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1. Introduction

With the development of modern information technology, more and more attention is paid to the
research of complex dynamic networks (CDNs). CDNs are composed of the same or different nodes
and edges. In recent years, CDNs have been extensively studied and used in various domains, such as
physics [1], communication networks [2], biological engineering [3], etc., and typical applications of
CDNs include the internet [4, 5], neural networks [6], cell networks [7] and so on.

Synchronization is a common nonlinear phenomenons, which widely exists in human society
and nature. The history of synchronization can be traced back to Huygens’s pendulum experiments
in 1665 [8]. Synchronization has wide applications in many fields, such as artificial intelligence,
secret communication, etc., [9–11]. At present, the synchronization types are roughly divided into
full synchronization [12], cluster synchronization [13, 14], Mittag-Leffler synchronization [15, 16],
projection synchronization [17], etc. Generally speaking, the convergence rate of exponential
synchronization (ESy) is faster than that of asymptotic synchronization.

It should be noted that due to the diverse characteristics of CDNs, it is difficult for most CDNs
to achieve synchronization by themselves, and the realization of synchronization still needs to
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rely on some external controls. Therefore, many researchers have designed some effective and
feasible controllers to make CDNs achieve synchronization. According to the known literature, the
controllers can be divided into nonlinear controllers [18, 19] and linear controllers [20–22]. In [23],
Wu et al. designed a synchronization controller that provides a new judgment basis for ESy of
CDNs. As we know, event triggering control strategy has been widely used in many fields, such as
cyber-attacks [24–26]. Moreover, the event triggering strategy is used to study the prescribed-time
synchronization of a piecewise smooth system in [27, 28].

However, in the process of CDN synchronization, time delays and random disturbances are
inevitable in the process of network information transmission. The existence of time delays makes
the communication between nodes of a CDN have information exchange delays, which will reduce
or destroy the synchronization of the CDN [29, 30]. As for random disturbance, the perturbation
process is quite complex. The existence of noise will lead to the deviation of information transmission
in CDNs. For the disturbed CDNs, the synchronization phenomenon has attracted much attention
in recent years [22, 31–33]. Dong et al. studied non-fragile synchronization of CDNs with mixed
delays and random perturbations in [22]. Zhou et al. explored CDN synchronization involving
random perturbations and other uncertainties in [31]. Zhang et al. studied a new global exponential
synchronization criterion for CDNs with neutral terms and random perturbations in [32]. Wang et
al. discussed ESy of CDNs with Markov jumps at uncertain transition rates and random interference
in [33].

As we all know, CDNs may lose synchronization when they are interfered with by external noise,
if the noise interference intensity exceeds a certain limit [34]. We know that CDNs may still have
ESy if the intensity of noise interference is small when ESy has been achieved in CDNs [35]. In the
literature [11–13, 17–23, 29, 31–38], there have been some interesting results on synchronization of
CDNs disturbed by external noise. The Lyapunov stability theory and linear matrix inequality (LMI)
technique have become the most powerful tools to study such complex systems. In addition, the robust
stability of CDN synchronization was discussed in [39, 40]. It should be emphasized that the above
literature focuses on the stability of synchronization rather than the robustness of synchronization.
Hence, an interesting question is how much noise intensity can a CDN with ESy withstand without
losing synchronization under the controller?

Robustness is the property that controls the system to maintain certain performance under the
perturbation of certain parameters (structure, size). It is of great significance to the designs and
applications of complex systems. What’s more, in recent years, many interesting results have emerged
in the research on the robustness of stability. For example, in [6], Shen et al. studied the robustness
of the stability of recurrent neural networks for the first time. In [7, 41], Fang et al. discussed the
robustness of fuzzy cellular neural networks with deviating argument. In [42–44], Si et al. explored
the robustness of dynamical systems with piecewise constant parameters. However, although ESy of
CDNs has been extensively studied, few works discuss the robustness of ESy. The robustness of ESy
in CDNs with deviation arguments was first explored in [45].

Guided by the above works, this article discusses the robustness of ESy in CDNs interfered with by
external noise. The main works and contents are as follows.
• Compared with [29, 32, 33], this paper considers for the first time the robustness of ESy of CDNs

with random perturbations. This paper provides a judgment basis for ESy of CDNs with external
random interference.
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• In [45], the robustness of ESy in CDNs with deviation arguments was first considered. As far as
we know, CDN is inevitably affected by deviation arguments and random disturbances in the process of
information transmission. Therefore, by using the Gronwall-Bellman lemma and inequality technique,
we obtain the upper bound of noise intensity that preserves ESy. By solving the transcendental
equation, the allowable range of ESy in CDNs with external noise is estimated.
• In [6,41,42], the robustness of the stability of neural networks with random disturbances has been

studied in depth. What is different is that we consider the robustness of ESy for CDNs with random
perturbations.

The framework of this article is roughly as follows: Section 2 explains the preliminary knowledge
and the models. Section 3 presents the main results. In Section 4, two simulations are given. Section 5
provides a brief summary of this paper.

2. Preliminaries and model

2.1. Notations

Unless otherwise specified, this article uses the following symbols. RN and RN×N represent sets
of N-dimensional Euclidean spaces and N × N-dimensional matrices composed of spaces or sets,
respectively. lN is an identity matrix of order N, and 0N represents an N × N zero matrix. Define θ ⊗ ϑ
as the Kronecker product of matrices θ and ϑ. Let (Ω,F, {Ft}t>0) be a complete probability space with
filtering {Ft}t>0, and the filter contains all P-null sets and is right-continuous. ω(t) is a scalar Brownian
motion defined in a complete probability space. || ∗ || means the Euclidean norm of a real vector. E {·}
stands for a mathematical expectation operator with respect to a given probability measure P.

Usually, a graph G = (V,E,A) has three basic elements. V = {1, . . . ,N} shows the node set, and
the edge set E ⊂ V×V. The coupled moment matrix is A = (ai j)N×N , where ai j represents the coupling
weight from the i-th node to the j-th node in the CDN. If the information is from the first j-th node of
the CDN to the i-th node (i , j), then the ai j , 0; otherwise, ai j = 0.

2.2. Problem formulation

Consider the CDN model with random disturbance composed of N coupled nodes
dui(t) =[ f (ui(t)) + c

N∑
j=1

ai ju j(t) + vi(t)]dt + σ

N∑
j=1

bi ju j(t)dω(t),

ui(t0) =u0 ∈ R
N ,

(2.1)

where ui(t) = (ui1, . . . , uiN)T ∈ RN is the state vector of the i-th node. The nonlinear function f : RN →

RN is a continuous vector-valued function, c is called the coupling strength, and vi(t) ∈ RN is called
the control input vector of the i-th node (the latter needed to design the controller). ai j, bi j respectively
represent the coupling matrix A,B, satisfying aii = −

∑N
j=1, j,i ai j and bii = −

∑N
j=1, j,i bi j. σ indicates

random interference intensity.
The dynamic equation of a single node of CDN (2.1) is

ṡ(t) = f (s(t)), (2.2)
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where s(t) is allowed to be defined by any expected state, i.e., equilibrium point, periodic orbit, chaotic
attractor, etc.

When the system CDN (2.1) is undisturbed, it will further degrade to
ṙi(t) = f (ri(t)) + c

N∑
j=1

ai jr j(t) + vi(t),

ri(t0) = r0 ∈ R
N .

(2.3)

Similarly, (2.2) also represents the single node dynamics equation of the system (2.3).
The synchronization error of systems (2.1) and (2.2) is defined as

pi(t) = ui(t) − s(t).

Subtracting (2.2) from system (2.1) gives the error system
dpi(t) =[g(pi(t)) + c

N∑
j=1

ai j p j(t) + vi(t)]dt + σ

N∑
j=1

bi j p j(t)dω(t),

pi(t0) =p0 ∈ R
N ,

(2.4)

where g(pi(t)) = f (ui(t)) − f (s(t)). The function g satisfies the following assumptions.
(M1) The nonlinear function g(∗) will satisfy the following condition:

||g(µ) − g(ν)|| ≤ k||µ − ν||, g(0) = 0, (2.5)

where k is a constant.
To synchronize (2.1) and (2.2), the linear controller is

vi(t) =Wpi(t), i = 1, . . . ,N, (2.6)

whereW ∈ RN×N is the feedback gain matrix.
Substituting (2.6) into (2.4), we have

dpi(t) =[g(pi(t)) + c
N∑

j=1

ai j p j(t) +Wpi(t)]dt + σ

N∑
j=1

bi j p j(t)dω(t),

pi(t0) =p0 ∈ R
N .

(2.7)

For the convenience of writing, the above component form is expressed as
p(t) = (p1(t), p2(t), . . . , pN(t)) ∈ RN×N , A = (ai j)N×N , B = (bi j)N×N , g(p(t)) =

(gT (p1(t)), gT (p2(t)), . . . , gT (pN(t)))T , A = lN ⊗ A, B = lN ⊗B, W = lN ⊗W.
Then, the error system (2.7) is rewritten in matrix form asdp(t) =[g(p(t)) + cAp(t) + W p(t)]dt + σBp(t)dω(t),

p(t0) =p0 ∈ R
N×N .

(2.8)
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Similarly, we define the synchronization error of systems (2.3) and (2.2) as

hi(t) = ri(t) − s(t)

and subtract (2.2) from (2.3) to get the error systemḣ(t) = g(h(t)) + cAh(t) + Wh(t),
h(t0) = h0 ∈ R

N×N ,
(2.9)

where g(h(t)) = f (r(t)) − f (s(t)). Similarly, the component form is h(t) = (h1(t), h2(t), . . . , hN(t))T ,
g(h(t)) = (gT (h1(t)), gT (h2(t)), . . . , gT (hN(t)))T , and the remaining symbols are the same as above.

For convenience, we express exponential stability is ESt. Mean square exponential stability is
MSESt. Exponential synchronization is ESy. Mean square exponential synchronization is MSESy.
Almost sure exponential stability is ASESt. Almost sure exponential synchronization is ASESy.

Next, the definition of ESt of the error system (2.9) is given.
Definition 1. If the error system (2.9) has ESt, then the CDN (2.3) with (2.2) is said to have ESy.
Namely, for any initial value h0 ∈ R

N , there exist two scalars α > 0, β > 0 such that for any t ∈ R+, t
satisfies

||h(t)|| ≤ α||h0|| exp(−β(t − t0)).

For the error system (2.8) subject to random interference, we have the following two definitions.
Definition 2. [46, 47] CDN (2.8) is said to be ASESt if ∀t0 ∈ R+, p0 ∈ R

n, the Lyapunov exponent

lim sup
t→∞

1
t
(ln ||pi(t, t0, p0)||) < 0, i = 1, 2, . . . ,N.

Then, the CDN (2.7) with (2.2) is said to be ASESy if ∃M > 0 and scalar α > 0, β > 0 such that

||pi(t)|| ≤ M exp(−αβ(t − t0)), i = 1, 2, . . . ,N,

where M > 0 is the constant related to the initial value state.
Definition 3. [33, 46] CDN (2.8) is said to be MSESt, if ∀t0 ∈ R+, p0 ∈ R

n, the Lyapunov exponent

lim sup
t→∞

(ln
1
t
(E||pi(t, t0, p0)||2)) < 0, i = 1, 2, . . . ,N.

Then, the CDN (2.7) with (2.2) is said to be MSESy if ∃G > 0 and scalar α > 0, β > 0 such that

E||hi(t)||2 ≤ G exp(−αβ(t − t0)), i = 1, 2, . . . ,N,

where G > 0 is the constant related to the initial value state.
From Definitions 2 and 3, we can see that MSESt can be derived from ASESt, but vice versa is not

true. However, ifM1 is assumed to be true, the MSESt of the error system (2.8) implies the ASESt of
the error system CDN (2.8) [46].
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3. Main results

Under assumptionM1, the error system (2.8) has an independent state pi(t, t0, p0) on t > t0 for any
initial state (t0, p0). Obviously, p = 0 is the equilibrium point of the error system (2.8). For now, we
are interested in the question of, once a CDN has achieved ESy under a controller, how much noise
intensity the CDN can withstand without losing synchronization.

The controller is a set of rules or algorithms that send instructions to the system to bring the system
to the desired state, and the control rules are established under the premise of ensuring the stability of
the system.

As we know, controllers can be divided into linear controllers and nonlinear controllers. A linear
controller is relatively simple in structure. So, we focus on nonlinear controllers based on linear
controllers. In the following, we discuss the robustness of CDNs with external noise interference
to maintain ESy a under linear and a nonlinear controller, respectively.

3.1. The linear feedback controller

Now, we will explore the effect of random disturbance on the ESt of the error system (2.8).
Theorem 1. If assumption M1 holds, and the error system (2.9) is ESt, then the error system (2.8)
is ESt. That is to say, systems (2.1) and (2.2) can realize the ESy under the linear controller (2.6), if
|σ| < σ̄, where σ̄ is is a unique positive solution of the following transcendental equation.

2α2σ2||B||2

β(1 − ε)
exp

{
4∆

[3∆

ε

(
k2 + c2||A||2 + ||W ||2

)
+
σ2||B||2

1 − ε

]}
+ 2α2 exp(−2β∆) = 1, (3.1)

where ε ∈ (0, 1) is an adjustable parameter, and ∆ > ln(2α2)/(2β) > 0.
Proo f . For convenience, h(t, t0, h0), p(t, t0, p0) are denoted by h(t), p(t), respectively. Based on (2.8)
and (2.9) and the initial value h0 = p0, one has

p(t) − h(t) =

∫ t

t0
[g(p(s)) − g(h(s)) + cA(p(s) − h(s)) + W(p(s) − h(s))]ds

−

∫ t

t0
σBp(s)dω(s).

(3.2)

Therefore, when t ≤ t0 + 2∆, according to the Hölder inequality, assumption M1 and ESt of the
error system (2.9),

E||p(t) − h(t)||2 ≤
1
ε
E

∣∣∣∣∣∣∣∣∣∣ ∫ t

t0
[g(p(s)) − g(h(s)) + cA(p(s) − h(s)) + W(p(s) − h(s))]ds

∣∣∣∣∣∣∣∣∣∣2
+

1
1 − ε

E

∣∣∣∣∣∣∣∣∣∣ ∫ t

t0
σBp(s)dω(s)

∣∣∣∣∣∣∣∣∣∣2
≤

1
ε
E

∫ t

t0
12 ds

∫ t

t0

∣∣∣∣∣∣∣∣∣∣[g(p(s)) − g(h(s)) + cA(p(s) − h(s)) + W(p(s) − h(s))]
∣∣∣∣∣∣∣∣∣∣2ds

+
σ2||B||2

1 − ε

∫ t

t0
E

∣∣∣∣∣∣∣∣∣∣p(s) − h(s) + h(s)
∣∣∣∣∣∣∣∣∣∣2ds
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≤
2∆

ε

∫ t

t0
E

∣∣∣∣∣∣∣∣∣∣[g(p(s)) − h(p(s)) + cA(p(s) − h(s)) + W(p(s) − h(s))
]∣∣∣∣∣∣∣∣∣∣2ds

+
σ2||B||2

1 − ε

∫ t

t0
E

∣∣∣∣∣∣∣∣∣∣p(s) − h(s) + h(s)
∣∣∣∣∣∣∣∣∣∣2ds

≤

[6∆

ε

(
k2 + c2||A||2 + ||W ||2

)
+

2σ2||B||2

1 − ε

] ∫ t

t0
E||p(s) − h(s)||2ds

+
2σ2||B||2

1 − ε

∫ t

t0
E||h(s)||2ds

≤

[6∆

ε

(
k2 + c2||A||2 + ||W ||2

)
+

2σ2||B||2

1 − ε

] ∫ t

t0
E||p(s) − h(s)||2ds

+
α2σ2||B||2||h0||

2

(1 − ε)β
.

(3.3)

When t0 + ∆ ≤ t ≤ t0 + 2∆, using the Gronwall-Bellman inequality [46],

E||p(t) − h(t)||2 ≤
α2σ2||B||2||h0||

2

(1 − ε)β
exp

{[6∆

ε

(
k2 + c2||A||2 + ||W ||2

)
+

2σ2||B||2

1 − ε

]
(t − t0)

}
≤
α2σ2||B||2

(1 − ε)β
exp

{
4∆

[3∆

ε

(
k2 + c2||A||2 + ||W ||2

)
+
σ2||B||2

1 − ε

]}
×

(
sup

t0≤t≤t0+∆

E||h(t)||2
)
.

(3.4)

For t0 + ∆ ≤ t ≤ t0 + 2∆, with ESt of (3.4) and (2.9), one has

E||p(t)||2 =E||p(t) − h(t) + h(t)||2

≤2E||p(t) − h(t)||2 + 2E||h(t)||2

≤
2α2σ2||B||2

(1 − ε)β
exp

{
4∆

[3∆

ε

(
k2 + c2||A||2 + ||W ||2

)
+
σ2||B||2

1 − ε

]}(
sup

t0≤t≤t0+∆

E||h(t)||2
)

+ 2α2||h0||
2 exp(−2β(t − t0))

≤

{2α2σ2||B||2

(1 − ε)β
exp

{
4∆

[3∆

ε

(
k2 + c2||A||2 + ||W ||2

)
+
σ2||B||2

1 − ε

]}
+ 2α2 exp(−2β∆)

}
×

(
sup

t0≤t≤t0+∆

E||h(t)||2
)
.

(3.5)

By (3.1), when |σ| < σ̄,
T < 1,

where

T =
2α2σ2||B||2

(1 − ε)β
exp

{
4∆

[3∆

ε

(
k2 + c2||A||2 + ||W ||2

)
+
σ2||B||2

1 − ε

]}
+ 2α2 exp(−2β∆).

When t0 + ∆ ≤ t ≤ t0 + 2∆, let
∂T
∂ε

= 0,
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that is,
∂T
∂ε

=
2α2σ2||B||2

β

[ 1
(1 − ε)2 −

12∆2

ε2(1 − ε)

(
k2 + c2||A||2 + ||W ||2

)
+

4∆σ2||B||2

(1 − ε)3

]
× exp

{
4∆

[3∆

ε

(
k2 + c2||A||2 + ||W ||2

)
+
σ2||B||2

1 − ε

]}
.

(3.6)

From (3.6),

ε3 −

[
1 − 12∆2(k2 + c2||A||2 + ||W ||2) + 4∆σ2||B||2

]
ε2 − 24∆2(k2 + c2||A||2 + ||W ||2)ε

+ 12∆2(k2 + c2||A||2 + ||W ||2) = 0.
(3.7)

Then, (3.7) has a real root ε0, and substituting ε = ε0 into T , we has that T is a strictly monotonically
increasing function of σ. So, when ε = ε0 ∈ (0, 1), Eq (3.1) have unique solution |σ̄| = σmax.
Let

Γ = − ln T/∆.

So, Γ > 0, and from (3.6), one has

sup
t0+∆≤t≤t0+2∆

E||p(t)||2 ≤ exp(−Γ∆)
(

sup
t0≤t≤t0+∆

E||p(t)||2
)
. (3.8)

According to the above analysis, the curves of solutions starting from different initial values are the
same. Therefore, for any positive integer η = 1, 2, . . . , when t ≥ t0 + (η − 1)∆, one has

p(t, t0, h0) = p
(
t, t0 + (η − 1)∆, p(t0 + (η − 1)∆, t0, h0)

)
. (3.9)

From (3.8) and (3.9),

sup
t0+η∆≤t≤t0+(η+1)∆

E||p(t, t0, p0)||2 =

(
sup

t0+(η−1)∆+∆≤t≤t0+(η−1)∆+2∆

E||p
(
t, t0 + (η − 1)∆, p(t0 + (η − 1)∆, t0, p0)

)
||2

)
≤ exp(−Γ∆)

(
sup

t0+(η−1)∆≤t≤t0+η∆

E||p(t, t0, p0)||2
)

. . .

≤ exp(−Γη∆)
(

sup
t0≤t≤t0+∆

E||p(t, t0, p0)||2
)

= : G exp(−Γη∆),

where G = supt0≤t≤t0+∆ E||p(t, t0, p0)||2, so for any t > t0 + ∆, there is a positive integer η where t0 +η∆ ≤

t ≤ t0 + (η + 1)∆. We have

E||p(t, t0, p0)||2 ≤ G exp(−Γt + Γt0 + Γ∆)
= (G exp(Γ∆)) exp(−Γ(t − t0)).

(3.10)

This is also true when t0 ≤ t ≤ t0 + ∆. Thus, the error system (2.8) is ASESt.
Corollary 1. When ε = 1/2, the error system (2.8) is MSESt and also ASESt, if |σ| < σ̄, where σ̄ is
the only positive root of the following transcendental equation.

4α2σ2||B||2

β
exp

{
4∆

[
6∆

(
k2 + c2||A||2 + ||W ||2

)
+ 2σ2||B||2

]}
+ 2α2 exp(−2β∆) = 1,

where ∆ > ln(2α2)/(2β) > 0.
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Remark 1. Theorem 1 states that the error system (2.9) is ESt, and when the perturbation intensity σ
is in the range we derive, the systems (2.1) and (2.2) under a linear controller (2.6) can maintain ESy.

The proof of Theorem 1 is finished.

3.2. The nonlinear feedback controller

Similar (2.6), the nonlinear controller is

vi(t) = − f (ui(t)) + f (s(t)) + R̄pi(t), i = 1, . . . ,N, (3.11)

where R̄ ∈ RN×N represents the feedback gain matrix.
Substitute (3.11) into (2.4), and one has

dpi(t) =[c
N∑

j=1

ai j p j(t) + R̄pi(t)]dt + σ

N∑
j=1

bi j p j(t)dω(t),

pi(t0) =p0 ∈ R
N ,

(3.12)

where R = IN ⊗ R̄, and the remaining symbols are the same as in (2.7). Then, the system (3.12) is
rewritten in matrix form as dp(t) = [cAp(t) + Rp(t)]dt + σBp(t)dω(t),

p(t0) = p0 ∈ R
N×N .

(3.13)

The error system (3.13) without disturbance will becomeḣ(t) = cAh(t) + Rh(t),
h(t0) = h0 ∈ R

N×N .
(3.14)

Based on assumption M1, we explore the influence on the ESt of the error system (3.13) with
random perturbation.
Theorem 2. If assumption M1 holds, and the error system (3.14) is ESt, then the error system (3.13)
is ESt. That is, the systems (2.1) and (2.2) can realize the ESy under the nonlinear controller (3.11), if
|σ| < σ̄, where σ̄ is the only positive solution of the following transcendental equation.

α2σ2||B||2

β(1 − λ)
exp

{
4∆

[2∆

λ

(
c2||A||2 + ||R||2

)
+
σ2||B||2

1 − λ

]}
+ 2α2 exp(−2β∆) = 1, (3.15)

where λ is an adjustable parameter and λ ∈ (0, 1),∆ > ln(2α2)/(2β) > 0.
Proo f . Define h(t) = p(t, t0, p0), p(t) = p(t, t0, p0), and the differential equations of systems (3.13)
and (3.14) are converted into integral equations . The initial value h0 = p0, and we have

p(t) − h(t) =

∫ t

t0
[cA(p(s) − h(s)) + R(p(s) − h(s))]ds −

∫ t

t0
σBp(s)dω(s). (3.16)
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Therefore, when t ≤ t0 + 2∆, according to the Hölder inequality, assumption M1 and the ESt of
system (3.14),

E||p(t) − h(t)||2 =E

∣∣∣∣∣∣∣∣∣∣ ∫ t

t0

[
cA(p(s) − h(s)) + R(p(s) − h(s))

]
ds −

∫ t

t0
σBp(s)dω(s)

∣∣∣∣∣∣∣∣∣∣2
≤

1
λ
E

∣∣∣∣∣∣∣∣∣∣ ∫ t

t0

[
cA(p(s) − h(s)) + R(p(s) − h(s))

]
ds

∣∣∣∣∣∣∣∣∣∣2
+

1
1 − λ

E

∣∣∣∣∣∣∣∣∣∣ ∫ t

t0
σBp(s)dω(s)

∣∣∣∣∣∣∣∣∣∣2
≤

1
λ
E

∫ t

t0
12 ds

∫ t

t0

∣∣∣∣∣∣∣∣∣∣cA(p(s) − h(s)) + R(p(s) − h(s))
∣∣∣∣∣∣∣∣∣∣2ds

+
σ2||B||2

1 − λ

∫ t

t0
E

∣∣∣∣∣∣∣∣∣∣p(s) − h(s) + h(s)
∣∣∣∣∣∣∣∣∣∣2ds

≤
2∆

λ

∫ t

t0
E

∣∣∣∣∣∣∣∣∣∣cA(p(s) − h(s)) + R(p(s) − h(s))
∣∣∣∣∣∣∣∣∣∣2ds

+
2σ2||B||2

1 − λ

∫ t

t0
E||p(s) − h(s)||2 + E||h(s)||2ds

≤

[4∆

λ

(
c2||A||2 + ||R||2

)
+

2σ2||B||2

1 − λ

] ∫ t

t0
E||p(s) − h(s)||2ds

+
2σ2||B||2

1 − λ

∫ t

t0
E||h(s)||2ds

≤

[4∆

λ

(
c2||A||2 + ||R||2

)
+

2σ2||B||2

1 − λ

] ∫ t

t0
E||p(s) − h(s)||2ds

+
α2σ2||B||2||h(t0)||2

β(1 − λ)
.

(3.17)

For t0 + ∆ ≤ t ≤ t0 + 2∆, using the Gronwall-Bellman inequality [46],

E||p(t) − h(t)||2 ≤
α2σ2||B||2|h(t0)|2

β(1 − λ)
exp

{[4∆

λ

(
c2||A||2 + ||R||2

)
+

2σ2||B||2

1 − λ

]
(t − t0)

}
≤
α2σ2||B||2

β(1 − λ)
exp

{
4∆

[2∆

λ

(
c2||A||2 + ||R||2

)
+
σ2||B||2

1 − λ

]}
×

(
sup

t0≤t≤t0+∆

E||h(t)||2
)
.

(3.18)
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So, when t0 + ∆ ≤ t ≤ t0 + 2∆, from (3.18), with the ESt of system (3.14), we have

E||p(t)||2 =E||p(t) − h(t) + h(t)||2

≤2E||p(t) − h(t)||2 + 2E||h(t)||2

≤
α2σ2||B||2

β(1 − λ)
exp

{
4∆

[2∆

λ

(
c2||A||2 + ||R||2

)
+
σ2||B||2

1 − λ

]}(
sup

t0≤t≤t0+∆

E||h(t)||2
)

+ 2α2||h(t0)||2 exp(−2β(t − t0))

≤

{
α2σ2||B||2

β(1 − λ)
exp

{
4∆

[2∆

λ

(
c2||A||2 + ||R||2

)
+
σ2||B||2

1 − λ

]}
+ 2α2 exp(−2β∆)

}(
sup

t0≤t≤t0+∆

E||h(t)||2
)
.

(3.19)

By (3.15), when |σ| < σ̄,
L < 1,

where

L =
α2σ2||B||2

β(1 − λ)
exp

{
4∆

[2∆

λ

(
c2||A||2 + ||R||2

)
+
σ2||B||2

1 − λ

]}
+ 2α2 exp(−2β∆).

When t0 + ∆ ≤ t ≤ t0 + 2∆, let
∂L

∂λ
= 0,

that is,
∂L

∂λ
=
α2σ2||B||2

β

[ 1
(1 − λ)2 −

8∆2

λ2(1 − λ)

(
c2||A||2 + ||R||2

)
+

4∆σ2||B||2

(1 − λ)3

]
× exp

{
4∆

[2∆

λ

(
c2||A||2 + ||R||2

)
+
σ2||B||2

1 − λ

]}
.

(3.20)

From (3.20),

λ3 −

[
1 − 8∆2(c2||A||2 + ||R||2) + 4∆σ2||B||2

]
λ2 − 16∆2(c2||A||2 + ||R||2)λ

+ 8∆2(c2||A||2 + ||R||2) = 0.
(3.21)

For (3.21) there is a real root λ0, and substituting λ = λ0 into L, we get that L is a strictly
monotonically increasing function ofσ. So, when λ = λ0 ∈ (0, 1), Eq (3.15) has unique root |σ̄| = σmax.

Let
Λ = − lnL/∆.

Hence, Λ > 0, and from (3.19),

sup
t0+∆≤t≤t0+2∆

E||p(t)||2 ≤ exp(−Λ∆)
(

sup
t0≤t≤t0+∆

E||p(t)||2
)
. (3.22)

Furthermore, the curves of solutions starting from different initial values are the same, so for any
positive integer % = 1, 2, . . . , when t ≥ t0 + (% − 1)∆, we have

p(t, t0, p0) = p
(
t, t0 + (% − 1)∆, p(t0 + (% − 1)∆, t0, p0)

)
. (3.23)
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From (3.22) and (3.23), we have

sup
t0+%∆≤t≤t0+(%+1)∆

E||p(t, t0, p0)||2 =

(
sup

t0+(%−1)∆+∆≤t≤t0+(%−1)∆+2∆

E||p
(
t, t0 + (% − 1)∆, h(t0 + (% − 1)∆, t0, p0)

)
||2

)
≤ exp(−Λ∆)

(
sup

t0+(%−1)∆≤t≤t0+%∆

E||p(t, t0, p0)||2
)

. . .

≤ exp(−Λ%∆)
(

sup
t0≤t≤t0+∆

E||p(t, t0, p0)||2
)

= : G exp(−Λ%∆),

where G = supt0≤t≤t0+∆ E||p(t, t0, p0)||2, so for any t > t0 + ∆, we have a positive integer % such that
t0 + %∆ ≤ t ≤ t0 + (% + 1)∆. We have

E||p(t, t0, p0)||2 ≤ G exp(−Λt + Λt0 + Λ∆)
= (G exp(Λ∆)) exp(−Λ(t − t0)).

(3.24)

Obviously, (3.24) also holds for t0 ≤ t ≤ t0 + ∆. Similar to Corollary 1, when λ = 1/2, if |σ| < σ̄,

2α2σ2||B||2

β
exp

{
8∆

[
2∆

(
c2||A||2 + ||R||2

)
+ σ2||B||2

]}
+ 2α2 exp(−2β∆) = 1,

where σ̄ is the solution to the transcendental equation, and ∆ > ln(2α2)/(2β) > 0.
The proof of Theorem 2 is finished.

Remark 2. Theorem 2 states that when the error system (3.13) is ESt, the disturbed system (3.14)
can remain ESt as long as the perturbation intensity σ is less than the upper bound of our estimate.
Then, the systems (2.1) and (2.2) subject to random perturbation still maintain ESy under the nonlinear
controller (3.11).
Remark 3. According to Theorems 1 and 2, the maximum upper bound of the disturbed intensity is
estimated by solving the transcendental equation with MATLAB. If the intensity of the disturbance is
less than the bounds estimated in this paper, the CDN is ESt. Then, systems (2.1) and (2.2) are ESy
under the controller.

In Table 1, we represent Random perturbations as RP, Deviating argument as DA and Asymptotic
synchronization as ASSy, respectively.

Table 1. Other articles are compared with this article.

Controller RP DA ESy ASSy Robustness
Wang (2018) [33] X X - X - -
Zhang (2018) [29] X X - X - -
Shen (2016) [20] impulsive control - X - X -
Lia (2022) [45] X - X X - X

This paper X X - X - X
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4. Examples

In this section, we will provide some examples to illustrate the validity of the results.
Example 1. We will consider a CDN composed of four nodes under linear cotroller

ṙi(t) = g(ri(t)) + c
4∑

j=1
ai jr j(t) + vi(t),

ri(t0) = r0 ∈ R
N ,

ṡ(t) = g(s(t)),
vi(t) =Wpi(t).

(4.1)

When the error system (4.1) is subjected to random perturbation, it will become the following form:

dri(t) =[g(ri(t)) + c
4∑

j=1

ai jr j(t) + vi(t)]dt + σ

4∑
j=1

bi jr j(t)dω(t),

ri(t0) =r0 ∈ R
N ,

ṡ(t) =g(s(t)),
vi(t) =Wpi(t).

(4.2)

Let pi(t) = ri(t) − s(t), where i ∈ 1, 2, 3, 4, and ri(t) = (ri1(t), ri2(t), ri3(t), ri4(t))T ∈ R4 is the state
vector of the i-th node of the CDN. σ is the system disturbance intensity, and ω(t) is a scalar Brownian
motion defined in a complete probability space.

In addition, the error systems (4.1) and (4.2) are respectively written in matrix form:{
ṗ(t) = g(p(t)) + cAp(t) + W p(t),
p(t0) = p0 ∈ R

N×N ,
(4.3)

and dp(t) =[g(p(t)) + cAp(t) + W p(t)]dt + σBp(t)dω(t),
p(t0) =p0 ∈ R

N×N .
(4.4)

Consider the coupling matrices

A =


−1 0.1 1 −0.1
−0.1 −1 0.1 1

1 −0.1 −1 0.1
0.1 1 −0.1 −1

 , B =


−0.2 −0.1 −0.2 −0.1
−0.1 0.2 0.1 −0.2
0.05 −0.01 0.05 −0.01
−0.1 −0.2 −0.1 0.2

 ,

W =


−0.05 0 0 −1

0 0.05 1 0
0 −0.2 −1 0

0.1 0 0 −0.1

 .

AIMS Mathematics Volume 8, Issue 9, 20487–20509.



20500

Activation function f (∗) = sin(∗). Coupling strength is c = 1.8. The intensity of the
disturbance coefficient is σ = 0.052. The initial values of the four-nodes and isolated node
are h1 = (−0.1, 0.2,−0.1, 0.2)T , h2 = (−0.12, 0.11, 0.11,−0.12)T , h3 = (0.1,−0.2, 0.1,−0.2)T , h4 =

(0.12,−0.11,−0.11, 0.12)T and s(t) = (0.1,−0.2,−0.1, 0.2)T respectively.
According to Theorem 1, the error system (4.4) is ESt when α = 0.9 and β = 1.6.
Choose ∆ = 0.4 > ln(1.62)/3.2 = 0.3859, and by solving Eq (3.1),

0.162σ2

1.6(1 − ε)
exp

(
1.6

[1.2
ε

(
k2 + 4.264544

)
+

0.00012σ2

1 − ε

])
+ 2 × 0.81 × exp(−1.28) = 1, (4.5)

where k is a given constant, we can get the curve of (σ, ε(λ)) as shown in Figure 4.
Remark 4. Figure 1 shows the state of CDN (2.1) undisturbed by external random noise. That is,
CDNS (2.1) and (2.2) are ESy under a linear controller. When the interference intensity of external
random noise is σ = 0.09, CDN (2.1) and (2.2) are ESy as shown in Figure 2. Figure 3 shows that
when the random disturbance intensity is σ = 0.5, its solution is not in the curve shown in Figure 4,
which does not meet the condition of Theorem 1. That is, CDN (2.1) and (2.2) are not ESy.

Figure 1. Undisturbed state of CDN (4.3) under linear control.
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Figure 2. CDN (4.4) state with disturbance coefficient σ = 0.09 under linear controller.

Figure 3. CDN (4.4) state with disturbance coefficient σ = 0.5 under linear controller.
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Figure 4. The stable region with (σ,ε(λ)) in CDN.

Example 2. We will consider a CDN composed of four nodes under nonlinear cotroller
ṙi(t) = g(ri(t)) + c

4∑
j=1

ai jr j(t) + vi(t),

ri(t0) = r0 ∈ R
N ,

ṡ(t) = g(s(t)),
vi(t) = −g(ri(t)) + g(s(t)) + R̄pi(t).

(4.6)

The disturbed error system (4.6) will become

ṙi(t) =[g(ri(t)) + c
4∑

j=1

ai jr j(t) + vi(t)]dt + σ

4∑
j=1

bi jr j(t)dω(t),

ri(t0) =r0 ∈ R
N ,

ṡ(t) =g(s(t)),
vi(t) = − g(ri(t)) + g(s(t)) + R̄pi(t).

(4.7)

Let pi(t) = ri(t) − s(t), where i ∈ 1, 2, 3, 4, and ri(t) = (ri1(t), ri2(t), ri3(t), ri4(t))T ∈ R4 is the state
vector of the i-th node of the CDN. σ is the system disturbance intensity, and ω(t) is a scalar Brownian
motion defined in a complete probability space.

Moreover, the matrix forms of the error system (4.6) and the error system (4.7) are, respectively,{
ṗ(t) = cAp(t) + Rp(t),
p(t0) = p0 ∈ R

N×N ,
(4.8)
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and {
dp(t) = [cAp(t) + Rp(t)]dt + σBp(t)dω(t),
p(t0) = p0 ∈ R

N×N .
(4.9)

Consider the coupling matrices

A =


0.2 0.31 0 −0.2
−0.1 0.12 0 0

0 0 −0.2 0.2
0 −0.3 0.01 0.1

 , B =


0.01 0.2 0 −0.1
1.2 0 −1.3 0
0 −0.1 0.2 0.2
−0.1 0 1.2 1.3

 ,

R =


−0.02 0 0.1 −0.1
−0.02 0 0 −0.3

0.1 −0.2 −0.2 1
0.2 −0.5 0 −1

 .
The coupling strength is c = 1.2. Activation function f (∗) = sin(∗). The intensity of the

disturbance coefficient is σ = 0.013. The initial values of the four-nodes and isolated node are h1 =

(−1, 0.1,−0.1,−1)T , h2 = (0.2,−0.1,−0.1, 0.2)T , h3 = (1,−0.1, 0.1,−1)T , h4 = (−0.2, 0.1, 0.1,−0.2)T

and s(t) = (0.2, 0.1, 0.2,−0.1)T respectively.
According to Theorem 1, the error system (4.9) is ESt when α = 1.1 and β = 1.2.
Choose ∆ = 0.6 > ln(2.42)/2.4 = 0.5303, and by solving Eq (3.15),

1.21 × 0.00352σ2

1.2(1 − ε)
exp

(
2.4

[1.2
ε

(
1.44 × 0.0242 + 0.000009

)
+

0.00352σ2

1 − ε

])
+ 2.42 × exp(−1.44) = 1,

(4.10)
where k is a given constant, we can get the curve of (σ, ε(λ)) as shown in Figure 4.
Remark 5. Figure 5 shows the state of CDN (2.6) undisturbed by random noise. That is, CDN (2.1)
and (2.2) are ESy under a linear controller. When the interference intensity of external random noise is
σ = 0.013, CDN (2.1) and (2.2) are ESy, as shown in Figure 6. Figure 7 shows that when the random
disturbance intensity is σ = 0.8, its solution is not in the curve shown in Figure 3, which does not meet
the condition of Theorem 2. That is, CDN (2.1) and (2.2) are not ESy.
Remark 6. (1) Step size ∆ will directly affect the accuracy and stability of the numerical solution.
In general, the smaller the step size is, the more accurate the numerical solution, but the amount of
computation will also increase. Therefore, we choose the appropriate step size during the example
process to increase the utility of our simulation examples.

(2) The initial value h0, p0 needs to be as close to the real solution as possible; otherwise, the
numerical solution may diverge or converge to the wrong solution.

(3) The eigenvalues of the coefficient matrices A and B in Examples 1–4 and the control gain
matrices W and R in the controllers should be negative real numbers, thus making the CDN system
stable. Otherwise, the system may become unstable and fail to synchronize.

(4) The parameter size of coupling coefficient c needs to be adjusted according to the intensity of
the interfered with CDN.

(5) The increment dω of Brownian motion should be an independent identically distributed random
variable subject to the standard normal distribution.
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Figure 5. Undisturbed state of CDN (4.8) under linear control.

Figure 6. CDN (4.9) state with disturbance coefficient σ = 0.013 under linear controller.
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Figure 7. CDN (4.9) state with disturbance coefficient σ = 0.8 under linear controller.

Remark 7. In [6], the robustness of the stability of recurrent neural networks was studied for the
first time. In [45], Lia et al. studied for the first time the robustness of ESy in CDNs with deviation
parameters. According to [20, 31, 32, 34], we know that information of nodes in CDNs will inevitably
be interfered with by external random noise during transmission. Therefore, it is a necessary research
topic that CDNs can withstand the interference of external noise without losing synchronization.
Compared with [45], this paper is a supplement to that work. The research results of this paper and [45]
provide a theoretical basis for the analysis and design of CDNs.

5. Conclusions

This paper studies the robustness of ESy in CDNs with random perturbations. For CDNs that
have achieved ESy under the controllers (linear and nonlinear controllers), how much the CDNs
can withstand the interference of external noise without losing synchronization was the topic of
this paper. Using the Gronwall-Bellman lemma and inequality techniques, the maximum intensity
of CDN disturbance by external noise was estimated by solving transcendental equations, and the
sufficient conditions for ESy of CDNs with random perturbations were obtained. The results show
that systems (2.8) and (3.13) are ESt when the strength of the random disturbance is less than the
upper bound we derived, and thus systems (2.1) and (2.2) are ESy. The results of this paper provide
a theoretical reference for the design and application of ESy controllers in CDNs. Since the Lipschitz
condition used is conservative, the derivation in this paper is a conservative bound. In the future, we
will try to use the less conservative Lipschitz condition to expand the upper limit of the disturbance
strength, such that the CDN is more stable and thus better able to achieve synchronization. In view
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of the methods and techniques analyzed in this paper, we will further consider the simultaneous
effects of time delay and random perturbation on the robustness of ESy of CDNs in the next stage.
The less conservative Lipschitz condition is used to analyze the upper bound of time delays and
random disturbances, which makes the obtained results less conservative, and makes it easier to
realize synchronization of CDNs or further consider other more complex models: For example,
synchronization of fractional-order CDNs or impulsive fractional-order CDNs.
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