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Abstract: We are concerned with the problem with Minkowski-curvature operator on an exterior
domain 

−div
(

∇u√
1−|∇u|2

)
= λK(|x|) f (u)

uγ in Bc,

∂u
∂n |∂Bc = 0, lim

|x|→∞
u(x) = 0,

(P)

where 0 ≤ γ < 1, Bc = {x ∈ RN : |x| > R} is a exterior domain in RN , N > 2, R > 0, K ∈
C([R,∞), (0,∞)) is such that

∫ ∞
R

rK(r)dr < ∞, the function f : [0,∞) → (0,∞) is a continuous
function such that lim

s→∞

f (s)
sγ+1 = 0 and λ > 0 is a parameter. We show that problem (P) has at least one

positive radial solution for all λ > 0. The proof of our main result is based upon the method of sub and
super solutions.

Keywords: mean curvature operator; exterior domain; singular; positive radial solutions; sub and
super solutions
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1. Introduction

In this paper, we are concerned with the problem with Minkowski-curvature operator on an exterior
domain 

−div
(

∇u√
1−|∇u|2

)
= λK(|x|) f (u)

uγ in Bc,

∂u
∂n |∂Bc = 0, lim

|x|→∞
u(x) = 0,

(1.1)

where 0 ≤ γ < 1, Bc = {x ∈ RN : |x| > R} is a exterior domain in RN , N > 2, R > 0, the function
f : [0,∞) → (0,∞) is a continuous function such that lim

s→∞

f (s)
sγ+1 = 0 and λ > 0 is a parameter. Assume

that
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(K1) K ∈ C([R,∞), (0,∞)) is such that
∫ ∞

R
rK(r)dr < ∞.

The prescribed mean curvature equation

−div
( ∇u√

1 − |∇u|2

)
= H(x, u) in Ω (1.2)

with some boundary value condition is related to problems on a flat Minkowski space with a Lorentzian
metric in differential geometry and the theory of classical relativity, see R. Bartnik and L. Simon [1],
C. Gerhardt [6] and A. E. Treibergs [15].

If Ω is a strictly convex bounded domain in RN with C2 boundary ∂Ω, there are some classic papers
on the existence of solutions of Eq (1.2) with Dirichlet, Neuuman or periodic boundary conditions
using the fixed point theory or topological methods (mostly bifurcation technique), see Bereanu,
Jebelean and Mawhin [2, 3], Bereanu, Jebelean and Torres [4], Ma, Gao and Lu [10], Obersnel, Omari
and Rivetti [12] and the references therein.

The presence in the existing literature of very few results about the (1.2) in a exterior domain is
in sharp contrast with the wide number of works that are available in the bounded domains setting.
The likely reasons are that the singular coefficient and singular weight will occur in the problems
considered on the exterior of a ball and the concave-convex properties of solutions are uncertain owing
to the influence of the mean curvature operator and coefficient function, see [16].

Yang, Lee and Sim [16] concerned with the existence of nodal radial solutions of the following
problem 

−div
(

∇u√
1−|∇u|2

)
= λk(|x|)g(u) in Bc,

u|∂Bc = 0, lim
|x|→∞

u(x) = 0,
(1.3)

where g : R → R a continuous and odd function satisfying g(s)s > 0 for s , 0. As the main
assumption on the nonlinearity they required g(0) = 0, which guarantees that 0 is the trivial solution of
the problem (1.3). Therefore, the bifurcation from the trivial solution can be considered in [16].

Although Yang, Lee and Sim [16] obtained the existence result of the radial solutions of the problem
with mean curvature operator on the exterior domain of a ball; it is worth noticing, however, that the
application to problem (1.1) of the method described in [16] is not feasible as nonlinearity in (1.1) is
singular at 0.

Existence of positive radial solutions of the prescribed mean curvature problem (1.1) with singular
nonlinearity on the exterior domain of a ball have not been introduced yet as far as the authors know.

The novelty of this paper is twofold: we develop a method of sub-super solutions for a singular
problem with mean curvature operator, and provide a existence result of the positive radial solutions
for problem (1.1) which is a prescribed mean curvature problem with singular nonlinearity on the
exterior domain of a ball.

In order to study the radial solutions of (1.1), we transform problem (1.1) into the one-dimensional
problem via consecutive transformations r = |x| and t = ( r

R )−(N−2) as follows −
(
p(t)ϕ

( 1
p(t)u

′(t)
))′

= λh(t) f (u(t))
(u(t))γ , t ∈ (0, 1),

u(0) = u′(1) = 0,
(1.4)
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where ϕ(y) =
y√
1−y2

with y ∈ (−1, 1), p and h can be obtained as

p(t) =
R

N − 2
t−

N−1
N−2 , h(t) = p2(t)K(Rt−

1
N−2 ). (1.5)

Notice that p(t) > 0, p′(t) ≤ 0, t ∈ [0, 1] and

h ∈ H = {q ∈ C((0, 1), (0,∞)) :
∫ 1

0
sq(s)ds < ∞}

since K satisfies
∫ ∞

R
rK(r)dr < ∞ (see [16]). We assume that

(F1) f (s) > 0 for all s ≥ 0;
(F2)lim

s→∞

f (s)
sγ+1 = 0.

Theorem 1.1. Let (F1), (F2) and (K1) hold. Then problem (1.1) has at least one positive radial solution
for all λ > 0.

Example 1.1. Consider the problem (1.1) with

K(r) =
1
r3

and

f (s) = sγ + 2.

Obviously, lim
s→0

f (s)
sγ = ∞, i.e. nonlinearity f (s)

sγ is singular at 0. It is easy to check that K and f satisfies

∫ ∞

R
rK(r)dr =

1
R
< ∞, lim

s→∞

f (s)
sγ+1 = lim

s→∞

sγ + 2
sγ+1 = 0

and (F1). According to Theorem 1.1, the problem (1.1) has at least one positive radial solution for all
λ > 0.

As a by-product of the proof of Theorem 1.1, we also proved the following theorem.

Theorem 1.2. Assume that h ∈ H. Then for any fixed M > 0, the problem −
(
p(t)ϕ

( 1
p(t)u

′(t)
))′

=
Mh(t)
(u(t))γ , t ∈ (0, 1),

u(0) = u′(1) = 0
(1.6)

have a unique positive solution w ∈ C([0, 1], [0,∞)) ∩C1((0, 1],R).

Remark 1.1. For the existence of solutions of the problems with a elliptic operator on an unbounded
domain, see Dai et al. [5], Iaia [7, 8], Ko et al. [9] and Ma et al. [11] and the references therein.
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2. An auxiliary problem

Motivated by [13], we consider the perturbation problem −
(
p(t)ϕ

( 1
p(t)u

′(t)
))′

=
Mh(t)
(u(t))γ , t ∈ (0, 1),

u(0) = n, u′(1) = 0,
(2.1)n

where n ≥ 0 is any constant, M > 0 is a fixed constant, p, h are defined by (1.5).

Lemma 2.1. For each fixed constant n ≥ 0, problem (2.1)n has at most one positive solution.

Proof. Assume on the contrary that the functions u1 and u2 are all the positive solutions of (2.1)n and
u1 . u2 on [0, 1]. Then there exists t0 ∈ (0, 1] such that u1(t0) , u2(t0). Without loss of generality,
we assume that u1(t0) > u2(t0). Then there exists an interval [a, b] ⊂ [0, 1] such that b is the point of
positive maximum of u1(t) − u2(t) on [a, b] and

u1(t) > u2(t) for t ∈ (a, b], u′1(b) = u′2(b), u1(a) = u2(a).

Integrating both sides of the equation in (2.1)n over [t, b] ⊂ [a, b], we can obtain

u′i(t) = p(t)ϕ−1
( p(b)

p(t)
ϕ
( 1

p(b)
u′i(b)

)
+

1
p(t)

∫ b

t

Mh(r)
(ui(r))γ

dr
)
, i = 1, 2.

Integrating both sides of the above equalities from a to b, we have

ui(b) − ui(a) =

∫ b

a
p(t)ϕ−1

( p(b)
p(t)

ϕ
( 1

p(b)
u′i(b)

)
+

1
p(t)

∫ b

t

Mh(r)
(ui(r))γ

dr
)
dt, i = 1, 2.

By a simple calculation, we can obtain

u1(b) = u1(a) +

∫ b

a
p(t)ϕ−1

( p(b)
p(t)

ϕ
( 1

p(b)
u′1(b)

)
+

1
p(t)

∫ b

t

Mh(r)
(u1(r))γ

dr
)
dt

< u2(a) +

∫ b

a
p(t)ϕ−1

( p(b)
p(t)

ϕ
( 1

p(b)
u′2(b)

)
+

1
p(t)

∫ b

t

Mh(r)
(u2(r))γ

dr
)
dt = u2(b).

This is a contradiction. The proof of Lemma 2.1 is complete. �
Let

Dn := {v ∈ C[0, 1] : v(r) ≥ n on [0, 1]}.

Now, we consider the following problem −
(
p(t)ϕ

( 1
p(t)u

′(t)
))′

=
Mh(t)
(v(t))γ , t ∈ (0, 1),

u(0) = n, u′(1) = 0,
(2.2)n

where v ∈ Dn.

Lemma 2.2. For each fixed n > 0 and each v ∈ Dn, (2.2)n has a unique solution u ∈ C[0, 1] ∩ C1(0, 1]
satisfying u(t) ≥ n on [0, 1].
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Proof. Define A : Dn → Dn by

(Av)(t) = n +

∫ t

0
p(r)ϕ−1

( 1
p(r)

∫ 1

r

Mh(τ)
(v(τ))γ

dτ
)
dr. (2.3)n

Obviously, ϕ−1(y) =
y√
1+y2

and ϕ−1(y) ≤ y for any y ∈ R+. Then for any v ∈ Dn,

0 ≤
∫ t

0
p(r)ϕ−1

( 1
p(r)

∫ 1

r

Mh(τ)
(v(τ))γ

dτ
)
dr

≤

∫ t

0
p(r)ϕ−1

( 1
p(r)

∫ 1

r

Mh(τ)
nγ

dτ
)
dr

≤
M
nγ

∫ t

0
p(r)

1
p(r)

∫ 1

r
h(τ)dτdr

≤
M
nγ

∫ 1

0

∫ 1

r
h(τ)dτdr

≤
M
nγ

∫ 1

0
τh(τ)dτ < +∞

and (Av)(t) is continuous on [0, 1]. This suggests that Av ∈ Dn and A is well defined.
Let u = Av, then u ∈ C[0, 1] ∩C1(0, 1], u(0) = n, u′(1) = 0 and

u′(t) = p(t)ϕ−1
( 1

p(t)

∫ 1

t

Mh(r)
(v(r))γ

dr
)
, t ∈ (0, 1).

It is easy to verify

−
(
p(t)ϕ

( 1
p(t)

u′(t)
))′

=
Mh(t)
(v(t))γ

, t ∈ (0, 1).

Therefore, u(t) is a solution of problem (2.2)n. The proof of the uniqueness of solution of (2.2)n is
similar to that of Lemma 2.1. �

From the definition of mapping A, we can easily get the following lemma.

Lemma 2.3. Let A : Dn → Dn be the mapping defined by (2.3)n. Then, for any v1, v2 ∈ Dn with
v1(t) ≤ v2(t) on [0, 1],

n ≤ (Av2)(t) ≤ (Av1)(t) ≤ (An)(t), t ∈ [0, 1].

We can verify that A : Dn → Dn is a compact continuous mapping. For any fixed n > 0, the
problem (2.1)n has at least one solution u(t, n) ≥ n, t ∈ [0, 1], by Schauder fixed point theorem, see [13].
Furthermore, the uniqueness of the solution u(t, n) of (2.2)n is guaranteed by Lemma 2.1. Applying the
method of similarity to the proof of Lemma 2.1, we can obtain the following result.

Lemma 2.4. Let u(t, n) be the unique solution of (2.1)n. Then for n1 > n2 > 0, we have

0 ≤ u(t, n1) − u(t, n2) ≤ n1 − n2, t ∈ [0, 1].

The proof of Theorem 1.2. Let {n j}
∞
j=1 be a decreasing sequence which converges to 0. We known that

(2.1)n j has a unique solution u(t, n j). From Lemma 2.4, for each j < k,

0 ≤ u(t, j) − u(t, k) ≤ n j − nk, t ∈ [0, 1]. (2.4)
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Then there exists u ∈ C[0, 1] such that

lim
j→∞

u(t, j) = u(t) ≥ 0 uniformly on [0, 1].

Claim. For any t ∈ (0, 1], u(t) > 0.
Let δ = max

0≤t≤1
u(t, 1). From (2.4), we have

u(t, j) ≤ δ, t ∈ [0, 1], j = 1, 2, · · · .

This suggests that for any j = 1, 2, · · ·

u(t, j) = n j +

∫ t

0
p(r)ϕ−1

( 1
p(r)

∫ 1

r

Mh(τ)
(u(τ, j))γ

dτ
)
dr

>

∫ t

0
p(r)ϕ−1

( 1
p(r)

∫ 1

r

Mh(τ)
δγ

dτ
)
dr

=: ρ, t ∈ (0, 1].

Passing to the limit, we have
u(t) ≥ ρ > 0, t ∈ (0, 1].

From the Monotone convergence theorem (see [14]),

u(t) =

∫ t

0
p(r)ϕ−1

( 1
p(r)

∫ 1

r

Mh(τ)
(u(τ))γ

dτ
)
dr.

It is easy to verify that u is a solution of (2.1)0, i.e., u is a solution of (1.6). The uniqueness of the
solution u is guaranteed by Lemma 2.1. �

3. The method of sub-super solutions

In this section, we will develop a method of sub-super solutions for (1.4) which is a singular problem
with mean curvature operator. By a subsolution of (1.4) we mean a function α ∈ C[0, 1] ∩ C1(0, 1]
such that  −

(
p(t)ϕ

( 1
p(t)α

′(t)
))′
≤ λh(t) f (u(t))

(α(t))γ , t ∈ (0, 1),

α(0) = α′(1) = 0,
(3.1)

and by a supersolution of (1.4) we mean a function β ∈ C[0, 1] ∩C1(0, 1] such that −
(
p(t)ϕ

( 1
p(t)β

′(t)
))′
≥ λh(t) f (u(t))

(β(t))γ , t ∈ (0, 1),

β(0) = β′(1) = 0.
(3.2)

Theorem 3.1. Suppose there exist a subsolution α and a supersolution β of (1.4) such that 0 < α ≤ β

on (0, 1), then (1.4) has at least one positive solution u satisfying α ≤ u ≤ β on [0, 1].
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Proof. Step 1. Construction of a modified problem. Take a sequence of subintervals of (0, 1), say
{I j}

∞
j=1, such that

I1 ⊂⊂ I2 ⊂⊂ · · · ⊂⊂ I j ⊂⊂ I j+1 ⊂⊂ · · ·

and
∞⋃
j=1

I j = (0, 1). For any j = 1, 2, · · · , we are consider the problem

 −
(
p(t)ϕ

( 1
p(t)u

′
))′

= λh(t) f (u)
uγ , t ∈ I j,

u(t) = α(t), t ∈ ∂I j.
(3.3) j

Let α j = minĪ j α and β j = maxĪ j β. Define ḡ j : I j × (0,∞)→ R+ by

ḡ j(t, s) =


h(t) f (α j)/α

γ
j , s ≤ α j,

h(t) f (s)/sγ, α j < s < β j,

h(t) f (β j)/β
γ
j , s ≥ β j.

Then we consider the modified problem −
(
p(t)ϕ

( 1
p(t)u

′
))′

= λḡ j(t, u), t ∈ I j,

u(t) = α(t), t ∈ ∂I j.
(3.4) j

Obviously the restrictions of the functions α and β on I j are the subsolution and supersolution of (3.4) j,
respectively. In other words, for any t ∈ I j, α j and β j satisfy

−
(
p(t)ϕ

( 1
p(t)

α′j
))′
≤ λh(t)

f (α j)
α
γ
j

= λḡ j(t, α j),

and

−
(
p(t)ϕ

( 1
p(t)

β′j
))′
≥ λh(t)

f (β j)
β
γ
j

= λḡ j(t, β j).

Step 2. Every solution u j of (3.4) j satisfies α ≤ u j ≤ β on I j. Let w j = (u j − α j) ∈ C1(Ī j) and
I−j = {t ∈ I j : u j(t) ≤ α j(t)}. By a calculation, we obtain∫

I−j

p(t)ϕ
( 1

p(t)
u′j(t)

)
(u j − α j)′dt =

∫
I j

(
p(t)ϕ

( 1
p(t)

u′j(t)
))′

(u j − α j)−dt

= −λ

∫
I j

ḡ j(t, u j)(u j − α j)−dt

= λ

∫
I−j

ḡ j(t, u j)(u j − α j)dt,

and

−

∫
I−j

p(t)ϕ
( 1

p(t)
α′j(t)

)
(u j − α j)′dt = −

∫
I j

(
p(t)ϕ

( 1
p(t)

α′j(t)
))′

(u j − α j)−dt
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≤ λ

∫
I j

ḡ j(t, α j)(u j − α j)−dt

= −λ

∫
I−j

ḡ j(t, α j)(u j − α j)dt.

Summing up we obtain ∫
I−j

p(t)
[
ϕ
( 1

p(t)
u′j(t)

)
− ϕ

( 1
p(t)

α′j(t)
)]

(u j − α j)′dt

≤λ

∫
I−j

(
ḡ j(t, u j) − ḡ j(t, α j)

)
(u j − α j)dt = 0.

The strict monotonicity of the function y 7→ y/p√
1−|y/p|2

yields (u j−α j)′ = 0 a.e. in I−j . Hence, (u j−α j)− =

0 and u j ≥ α j on I j. In a completely similar way we can obtain that u j ≤ β j on I j.
Step 3. Problem (3.3) j has at least one solution u j, with α ≤ u j ≤ β on I j. Define an operator

T : C1(Ī j) → C1(Ī j) which sends any function v ∈ C1(Ī j) onto the unique solution u ∈ C1(Ī j), of the
problem  −

(
p(t)ϕ

( 1
p(t)u

′
))′

= λḡ j(t, v), t ∈ I j,

u(t) = α(t), t ∈ ∂I j.
(3.5) j

Similar to Section 2, the operator T is completely continuous. Clearly, u j is a solution of (3.5) j if and
only if u j is a fixed point of T . Since for any t ∈ I j ⊂⊂ (0, 1), there exist the constant ε2 > ε1 > 0 and
c = c(I j, ε1, ε2) > 0 such that ε1 < minI j α < maxI j β < ε2 and

|ḡ(t, u j)| ≤ c for all (t, u) ∈ Ī j × [ε1, ε2],

and then
deg(I − T , [ε1, ε2], 0) = 1,

where I is the identity operator. By Step 2 we know that u j satisfies α ≤ u j ≤ β on I j and hence it is a
solution of (3.4) j as well.

Step 4. Complete the proof of result. We claim that, for fixed k, there exists Ck > 0 such that
‖u j‖C2(Īk) ≤ Ck for all j ≥ k + 1. In fact, take Jk such that Ik ⊂⊂ Jk ⊂⊂ Ik+1. Define g j(t) = h(t) f (u j(t))

(u j(t))γ
.

Then
−
(
pϕ(u′j/p)

)′
= λg j on Jk.

Since {u j} j≥k+1 are uniformly bounded on Īk+1, we know that there exists ck > 0 such that

‖g j‖C(J̄k) < ck for all j ≥ k + 1.

This suggests that there exists a constant Ck > 0 such that ‖u j‖C2(Īk) ≤ Ck for all j ≥ k + 1.
Since the embedding C2(Īk) ↪→ C1(Īk) is compact, for each k, sequence {u j}

∞
j=1 has a subsequence,

renamed {u j}
∞
j=1, which converges to u in C1(Īk). This implies that u ∈ C1(Īk) for every k. Consequently,

u ∈ C1(0, 1). For any k, we have∫
Ik

p(t)
(
ϕ
( 1

p(t)
u′j(t)

))
φ′(t)dt = λ

∫
Ik

h(t)
f (u j(t))
(u j(t))γ

φ(t)dt
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for all φ ∈ C∞0 (Ik) and j ≥ k + 1. By taking the limit of the sequence converging in C1(Īk),∫
Ik

p(t)
(
ϕ
( 1

p(t)
u′(t)

))
φ′(t)dt = λ

∫
Ik

h(t)
f (u(t))
(u(t))γ

φ(t)dt

for all φ ∈ C∞0 (Ik). Also, since α(t) ≤ u j(t) ≤ β(t) for all j, we have α(t) ≤ u(t) ≤ β(t) for all t ∈ (0, 1).
Thus, from α(0) = β(0) = 0 and α′(1) = β′(1) = 0, we know that u ∈ C[0, 1]∩C1(0, 1]. This completes
the proof of Theorem 3.1. �

4. The proof of Theorem 1.1

Firstly, we construct a positive supersolution β of (1.4). Let f ∗(s) = max
0≤r≤s

f (r). Obviously, f ∗(s) is

nondecreasing and
f ∗(s)
sγ+1 → 0 as s→ ∞

since f (s)
sγ+1 → 0 as s→ ∞. Then there exists a constant Mλ � 1 such that

f ∗(Mλ‖w‖∞)
(Mλ‖w‖∞)γ+1 ≤

1

λ‖w‖γ+1
∞

,

where w is the unique positive solution of (1.6) with Mλ. Then

−
(
p(t)ϕ

( 1
p(t)

w′(t)
))′

=
Mλh(t)

wγ
≥ λh(t)

f ∗(Mλ‖w‖∞)
wγ

≥ λh(t)
f ∗(‖w‖∞)

wγ

≥ λh(t)
f ∗(w)
wγ

≥ λh(t)
f (w)
wγ

.

This suggests that w is a positive supersolution of (1.4).
Next we construct a positive subsolution α of (1.4). For any fixed constant m > 0, the problem −

(
p(t)ϕ

( 1
p(t)u

′
))′

= mh(t), t ∈ (0, 1),

u(0) = 0, u′(1) = 0
(4.1)m

has a solution vm. We can verify that vm → 0 as m→ 0. Since f (s)
sγ → ∞ as s→ 0, for any fixed λ > 0,

there exists a sufficiently small mλ � 1 such that

mλ ≤ λ
f (v)
vγ

,

where v is the solution of (4.1)mλ
. Then

−
(
p(t)ϕ

( 1
p(t)

v′(t)
))′

= mλh(t) ≤ λh(t)
f (v)
vγ

.

This suggests that v is a positive subsolution of (1.4) such that v ≤ w for sufficiently small mλ.
From Theorem 3.1, (1.4) has a positive solution for all λ > 0. This completes the proof of

Theorem 1.1.
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