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1. Introduction

The split feasibility problem (SFP) is formulated as finding a point x with the following property

x ∈ C, Ax ∈ Q, (1.1)

where C and Q are the nonempty closed convex sets. In this paper, we will focus on the discussion of
the following so-called tensor split feasibility problem (TSFP)

x ∈ C, Axm−1 ∈ Q, (1.2)

where C ⊆ Rn, Q ⊆ Rn are the nonempty closed convex sets, and A ∈ R[m,n] is a tensor with mth
order and n-dimension. When m = 2, i.e., A is a matrix, (1.2) reduces to the split feasibility problem
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(SFP) (1.1) (see [1, 2]). Furthermore, (1.2) can be regarded as the general case of multiple-sets split
feasibility problem.

The SFP has always attracted the attention of some researchers. For instance, Censor et al. [3]
presented an interesting approach for solving the multiple-sets split feasibility problem. However, it
probably depends heavily on the step size, a fixed Lipschitz constant of gradient of objective function,
which is hard to be estimated normally. Moreover, by adopting variable step sizes based on the known
information from current iterate, Zhang and Han et al. [4] investigated a self-adaptive projection-type
method for nonlinear multiple-sets split feasibility problem, which has a variety of specific applications
in real world, e.g., image reconstruction, medical care (such as inverse problem of intensity-modulated
radiation therapy (IMRT)) and signal processing [5,6]. To choose a best step-size for current direction,
Zhao and Yang et al. [7] studied a simple projection method for solving the multiple-sets split feasibility
problem, which is easy to implement and come true. Meanwhile, they also proposed several efficient
acceleration schemes for solving the multiple-sets split feasibility problem [8].

All of the literatures mentioned above mainly focus on some explorations about the solution of
equivalent optimization problem. This issue would be developed from another point of view, i.e., the
perspective of splitting iteration for solving tensor equation. Certainly, first of all, the split feasibility
problem (1.2) should be transformed into multi-linear systems with constraint by projection operator
PQ(·). The exact scheme is written as follows:

Axm−1 = PQ(Axm−1), (1.3)
s.t. x ∈ C.

As is known that a critical issue in pure and applied mathematics is solving variety classes of
systems. Especially for the data analysis need of the background of big data, some rapid and efficient
computing techniques of multi-linear systems have received serious attention in the field of science
and engineering. In fact, it is not easy to get the precise solution by utilizing some direct methods.
As a result, different kinds of iterative strategies were widely established to solve this problem. These
research works concentrated mostly upon fast solvers for the multi-linear systems. For instance, Ding
and Wei [9,10] extended classical Jocobi, Gauss-Seidel, successive overrelaxation method and Newton
methods. In view of the costly computations for the Newton method, Han [11] developed an homotopy
method by means of an Euler-Newton prediction-correction strategy to solve multi-linear systems with
nonsymmetric M-tensors. Tensor splitting method and its convergence results have been studied in
detail by Liu and Li et al. [12]. Moreover, some valuable comparison results of splitting iteration for
solving multi-linear systems were achieved in [13].

Motivated by [13], we extend an tensor alternating splitting iteration scheme for solving constraint
multi-linear systems (1.3). Further, the accelerated overrelaxation method (AOR) and symmetric
accelerated overrelaxation method (SAOR) are generalized for solving (1.3) in practical alternating
splitting iteration application.

The outline of this paper is organized as follows. Some beneficial and basic notations are provided
simply in Section 2. In Section 3, a tensor alternating splitting iteration scheme will be proposed for
solving constraint tensor systems. In Section 4, the classical approaches, AOR and SAOR are further
extended to solve the constraint multi-linear systems. Meanwhile, a few numerical results are carried
out to demonstrate the efficiency of the presented iteration methods. Finally, a conclusion remark is
drawn in Section 5.
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2. Preliminaries

In this section, some basic results and useful definitions are introduced which is beneficial for the
discussions of the following parts.

First of all, let A ∈ R[2,n] (i.e., matrix) and B ∈ R[k,n] (k > 2). The matrix-tensor product C = AB ∈
R[k,n] is defined by

c ji2···ik =

n∑
j2=1

a j j2b j2i2···ik . (2.1)

Hence, the formula above usually is expressed as

C(1) = (AB)(1) = AB(1), (2.2)

where C(1) and B(1) are the matrices generated from C and B flattened along first index. For more
details, see [14, 15].

Definition 2.1. [16] Let A = (ai1i2···im) ∈ R[m,n] be an order m dimension n tensor. Then, the
majorization matrix M(A) ofA is the n × n matrix with the entries

M(A)i j = ai j··· j, i, j = 1, 2, · · · , n. (2.3)

Definition 2.2. [17] Let A = (ai1i2···im) ∈ R[m,n]. If M(A) is a nonsingular matrix and A = M(A)Im,
M(A)−1 is named as the order-2 left-inverse of tensor A, and A is called left-nonsingular, where Im

is an identity tensor with all diagonal elements being 1.

Definition 2.3. [12] Let A,E,F ∈ R[m,n]. If E is left-nonsingular, then A = E − F is named as
a splitting of tensor A. If E is left-nonsingular with M(E)−1 ≥ 0 and F ≥ 0 (here ≤ or ≥ denotes
elementwise), then the splitting of A is named as a regular splitting. If E is left-nonsingular with
M(E)−1F ≥ 0, then the splitting of A is named as a weak regular splitting. If spectral radius of
M(E)−1F is less than 1, i.e., ρ(M(E)−1F ) < 1, then the splitting is convergence.

Definition 2.4. [18] LetA ∈ R[m,n]. A is called aZ-tensor if its off-diagonal entries are non-positve.
A is called an M-tensor if there exist a nonnegative tensor B and a positive real number η ≥ ρ(B)
such that

A = ηIm − B.

Further,A is called a strongM-tensor, if η > ρ(B).

Definition 2.5. [19] Let A = (ai1i2···im) ∈ R[m,n]. A pair (λ, x) ∈ C × (Cn\{0}) is called an eigenvalue-
eigenvector of tensorA if they satisfy the systems

Axm−1 = λx[m−1], (2.4)

where x[m−1] = (xm−1
1 , xm−1

2 , · · · , xm−1
n )T . The (λ, x) is named as H-eigenpair if both λ and vector x are

real.
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Definition 2.6. Let ρ(A) = max{|λ||λ ∈ σ(A)} be the spectral radius ofA, where σ(A) is the set of all
eigenvalues ofA.

Lemma 2.1. [13] IfA is aZ-tensor, then the follwing conditions are equivalent:
(a)A is a strongM-tensor.
(b) There exist an inverse-positiveZ-matrix B and a semi-positveZ-tensor C withA = BC.
(c)A has a convergent (weak) regular splitting.

3. Tensor alternating splitting iteration to solve TSPF

From the view of optimization, TSPF problem in (1.2) is equivalent to

min
x∈C

f (x) :=
1
2
‖F(x)‖2, (3.1)

where
F(x) := (I − PQ)Axm−1. (3.2)

Set

J(x) := (m − 1)Axm−2, g(x) := ∇ f (x) = (I − PQ)J(x)T F(x). (3.3)

In detail, the Levenberg-Marquardt method for solving TSPF can be described as follows (see
Algorithm 3.1).

Algorithm 3.1. Projection method to solve tensor split feasibility problem
Step 1. Given nonempty closed convex sets C and Q, a semi-symmetric tensorA [19], initial point

vector x0, set β ∈ (0, 1), σ ∈ (0, 1), precision ε1 > 0, ε2 > 0. Set k := 1.
Step 2. Compute Fk = F(xk), Jk = J(xk), and gk = ∇ f (xk) in (3.2)-(3.3). If ‖gk‖2 < ε1 stop;

otherwise, go to Step 3.
Step 3. Let

µk = ‖F(xk)‖2.

Compute a direction dk by solving the following equation

(J(x)T J(x) + µkI)d = −J(x)T Fk.

Step 4. Find the smallest nonnegative integer mk such that αk = βmk satisfies

f (xk + αkdk) ≤ f (xk) + σαkgT
k dk.

Step 5.

xk+1 = PC(xk + αkdk).

If ‖xk+1 − xk‖ < ε2 stop; otherwise, set k := k + 1, return to Step 2.
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However, in this section, we will restatement TSPF problem in (1.2) form the perspective of tensor
split and expect to get better convergence results, which will be further reported in numerical test part.

Now, we describe briefly alternating direction iterative method for solving unconstrained part of
multi-linear systems (1.3)Axm−1 = PQ(Axm−1).

ByA = E1 − F1, clearly, the above multi-linear systems can be written as

E1xm−1 = F1xm−1 + PQ(Axm−1), (3.4)

i.e.,

Imxm−1 = M(E1)−1F1xm−1 + M(E1)−1PQ(Axm−1). (3.5)

Here it makes use of the property of order 2 left-nonsingular of tensor E1. Im is an identify tensor with
appropriate order. The result can be concluded in Algorithm 3.2.

Algorithm 3.2. Projection-splitting tensor iterative method
Step 1. Input a strong M-tensor A with (weak) regular splitting A = E1 − F1. Given nonempty

closed convex sets C and Q, a precision ε > 0 and initial vector x0. Set k := 1.
Step 2. If ‖Axm−1

k − PQ(Axm−1
k )‖2 < ε stop; otherwise, go to Step 3.

Step 3.

xk+1 =
(
M(E1)−1F1xm−1

k + M(E1)−1PQ(Axm−1
k )

)[ 1
m−1 ]

.

Step 4.

xk+1 = PC(xk+1).

Step 5. Set k := k + 1, return to Step 2.

Now, consider the tensor splittingA = E1−F1 = E2−F2. Based on this, two-step tensor alternating
splitting iteration method is introduced. Then, it generates the iterative scheme

xk+ 1
2

=
(
M(E1)−1F1xm−1

k + M(E1)−1PQ(Axm−1
k )

)[ 1
m−1 ]

,

xk+1 =
(
M(E2)−1F2xm−1

k+ 1
2

+ M(E2)−1PQ(Axm−1
k+ 1

2
)
)[ 1

m−1 ]
.

Set G := M(E2)−1F2. According to Imxm−1 = x[m−1] where Im is an identify tensor with appropriate
order, we have

Gxm−1
k+ 1

2
= M(G) · Imxm−1

k+ 1
2

(3.6)

= M(G)x[m−1]
k+ 1

2

= M(G)
(
M(E1)−1F1xm−1

k + M(E1)−1PQ(Axm−1
k )

)
= M(G)M(E1)−1F1xm−1

k + M(G)M(E1)−1PQ(Axm−1
k ).

Hence,

xk+1 =
[
M(G)M(E1)−1F1xm−1

k + M(G)M(E1)−1PQ(Axm−1
k ) + M(E2)−1PQ(Axm−1

k+ 1
2
)
][ 1

m−1 ]
. (3.7)
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The above analysis can be described concretely in Algorithm 3.3.
Now, let

T (E1,E2) := M(G)M(E1)−1F1. (3.8)

In the following, we would like to show the spectral radius of iterative tensor ρ
(
T (E1,E2)

)
< 1, i.e.,

the proof of convergence of Algorithm 3.3.

Algorithm 3.3. Projection-splitting tensor alternating iterative method
Step 1. Input a strong M-tensor A with (weak) regular splitting A = E1 − F1. Given nonempty

closed convex sets C and Q, a precision ε > 0 and initial vector x0. Set k := 1.
Step 2. If ‖Axm−1

k − PQ(Axm−1
k )‖2 < ε stop; otherwise, go to Step 3.

Step 3. 
xk+ 1

2
=

(
M(E1)−1F1xm−1

k + M(E1)−1PQ(Axm−1
k )

)[ 1
m−1 ]

,

xk+1 =
(
M(E2)−1F2xm−1

k+ 1
2

+ M(E2)−1PQ(Axm−1
k+ 1

2
)
)[ 1

m−1 ]
.

Step 4.

xk+1 = PC(xk+1).

Step 5. Set k := k + 1, return to Step 2.

Lemma 3.1. [9] LetA = (ai1i2···im) ∈ R[m,n], andA = E1−F1 = E2−F2 be a weak regular splitting and
a regular splitting, respectively. If F2 < F1, F2 , 0, and ρ((E1)−1F1) < 1, then there exists a positive
Perron vector x ∈ Rn such that

M(E2)−1F2xm−1 ≤ ρkx[m−1], (3.9)

where ρk = ρ(M(E1)−1F1 + 1
kS), k is a positive integer and S ∈ R[m,n] is a positive tensor.

Proof. Let S be in R[m,n] whose entries are all equal to 1. Using the strong Perron-Frobenius theorem
(see [20, 21]), for any given k > N, M(E1)−1F1 + 1

kS has a positive Perron vector x such that

(
M(E1)−1F1 +

1
k
S
)
xm−1 = ρkx[m−1], (3.10)

where ρk = ρ(M(E1)−1F1 + 1
kS).

Hence, it give rises to

M(E1)(ρkIm −
1
k
S)xm−1 = F1xm−1. (3.11)

ByA = E1 − F1 = E2 − F2, one gets M(A) = M(E1) − M(F1) = M(E2) − M(F2).
So it generates

M(A)
(
ρkIm −

1
k
S)

)
xm−1 = F1xm−1 − M(F1)(ρkIm −

1
k
S)xm−1 (3.12)

= (1 − ρk)M(F1)Imxm−1 +
1
k

M(F1)Sxm−1 +
(
F1 − M(F1)Im

)
xm−1.

AIMS Mathematics Volume 8, Issue 9, 20597–20611.



20603

Further, it follows from (3.12) that

(
M(E2) − M(F2)

)(
ρkIm −

1
k
S
)
xm−1 ≥ (1 − ρk)M(F2)Imxm−1 +

1
k

M(F2)Sxm−1 (3.13)

+
(
F2 − M(F2)Im

)
xm−1,

here, notice that the condition F1 ≥ F2. So M(F1) ≥ M(F2) and F1 − M(F1)Im ≥ F2 − M(F2)Im.
By some simple computations, we obtain

M(E2)(ρkIm −
1
k
S)xm−1 ≥ F2xm−1. (3.14)

Note that M(E2)−1 ≥ 0 and F2 ≥ 0 due to the regular splitting ofA = E2 −F2. According to (3.15),
it yields

M(E2)−1F2xm−1 ≤ (ρkIm −
1
k
S)xm−1 ≤ ρkx[m−1]. (3.15)

Theorem 3.1. LetA = (ai1i2···im) ∈ R[m,n], andA = E1 − F1 = E2 − F2 be a weak regular splitting and
a regular splitting, respectively. If F2 < F1, F2 , 0 and ρ

(
(E1)−1F1

)
< 1. G := M(E2)−1F2 is order 2

left-nonsingular, i.e., G = M(G)Im, then ρ
(
T (E1, E2)

)
< 1, where T (E1,E2) is defined by (3.8).

Proof. First of all, similar to the previous discussion, using the strong Perron-Frobenius theorem, for
any given k > N, M(E1)−1F1 + 1

kS has a positive Perron vector x such that

(
M(E1)−1F1 +

1
k
S
)
xm−1 = ρkx[m−1], (3.16)

where ρk = ρ(M(E1)−1F1 + 1
kS). This implies

M(G)
(
M(E1)−1F1 +

1
k
S
)
xm−1 = ρkM(G)x[m−1] (3.17)

= ρkM(G)Imxm−1

= ρkGxm−1

= ρkM(E2)−1F2xm−1

≤ ρkρkx[m−1]

= (ρk)2x[m−1],

where the inequality comes from the Lemma 3.1. As we know that ρ((E1)−1F1) < 1, hence, when
k → ∞, (ρk)2 < 1. This completes the proof.

4. Numerical experiments

In this section, some numerical examples are discussed to validate the performance of
effectiveness of the proposed projection-splitting tensor AOR (denoted as ‘P-STAOR’) and tensor
symmetric (alternating) splitting AOR (denoted as ‘P-STSAOR’) based two-step splitting method for
solving the multi-linear systems (see Algorithm 3.2 and Algorithm 3.3). We compare the convergence
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of these methods with projection tensor Levenberg-Marquardt (denoted as ‘P-STLM’, see
Algorithm 3.1) by the iteration step (denoted as ‘IT’), elapsed CPU time in seconds (denoted as
‘CPU’), and residual error (denoted as ‘RES’). The running is terminated when the current iteration
satisfies RES = ‖Axm−1 − PQ(Axm−1)‖2 < 10−10 or if the number of iteration exceeds the prescribed
iteration steps kmax = 50. All the numerical experiments have been carried out by MATLAB
R2011b 7.1.3 on a PC equipped with an Intel(R) Core(TM) i7-2670QM, CPU running at 2.20GHZ
with 8 GB of RAM in Windows 10 operating system.

Now, consider the tensor splitting of (1.2)

A = D−L −U. (4.1)

The layout of splitting description is shown in Table 1, where D = DIm, L = LIm, U = UIm, and
D, −L, −U are the diagonal part, strictly lower and strictly upper triangle part of majorization matrix
M(A).

Table 1. The corresponding splitting E1 and E2.

splitting tensor E1 E2

P-STAOR 1
ω

(D− rL) −

P-STSAOR 1
ω

(D− rL) 1
ω

(D− rU)

Example 4.1. First consider the tensor split feasibility problem (TSFP) (1.2) with a strongM-tensor
A = 30 ∗ Im − 0.01 ∗ B, where B(i, j, k) = 0.6 ∗ i + 0.1 ∗ (k + j), Im is an identity tensor with order m
dimension n. And the nonempty closed convex sets

C := {x ∈ R5|‖x − 200‖ ≤ 20},
Q := {y ∈ R5|‖y − 50‖ ≤ 5}.

Three different examples are given for different tensorsA, B with various sizes. Parameters r and ω
for P-STAOR and P-STSAOR, β for P-STLM are experiential selected according to particular example,
see those tables in this section for details. In all examples, parameter µ for P-STLM (in Algorithm 3.1)
is selected fixedly with 0.25.

The numerical results have been shown in Tables 2–6 and Figures 1–5. From the numerical results,
we can see that P-STAOR and P-STSAOR are efficient methods, and both of them are comparable with
P-STLM in all sides. Totally, two approaches proposed in this paper, i.e., P-STAOR and P-STSAOR,
are nearly the same merits. However, in some cases, e.g., for the numbers of iteration and elapsed CPU
time, P-STSAOR seems to be a more fascinating method than P-STAOR (see Table 4). The reasons
are possible the flexible selection of parameters and the superiority of alternating direction iterative.
Further from the residual trend chart with the changing numbers of iteration in Figures 1–5, one can
demonstrably find the desired performance of the proposed methods.

From three examples, whatever the parameters r and ω in two methods P-STAOR and P-STSAOR
are, the results of convergence are satisfactory as always. However, P-STLM dependents heavily on
parameter β. By the Case b, i.e., when β = 0.2 in Table 6, P-STLM cann’t guarantee the global
convergence any more. At the same time, we notice that the residual of P-STLM disappears from
the restricted area in Figure 5. Nevertheless, the residuals of P-STAOR and P-STSAOR still decline
rapidly and converge well.
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Table 2. Numerical results of Example 4.1.

Case P-STLM P-STAOR P-STSAOR

It 12 1 2
a. β = 0.2, r = 3.5, ω = 1.2 CPU 0.1893 0.0223 0.0176

RES 3.5861e − 12 5.1238e − 14 4.2633e − 14
It 12 1 2

b. β = 0.4, r = 3.0, ω = 1.1 CPU 0.2759 0.0495 0.0208
RES 2.5645e − 12 6.1944e − 14 1.4211e − 14
It 12 1 2

c. β = 0.6, r = 2.5, ω = 1.4 CPU 0.2489 0.0384 0.0296
RES 2.4883e − 11 2.3097e − 14 2.2102e − 14
It 12 1 2

d. β = 0.8, r = 2.0, ω = 1.5 CPU 0.1834 0.0227 0.0200
RES 2.2481e − 11 1.7764e − 15 8.8818e − 16

2 4 6 8 10 12 14

Iterative k 

10-15

10-10

10-5

100

105

R
ES

P-STLM
P-STAOR
P-STSAOR

(a) case1
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100

105
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P-STLM
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(b) case2
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105
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Figure 1. The residual of P-STAOR, P-STSAOR and P-STLM methods in Example 4.1.

Example 4.2. Consider the tensor split feasibility problem (TSFP) (1.2) with a strongM-tensor A =

50 ∗ Im − 0.01 ∗ B, where B(i, j, k, l, p) = 0.85 ∗ i + 0.3 ∗ (k + j + l + p), Im is an identity tensor with
order m dimension n. And the nonempty closed convex sets

C := {x ∈ R5|‖x − 30‖ ≤ 3},
Q := {y ∈ R5|‖y − 5‖ ≤ 40}.
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Table 3. Numerical results of Example 4.2.

Case P-STLM P-STAOR P-STSAOR

It 50 6 8
a. β = 0.2, r = 3.5, ω = 1.6 CPU 2.1106 0.1181 0.0710

RES 9.0252e + 00 3.3148e − 14 2.5864e − 14
It 50 7 8

b. β = 0.4, r = 3.0, ω = 1.7 CPU 1.9999 0.1299 0.0715
RES 9.1152e + 00 2.1620e − 14 3.8918e − 14
It 50 10 9

c. β = 0.6, r = 2.5, ω = 1.8 CPU 2.1252 0.1819 0.0856
RES 9.1002e + 00 4.5089e − 14 1.1235e − 14
It 50 16 11

d. β = 0.8, r = 2.0, ω = 1.9 CPU 2.0282 0.2030 0.0842
RES 9.2103e + 00 4.5645e − 14 3.1175e − 14
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(a) case1
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Figure 2. The residual of P-STAOR, P-STSAOR and P-STLM mehtods in Example 4.2.

Example 4.3. Finally, consider the tensor split feasibility problem (TSFP) (1.2) with a strong M-
tensorA = 300 ∗ Im − 0.5 ∗ B, where B = rand(n, n, n, n, n), a random generated tensor with order m
dimension n, Im is an identity tensor with order m dimension n. And the nonempty closed convex sets

C := {x ∈ Rn|‖x − 80‖ ≤ 60},
Q := {y ∈ Rn|‖y − 20‖ ≤ 200}.
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We test this example with different n.

Table 4. Numerical results of Example 4.3 with n = 3, m = 5.

Case P-STLM P-STAOR P-STSAOR

It 13 4 2
a. β = 0.2, r = 3.5, ω = 1.6 CPU 0.2244 0.0475 0.0251

RES 2.1230e − 10 5.6853e − 14 2.8432e − 14
It 12 5 3

b. β = 0.4, r = 4.5, ω = 1.8 CPU 0.1970 0.0434 0.0240
RES 1.5531e − 03 1.0000e − 17 3.1786e − 14
It 12 4 2

c. β = 0.6, r = 5.5, ω = 2.0 CPU 0.2253 0.0469 0.0364
RES 1.2561e − 03 5.6853e − 14 1.0000e − 17
It 12 6 3

d. β = 0.8, r = 6.5, ω = 2.2 CPU 0.2165 0.0416 0.0377
RES 1.8021e − 03 5.6853e − 14 2.8432e − 14
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Figure 3. The residual of P-STAOR, P-STSAOR and P-STLM mehtods in Example 4.3 with
n = 3, m = 5.
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Table 5. Numerical results of Example 4.3 with n = 4, m = 5.

Case P-STLM P-STAOR P-STSAOR

It 13 4 2
a. β = 0.2, r = 3.5, ω = 1.6 CPU 0.3404 0.0539 0.0304

RES 0.1020e + 01 6.5519e − 14 1.0000e − 17
It 14 4 2

b. β = 0.4, r = 4.5, ω = 1.8 CPU 0.3332 0.0534 0.0316
RES 5.7338e − 11 5.6853e − 14 6.7042e − 14
It 13 5 3

c. β = 0.6, r = 5.5, ω = 2.0 CPU 0.3430 0.0512 0.0441
RES 0.2000e + 01 8.1645e − 14 7.6538e − 14
It 13 4 3

d. β = 0.8, r = 6.5, ω = 2.2 CPU 0.3176 0.0505 0.0419
RES 0.0000e + 01 6.0302e − 14 7.1064e − 14
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Figure 4. The residual of P-STAOR, P-STSAOR and P-STLM mehtods in Example 4.3 with
n = 4, m = 5.
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Table 6. Numerical results of Example 4.3 with n = 5, m = 5.

Case P-STLM P-STAOR P-STSAOR

It 13 6 4
a. β = 0.2, r = 3.5, ω = 1.6 CPU 0.4062 0.0687 0.0530

RES 1.6000e − 01 9.9739e − 13 1.0050e − 14
It 14 7 4

b. β = 0.4, r = 4.5, ω = 1.8 CPU 0.4510 0.0697 0.0587
RES 2.2000e − 03 1.1763e − 13 1.5953e − 13
It 14 6 3

c. β = 0.6, r = 5.5, ω = 2.0 CPU 0.4383 0.0677 0.0543
RES 1.3700e − 04 1.4973e − 13 7.9133e − 14
It 14 6 3

d. β = 0.8, r = 6.5, ω = 2.2 CPU 0.4234 0.0631 0.0547
RES 1.3700e − 04 1.7593e − 13 1.6282e − 13
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Figure 5. The residual of P-STAOR, P-STSAOR and P-STLM mehtods in Example 4.3 with
n = 5, m = 5.

In this example, all the numerical results are depicted in Tables 4–6 and Figures 3–5. From the
elapsed CPU and numbers of iteration, P-STSAOR performs always well than all of other approaches.
Although the optimum parameters are perhaps hard to determine, we just choose them tentatively
in some reality application according to experiment essential effects. Also, we try to introduce the
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preconditioner to precondition the constraint tensor system (1.3). However, it is difficult to choose a
suitable preconditioner for this problem. Hence, the investigations of optimum parameters and befitting
preconditioners for P-STSAOR and P-STAOR will be further accomplished in our future work. In a
word, P-STSAOR and P-STAOR can be regarded as the promising and efficient approaches for solving
the multi-linear split feasibility problem.

5. Conclusions

In this paper, by making use of the idea of tensor alternating splitting, two efficient methods are
presented to solve the multi-linear split feasibility problem. Concretely, by extending accelerated
overrelaxation and symmetric accelerated overrelaxation, tensor accelerated overrelaxation and tensor
symmetric accelerated overrelaxation splitting iteration strategies are introduced for solving the
multi-linear split feasibility problem, which are distinctly different from some techniques on the
perspective of optimization. The convergence result is presented in detail by analysis of tensor
spectral radius. Precisely, the proposed P-STSAOR and P-STAOR have been verified to be quite
meaningful approaches. Many numerical test results illustrate they meet the expectation as the current
efficient methods. Finally, some advices about future research work are also provided.
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