we give the lower bound of αk in next lemma.

Lemma 3.4. Suppose Assumption 3.2 holds, and we further suppose that g(x) is Lipschitz continuous
which satisfies:

∥g(y) − g(x)∥≤ Lg∥y − x∥, ∀x, y ∈ Rn,

where Lg is the Lipschitz constant. Then, there exists c =
2β(1 − η)
νLg

such that

αk ≥ min

1, c
(
µk

mG + µk

)2
 . (3.7)

Proof. If αk = 1, then (3.7) holds.
Now, we consider the case that αk < 1. According to the Armijo backtracking line search rule in

Algorithm 2.1, we know that

f (xk +
αk

β
d̄k) > qk + η

αk

β
gT

k d̄k ≥ f (xk) + η
αk

β
gT

k d̄k. (3.8)

Since gk is Lipschitz continuous, then,

f (xk +
αk

β
d̄k) ≤ f (xk) +

αk

β
gT

k d̄k +
1
2

(
αk

β
)2Lg∥d̄k∥

2. (3.9)

By (3.8) and (3.9),
1
2
αk

β
> −

(1 − η)gT
k d̄k

Lg∥d̄k∥
2
.
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Therefore,

αk >
2β(1 − η)

Lg
·
−gT

k d̄k

∥d̄k∥
2

≥
2β(1 − η)

Lg
·
νµ2

k∥gk∥
2

(mG + µk)2 ·
1

ν2∥gk∥
2

=
2β(1 − η)
νLg

·

(
µk

mG + µk

)2

.

We use (3.2) and (3.6) in the second inequality. Let c = 2β(1−η)
νLg

, then we can complete the proof. □

Theorem 3.1. Suppose Assumption 3.1 and Assumption 3.2 hold, if { f (xk)} has a lower bound and
there exists c > 0 such that (3.7) holds, then,

lim inf
k→∞

∥gk∥= 0. (3.10)

Proof. According to Algorithm 2.1, we have

qk − f (xk+1) ≥ ηαk(−gT
k d̄k). (3.11)

Therefore, it follows from (3.2) and (3.7) that

qk − f (xk+1) ≥
ηαkνµ

2
k∥gk∥

2

(mG + µk)2 ≥
cηνµ4

k∥gk∥
2

(mG + µk)4 . (3.12)

+∞∑
k=0

(qk − qk+1) =
+∞∑
k=0

τ[qk − f (xk+1)] ≥
+∞∑
k=0

cτηνµ4
k∥gk∥

2

(mG + µk)4 . (3.13)

Since { f (xk)} has a lower bound and we can know from (2.3) that qk ≥ f (xk), qk > qk+1, therefore,
{qk} also has a lower bound and the first term in (3.13) is convergent. Thus, we have

+∞∑
k=0

µ4
k∥gk∥

2

(mG + µk)4 < ∞. (3.14)

Case (i) If
lim inf

k→∞
∥gk∥= 0, (3.15)

then, we can complete the proof.
Case (ii) If there exists ϵ > 0 such that ∥gk∥≥ ϵ, then, we have

lim
k→∞
µk = 0. (3.16)

From Algorithm 2.1, we know σk ≥ σmin > 0, so, it contradicts (3.16).
Above all, we can prove this theorem. □
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4. Numerical experimental results

In this section, we give some numerical experimental results on comparisons of the new Newton
method, the adaptive regularized Newton method (ARNM), a common form of regularized Newton
method (RNM) and the method proposed by Fan and Yuan in [26]. In Fan and Yuan’s method, they
use (1.5) as the search direction in their algorithm, which is similar to our algorithm, so we compare it
with Algorithm 2.1 and call it FY in subsequent paper.

Now, we give the ARNM and the RNM.
Algorithm 4.1: ARNM
step 0: Let δ = 0.25, β = 0.5, γ1 = 0.5, γ2 = 2, η1 = 0.25, η2 = 0.75, η = 0.5, σmin = 0.5, τ = 0.5.
Given x0 ∈ Rn, σ0 ≥ σmin, set µ0 = σ0∥g0∥

δ and k = 0.
step 1: If ∥gk∥= 0, stop. Otherwise, compute dk by solving (Gk + µkI)dk = −gk.
step 2: Execute Armijo backtracking line search along dk. Compute qk by

qk =

 f (xk), i f k = 0;
τ f (xk) + (1 − τ)qk−1, i f k ≥ 1.

(4.1)

Set i = 0, α(i)
k = 1.

while f (xk + α
(i)
k dk) > qk + ηα

(i)
k gT

k dk

α(i+1)
k = βα(i)

k
i = i + 1

end while.
Set αk = α

(i)
k , xk+1 = xk + αkdk.

step 3: Update σk. Let

σk+1 =


max{σmin, γ1σk}, i f αk ≥ η2;
σk, i f η1 ≤ αk < η2;
γ2σk, i f αk < η1.

(4.2)

And µk+1 = σk+1∥gk+1∥
δ.

Set k = k + 1, and go to step 1.
Algorithm 4.2: RNM
step 0: Let parameters δ = 0.55, σ = 0.4, τ = 0. Given x0 ∈ Rn, set µk = ∥gk∥

1+τ and k = 0.
step 1: If ∥gk∥= 0, stop. Otherwise, compute dk by solving (Gk + µkI)dk = −gk.
step 2: Find the smallest nonnegative integer m such that

f (xk + δ
mdk) ≤ f (xk) + σδmgT

k dk.

Let mk = m, αk = δ
mk and xk+1 = xk + αkdk.

step 3: Set k = k + 1, and go to step 1.
We test all algorithms on the unconstrained nonlinear optimization problem which can be found

in [28]. The function is:

f (x) =
1
2

n−1∑
i=1

(xi − xi+1)2 +
1

12

n−1∑
i=1

αi(xi − xi+1)4, (4.3)
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where αi ≥ 0, (i = 1, . . . , n − 1) are constants. We choose different values of x0, αi and n to test all the
algorithms. Clearly, f (x) is convex and the minimum set of it is

X = {x ∈ Rn|x1 = x2 = · · · = xn}.

The Hessian matrix of f (x) is as follows:

∇2 f (x) =



1 −1
−1 2 −1

. . .
. . .
. . .

−1 2 −1
−1 1


+



a1 −a1

−a1 a1 + a2 −a2
. . .

. . .
. . .

−an−2 an−2 + an−1 −an−1

−an−1 an−1


where ai = αi(xi − xi+1)2, (i = 1, . . . , n − 1) are symmetric semidefinite for all x. Besides, the matrix
∇2 f (x) is singular for any x because the sum of each of its columns is zero.

All programs are written in Matlab. When comparing with the ARNM and the RNM, for
Algorithm 2.1, we give the values of each parameter as follows: δ = 0.25, β = 0.5, γ1 = 0.5, γ2 = 2,
η1 = 0.25, η2 = 0.75, η = 0.5, σmin = 0.5, τ = 0.5, ν = 37. When compared with Fan and Yuan’s
method (FY), we adjust the parameter values appropriately, we set δ = 0.5, β = 0.5, γ1 = 0.5, γ2 = 2,
η1 = 0.25, η2 = 0.75, η = 0.5, σmin = 0.25, τ = 0.5, ν = 25. For the FY, the values of all parameters
are the same as that in [23]. For the test function, we choose n = 10, 20, 30, . . . , 100, 500, 1000, and
for every n we set αi = 0, 1, i, (i = 1, . . . , n − 1). While the parameter n and αi are selected, we set
(x0)i = i, n − i, 1/i, (i = 1, . . . , n − 1).

In order to compare the performance of these algorithms, we use the same distribution function as
that in [29]. We use S to represent a set of solutions, and Ps is a set of problems which can be solved
by the solutions in S . Besides, a measure for evaluation required to solve a problem p by a solution s
is denoted by tp,s, and for each p we have t∗p = min{tp,s|s ∈ S }. The distribution function is defined as
follows:

FS
s (ρ) =

|{p ∈ Ps|tp,s ≤ ρt∗p}|

|Ps|
, ρ ≥ 1. (4.4)

In the analysis of our numerical experimental results, S represents the set of all the algorithms and
s ∈ S represents one of these algorithms. Ps is a set of all convex optimization problems that need to
be solved and p ∈ P is one of these optimization problems. The measure for evaluation tp,s can be the
number of times the objective function is solved when solving the optimization problem or the number
of iterations, CPU time and so on.

Figure 1 shows the comparison of Algorithm 2.1, the ARNM and the RNM for n f and nl, where n f

denotes the number of times the objective function is solved and nl denotes the number of iterations.
Figure 2 shows the comparison of Algorithm 2.1, the ARNM and the RNM for nt, where nt denotes
the CPU time. Figure 3 shows the comparison of Algorithm 2.1 and the FY for nl and nt.
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Figure 1. Comparison of Algorithm 2.1, the ARNM and the RNM for n f and nl.
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Figure 2. Comparison of Algorithm 2.1, the ARNM and the RNM for nt.
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Figure 3. Comparison of Algorithm 2.1, and the FY for nl and nt.

From Figure 1 we can see that for comparison with the RNM, n f of them do not have much
difference but nl of Algorithm 2.1 is less than that of the RNM. When compared with the ARNM,
both n f and nl of Algorithm 2.1 are much less than those of the RNM. From Figure 2, we can easily
see that nt of Algorithm 2.1 has advantages over the RNM and the ARNM. For comparison with the
FY, we can see from Figure 3 that nl of Algorithm 2.1 is much less than that of the FY and nt of
Algorithm 2.1 doesn’t have significant advantages compared with the FY.

5. Concluding remarks

In this paper, we have proposed a new Newton method which can solve convex optimization
problems with singular Hessian matrices, especially for the special case when the Hessian matrices
of the objective function are singular at any iteration point. We have shown the global convergence
of the new method. Furthermore, we have provided some numerical experimental results and from
the figures we can clearly see the comparison between Algorithm 2.1 and other methods in different
aspects. In terms of the number of times the objective function is solved, Algorithm 2.1 does better than
the ARNM and the RNM. In terms of the number of iterations, Algorithm 2.1 has a slight advantage
over the ARNM, the RNM and the FY. As for the CPU time, Algorithm 2.1 is less than the ARNM
and the RNM, but there is no significant difference compared with the FY. So overall, Algorithm 2.1
performs better than the ARNM, the RNM and the FY.
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