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1. Introduction

The irruption of the moduli of convexity and smoothness [7] in the literature of the geometry of
the real Banach spaces was a huge revolution that brought strong implications to longstanding open
problems such as the Banach-Mazur conjecture for rotations or the fixed-point property problem. The
main purpose of this manuscript is to introduce an index that measures a convexity stronger than
strict convexity but weaker than uniform convexity. All Banach spaces considered throughout this
manuscript will be over the reals. A point x in the unit sphere SX of a Banach space X is said to be a
strongly exposed point of the unit ball BX if there exists x∗ in the unit sphere SX∗ of the dual space X∗

verifying the following property: If (xn)n∈N ⊆ BX is such that (x∗(xn))n∈N converges to 1, then (xn)n∈N

converges to x. The functional x∗ is said to strongly expose x on BX and it is trivial that (x, x∗) ∈ ΠX,
where ΠX := {(x, x∗) ∈ SX × SX∗ : x∗(x) = 1}. We will let

Πse
X :=

{
(x, x∗) ∈ SX × SX∗ : x∗ strongly exposes x on BX

}
.

A weaker notion than a strongly exposed point is that of an exposed point. A point x ∈ SX is said
to be an exposed point of BX if there exists x∗ ∈ SX∗ in such a way that (x∗)−1 ({1}) ∩ BX = {x}.
This time the functional x∗ is called a supporting functional that exposes x on BX. We will let Πe

X :=
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(x, x∗) ∈ SX × SX∗ : x∗ exposes x on BX

}
. Observe that Πse

X ⊆ Π
e
X ⊆ ΠX. Another trivial fact is the

following: for every surjective linear isometry T between Banach spaces X,Y and for every (x, x∗) ∈
SX × SX∗ , we have that (x, x∗) ∈ ΠX or Πe

X or Πse
X if and only if (T (x),T ∗(x∗)) ∈ ΠY or Πe

Y or Πse
Y ,

respectively. In other words, the previous notions are invariant under surjective linear isometries.
Another geometrical notion employed in this manuscript is that of a rotund point. A point x ∈ SX in
the unit sphere of a Banach space X is said to be a rotund point of the unit ball of X if x is contained in
no non-trivial segment of the unit sphere, in other words, {x} is a maximal proper face of BX. The set
of rotund points of BX is denoted by rot(BX). In view of the Hahn-Banach Separation Theorem, the set
of rotund points can be described as follows:

rot(BX) =
{
x ∈ SX : if x∗ ∈ SX∗ is so that (x, x∗) ∈ ΠX, then (x, x∗) ∈ Πe

X
}
.

We refer the reader to [2, 3] for a wider perspective on the above concepts and some other geometrical
properties related with renormings. The duality mapping [4, 5] of a Banach space X is the set-valued
map defined as

J : X → P(X∗)
x 7→ J(x) := {x∗ ∈ X∗ : ∥x∗∥ = ∥x∥ and x∗(x) = ∥x∗∥∥x∥} .

A point x in the unit sphere SX of X is said to be a smooth point [8] of the unit ball BX of X provided
that J(x) is a singleton. The subset of smooth points of BX is typically denoted by smo(BX). Rotund
points and smooth points are dual notions.

The main goal of this manuscript is to introduce an index that measures accurately how far a point
in the unit sphere is from being a strongly exposed point of the unit ball. For this, we first establish
characterizations of the set of rotund points and the set of smooth points. Then we introduce the index
of strong rotundity and show the most basic properties related to such index. We compute the index of
strong rotundity of a Hilbert space. Finally, we construct a new set of pairs contained in Πe

X for which
the stereographic projection [13, 14] in a Banach space is a homeomorphism.

2. Results

We will begin by providing a new characterization of the set of rotund points of the unit ball of a
Banach space. As usual, if X is a vector space and x, y ∈ X, then st(x, y) := x + R(y − x) is the straight
line passing through x, y and [x, y] := x + [0, 1](y − x) is the segment joining x, y.

Theorem 2.1. For a Banach space X, rot(BX) = {x ∈ SX : ∀y ∈ SX st(x, y) ∩ SX = {x, y}} .

Proof. We will prove both inclusions in two simple steps.

⊆ Let x ∈ rot(BX). Fix an arbitrary y ∈ SX \ {x}. If there exists z ∈ st(x, y) ∩ SX different from x, y,
then we end up with three points aligned in the unit sphere, so the whole segment containing x, y, z
lies entirely in the unit sphere. However, this contradicts the fact that {x} is a maximal proper face
of BX.

⊇ Conversely, let x ∈ SX satisfying that st(x, y) ∩ SX = {x, y} for all y ∈ SX. If x < rot(BX), then we
can find y ∈ SX \{x} such that [x, y] ⊆ SX, contradicting that st(x, y)∩SX = {x, y} since [x, y] ⊆ SX.
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The next result is a characterization of the set of smooth points in similar terms as the previous
theorem. However, a technical lemma is needed first.

Lemma 2.1. Let X be a Banach space. Let x ∈ SX and consider a straight line L ⊆ X containing x
such that L ∩ (SX \ {x}) = ∅. Then L ∩ UX = ∅, where UX is the open unit ball of X.

Proof. Suppose on the contrary that there exists u ∈ L ∩ UX. Consider the continuous function

(−∞, 0] → R

t 7→ ∥u + t(x − u)∥.

If t = 0, then ∥u∥ < 1. Note that
1 + ∥u∥
∥x − u∥

≥ 1 > ∥u∥,

therefore, if t < −1+∥u∥
∥x−u∥ , then

∥u + t(x − u)∥ ≥ |∥u∥ − ∥t(x − u)∥| = |∥u∥ − |t|∥x − u∥| = |t|∥x − u∥ − ∥u∥ > 1.

Bolzano’s Theorem assures the existence of s ∈ (−∞, 0) such that ∥u+s(x−u)∥ = 1, that is, u+s(x−u) ∈
L ∩ SX, meaning that u + s(x − u) = x, hence (1 − s)u = (1 − s)x, so u = x. This is a contradiction
because ∥u∥ < 1 = ∥x∥.

Theorem 2.2. For a Banach space X with dim(X) ≥ 2,

smo(BX) =
{
x ∈ SX : ∃x∗ ∈ SX∗ (x, x∗) ∈ ΠX and ∀z ∈ (x∗)−1 ({1}) st(−x, z) ∩ (SX \ {−x}) , ∅

}
.

Proof. We will prove both inclusions in two steps.

⊆ Let x ∈ smo(BX). There exists x∗ ∈ SX∗ satisfying that J(x) = {x∗}. Fix an arbitrary z ∈ (x∗)−1 ({1}).
Suppose on the contrary that st(−x, z) ∩ (SX \ {−x}) = ∅. Note that, in this case, ∥z∥ > 1 because
if ∥z∥ = 1, then z ∈ st(−x, z) ∩ (SX \ {−x}). By bearing in mind Lemma 2.1, st(−x, z) ∩ UX = ∅.
The Hahn-Banach Separation Theorem allows the existence of y∗ ∈ SX∗ such that st(−x, z) ⊆
(y∗)−1 ({1}). Then y∗(−x) = 1, meaning that −y∗(x) = 1, so −y∗ ∈ J(x) = {x∗}, reaching the
contradiction that y∗(z) = 1 and y∗(z) = −x∗(z) = −1.

⊇ Take x ∈ SX for which there exists x∗ ∈ J(x) satisfying that st(−x, z) ∩ (SX \ {−x}) , ∅ for
all z ∈ (x∗)−1 ({1}). Suppose on the contrary that x < smo(BX). There exists a 2-dimensional
subspace Y of X containing x for which x is not a smooth point of BY . Let JY : Y → P(Y∗) denote
the dual mapping of Y . Notice that JY(x) is a nontrivial segment that lies entirely in SY∗ . Thus
we can write JY(x) = [a∗, b∗] where a∗ , b∗ both are in SY∗ . Notice that BY ⊆ (x∗|Y)−1 ([−1, 1]) ∩
(a∗)−1([−1, 1]) ∩ (b∗)−1([−1, 1]). Also, x∗|Y ∈ JY(x) = [a∗, b∗], therefore, either a∗ , x∗|Y or
b∗ , x∗|Y . Let us assume without any loss of generality that a∗ , x∗|Y . Then (a∗)−1({−1}) is not
parallel to (x∗|Y)−1 ({1}), hence the straight line (a∗)−1({−1}) intersects (x∗|Y)−1 ({1}). Choose any
z ∈ (x∗|Y)−1 ({1}) with (a∗)(z) < −1. On the one hand, st(−x, z) ⊆ Y , thus st(−x, z) ∩ (SX \ {−x}) ⊆
st(−x, z) ∩ (SY \ {−x}). On the other hand, we will prove that st(−x, z) ∩ (SY \ {−x}) = ∅. Indeed,
pick any t ∈ R \ {0} and distinguish the following two cases:

• t > 0. In this case, a∗(tz + (1 − t)(−x)) = t(a∗(z) + 1) − 1 < −1. Since BY ⊆ (a∗)−1([−1, 1]),
we conclude that tz + (1 − t)(−x) < BY .
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• t < 0. In this case, x∗|Y(tz + (1 − t)(−x)) = 2t − 1 < −1. Since BY ⊆ (x∗|Y)−1 ([−1, 1]), we
conclude that tz + (1 − t)(−x) < BY .

As a consequence, we end up having the contradiction that st(−x, z) ∩ (SX \ {−x}) = ∅.

Let us introduce next the index of strong rotundity of a Banach space. First, we recall that, for a
Banach space X, UX stands for the open unit ball, and UX(x, ε) denotes the open ball of center x ∈ X
and radius ε ≥ 0.

Definition 2.1. (Index of strong rotundity) Let X be a Banach space. The local index of strong rotundity
of X at (x, x∗) ∈ ΠX is defined as

ηX (·, (x, x∗)) : [0, 2] → [0, 2]
ε 7→ ηX (ε, (x, x∗)) := d

(
(x∗)−1({1}),BX \ UX(x, ε)

)
.

(2.1)

The index of strong rotundity of X at is defined as

ηX : [0, 2] → [0, 2]
ε 7→ ηX(ε) := inf {ηX (ε, (x, x∗)) : (x, x∗) ∈ ΠX} .

(2.2)

The index of strong rotundity will serve, among other things, to characterize the strongly exposed
points of the unit ball. Later on, we will relate the index of strong rotundity to the modulus of local
uniform rotundity. Now, the following lemma unveils the most basic properties satisfied by the index
of rotundity.

Lemma 2.2. Let X be a Banach space. Let (x, x∗) ∈ ΠX. Then:

(1) ηX (0, (x, x∗)) = 0.
(2) (x∗)−1({−1}) ∩ BX ⊆ BX \ UX(x, 2), hence ηX (2, (x, x∗)) ≤ 2.
(3) If (x∗)−1({−1}) ∩ BX = BX \ UX(x, 2), then ηX (2, (x, x∗)) = 2.
(4) If 0 ≤ ε1 ≤ ε2 ≤ 2, then ηX (ε1, (x, x∗)) ≤ ηX (ε2, (x, x∗)).
(5) If 0 ≤ ε1 ≤ ε2 ≤ 2, then ηX (ε1) ≤ ηX (ε2).
(6) Πse

X = {(x, x∗) ∈ ΠX : ∀ε ∈ (0, 2] ηX (ε, (x, x∗)) > 0}.

Proof. We will only prove the second, third, and last items.

(2) For every z ∈ (x∗)−1({−1}) ∩ BX, 2 ≥ ∥z − x∥ ≥ |x∗(z − x)| = |x∗(z) − x∗(x)| = 2, meaning that
z ∈ BX \ UX(x, 2).

(3) On the one hand, if u ∈ (x∗)−1({1}) and v ∈ (x∗)−1({−1}) ∩ BX, then ∥u − v∥ ≥ |x∗(u − v)| =
|x∗(u) − x∗(v)| = 2, thus d

(
(x∗)−1({1}), (x∗)−1({−1}) ∩ BX

)
= 2. On the other hand,

2 ≥ ηX (2, (x, x∗)) := d
(
(x∗)−1({1}),BX \ UX(x, ε)

)
= d
(
(x∗)−1({1}), (x∗)−1({−1}) ∩ BX

)
= 2.

(6) Fix an arbitrary (x, x∗) ∈ Πse
X . Suppose on the contrary that there exists ε ∈ (0, 2] for which

ηX (ε, (x, x∗)) = 0. Then we can find two sequences (yn)n∈N ⊆ (x∗)−1({1}) and (xn)n∈N ⊆ BX \

UX(x, ε) such that ∥yn − xn∥ → 0 as n → ∞. Notice that x∗(xn) → 1 as n → ∞ but (xn)n∈N

does not converge to x because xn < UX(x, ε) for each n ∈ N, contradicting that (x, x∗) ∈ Πse
X .

Conversely, take any (x, x∗) ∈ ΠX satisfying that ηX (ε, (x, x∗)) > 0 for all ε ∈ (0, 2]. Assume to
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the contrary that (x, x∗) < Πse
X . There exists a sequence (xn)n∈N ⊆ BX in such a way that x∗(xn)→ 1

as n → ∞ but (xn)n∈N does not converge to x. By passing to an appropriate subsequence (xnk)k∈N,
we can find ε ∈ (0, 2] such that ∥xnk − x∥ ≥ ε for all k ∈ N. Notice that

(
x∗(xnk)

)
k∈N still converges

to 1, so, by assuming that x∗(xnk) , 0 for all k ∈ N, we have that
∥∥∥∥ xnk

x∗(xnk ) − xnk

∥∥∥∥ → 0, meaning

that ηX (ε, (x, x∗)) = d
(
(x∗)−1({1}),BX \ UX(x, ε)

)
= 0, which contradicts our initial assumption.

Notice that, under the settings of Lemma 2.2, it does not always hold that (x∗)−1({−1}) ∩ BX =

BX \ UX(x, 2).

Proposition 2.1. Let X be a Banach space. Let (x, x∗) ∈ Πe
X. If x < rot(BX), then (x∗)−1({−1}) ∩ BX ⊊

BX \ UX(x, 2).

Proof. In accordance with Lemma 2.2(2), (x∗)−1({−1}) ∩ BX ⊆ BX \ UX(x, 2). Since (x, x∗) ∈ Πe
X, we

have that (x∗)−1({1}) ∩ BX = {x}, so (x∗)−1({−1}) ∩ BX = {−x}. Since x < rot(BX), there exists a non-
trivial segment of the unit sphere containing x, that is, there exists y ∈ SX \ {x} with

∥∥∥ x+y
2

∥∥∥ = 1, in other
words, ∥x + y∥ = 2, meaning that −y ∈ BX \ UX(x, 2). Finally, −y < {−x} = (x∗)−1({−1}) ∩ BX. As a
consequence, (x∗)−1({−1}) ∩ BX ⊊ BX \ UX(x, 2).

In ℓ∞, we will let 1 to denote the constant sequence of general term 1. Also, (en)n∈N will denote the
sequence of canonical unit vectors, that is, en(m) = δnm for all n,m ∈ N. And

δn : ℓ∞ → R

x 7→ δn(x) := x(n)
(2.3)

is the nth-coordinate functional. Observe that (1, δ1), (e1, δ1) ∈ Πℓ∞ .

Proposition 2.2. ηℓ∞ (ε, (1, δ1)) = 0 for all ε ∈ [0, 2] and ηℓ∞ (2, (e1, δ1)) = 2.

Proof. According to Lemma 2.2(4), it only suffices to prove that ηℓ∞ (2, (1, δ1)) = 0. For this, we will
show that (δ1)−1({1}) ∩

(
Bℓ∞ \ Uℓ∞(1, 2)

)
, ∅. Indeed,

(1,−1,−1,−1, . . . ) ∈ (δ1)−1({1}) ∩
(
Bℓ∞ \ Uℓ∞(1, 2)

)
.

On the other hand, Bℓ∞ \ Uℓ∞(e1, 2) = (δ1)−1({−1}) ∩ Bℓ∞ , thus

ηℓ∞ (2, (e1, δ1)) = d
(
(δ1)−1({1}),Bℓ∞ \ Uℓ∞(e1, 2)

)
= d
(
(δ1)−1({1}), (δ1)−1({−1}) ∩ Bℓ∞

)
= 2

in view of Lemma 2.2(3).

Recall [1,6] that, given a Banach space X with unit sphere SX and unit ball BX, a closed subspace Y ⊆
X is said to be an Lp-summand subspace of X, where 1 ≤ p ≤ ∞, if Y is Lp-complemented in X, that
is, there exists a closed subspace Z ⊆ X such that X = Y ⊕p Z, in the sense that ∥y + z∥p = ∥y∥p + ∥z∥p

for all y ∈ Y and all z ∈ Z. A point x ∈ X is said to be an Lp-summand vector of X provided that Rx
is an Lp-summand subspace of X. In accordance with [1], every unit L2-summand vector is a rotund
point as well as a smooth point of the unit ball.

Theorem 2.3. Let X be a Banach space with dim(X) ≥ 2. For every (x, x∗) ∈ ΠX such that x is
an L2-summand vector of X and for every ε ∈ [0, 2],

ηX (ε, (x, x∗)) =
ε2

2
.
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Proof. First off, notice that ker(x∗) is the L2-complement of Rx. For every z ∈ (x∗)−1({1}) and every y ∈
BX \UX(x, ε), ∥z−y∥ ≥ |x∗(z−y)| = |x∗(z)− x∗(y)| = 1− x∗(y). Fix an arbitrary y ∈ BX \UX(x, ε) and write
y = x∗(y)x+my with my ∈ ker(x∗). Notice that x∗(y)2+∥my∥

2 ≤ 1 and (1−x∗(y))2+∥my∥
2 = ∥x−y∥2 ≥ ε2.

Then (1 − x∗(y))2 ≥ ε2 − ∥my∥
2 ≥ ε2 + x∗(y)2 − 1. In other words, (1 − x∗(y))2 + 1 − x∗(y)2 ≥ ε2, that is,

2− 2x∗(y) ≥ ε2, meaning that 1− x∗(y) ≥ ε
2

2 . Going back to the beginning, for every z ∈ (x∗)−1({1}) and
every y ∈ BX \ UX(x, ε), ∥z − y∥ ≥ 1 − x∗(y) ≥ ε

2

2 , which implies that ηX (ε, (x, x∗)) ≥ ε
2

2 . Finally, since
dim(X) ≥ 2, we can take any y ∈ SX ∩ SX(x, ε) and z := x +my, where my := y − x∗(y)x. Simply notice
that ∥z − y∥ = ∥(x + my) − y∥ = ∥(x + y − x∗(y)x) − y∥ = ∥x − x∗(y)x∥ = 1 − x∗(y) = ε

2

2 .

Corollary 2.1. If X is a Hilbert space with dim(X) ≥ 2, then ηX (ε) = ε
2

2 .

Proof. By bearing in mind [6], a Banach space is a Hilbert space if and only every unit vector is an L2-
summand vector. Therefore, by applying Theorem 2.3, ηX (ε, (x, x∗)) = ε2

2 for every (x, x∗) ∈ ΠX,
obtaining the desired result.

Another index can be defined which lies in between the local modulus of convexity and the index of
strong rotundity. Indeed, if X is a Banach space, then we define at (x, x∗) ∈ ΠX the following function:

υX (·, (x, x∗)) : [0, 2] → [0, 2]
ε 7→ υX (ε, (x, x∗)) := inf {1 − x∗(y) : ∥y∥ ≤ 1, ∥x − y∥ ≥ ε)} .

(2.4)

We remind the reader that the modulus of local convexity [12] at x ∈ SX is given by

δX (·, x) : [0, 2] → [0, 1]
ε 7→ δX (ε, x) := inf

{
1 −
∥∥∥ x+y

2

∥∥∥ : ∥y∥ ≤ 1, ∥x − y∥ ≥ ε)
}
.

(2.5)

Theorem 2.4. Let X be a Banach space. For every (x, x∗) ∈ ΠX and every ε ∈ [0, 2],

2δX(ε, x) ≤ υX(ε, (x, x∗)) ≤ ηX(ε, (x, x∗)).

Proof. On the one hand, for every z ∈ (x∗)−1({1}) and every y ∈ BX \ UX(x, ε),

∥z − y∥ ≥ x∗(z − y) = 1 − x∗(y) ≥ υX(ε, (x, x∗)).

As a consequence, ηX(ε, (x, x∗)) ≥ υX(ε, (x, x∗)). On the other hand, for every y ∈ BX \ UX(x, ε),

δX(ε, x) ≤ 1 −
∥∥∥∥∥ x + y

2

∥∥∥∥∥ ≤ 1 − x∗
( x + y

2

)
= 1 −

1 + x∗(y)
2

=
1 − x∗(y)

2
.

Therefore, δX(ε, x) ≤ 1
2υX(ε, (x, x∗)).

Let us finally tackle some applications to the stereographic projection. According to [9, 10], if X is
a Banach space and (x, x∗) ∈ Πe

X, then

SX \ {−x} → (x∗)−1({1})
y 7→ −x + 2

x∗(y)+1 (y + x) (2.6)

is a well-defined and continuous function known as stereographic projection.
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Definition 2.2. (Stereographic projection pair) Let X be a Banach space. Let (x, x∗) ∈ ΠX. We will say
that (x, x∗) is a stereographic projection pair provided that the following conditions are satisfied:

• st(−x, y) ∩ SX = {−x, y} for all y ∈ SX.
• st(−x, z) ∩ (SX \ {−x}) , ∅ for every z ∈ (x∗)−1({1}).
• If (y j) j∈N ⊆ SX \ {−x} is a sequence converging to −x, then

∥∥∥∥ y j+x
x∗(y j)+1

∥∥∥∥→ ∞ as j→ ∞.

The set of stereographic projection pairs will be denoted by Πsp
X .

According to Theorem 2.1, the first condition in the above definition is equivalent to the fact
that −x ∈ rot(BX). The second condition is equivalent to the fact that x ∈ smo(BX) in view of
Theorem 2.2. As a consequence, if (x, x∗) ∈ Πsp

X , then x ∈ rot(BX) ∩ smo(BX), hence (x, x∗) ∈ Πe
X.

Nevertheless, observe that the last condition of the previous definition is an unusual geometrical
property in the sense that it only works for sequences in the unit sphere, but not for sequences in the
unit ball. Indeed, if we take y j := t jx for all j ∈ N, where (t j) j∈N ⊆ (−1, 1) converges to −1, then∥∥∥∥∥∥ y j + x

x∗(y j) + 1

∥∥∥∥∥∥ =
∥∥∥∥∥∥ t jx + x

t j + 1

∥∥∥∥∥∥ = 1

for all j ∈ N.
By bearing in mind [9, Lemma 2.1], if x ∈ SX is an L2-summand vector of a Banach space X

and x∗ ∈ SX∗ satisfies that ker(x∗) is the L2-complement of Rx, then (x, x∗) is a stereographic projection
pair. Since a Banach space is a Hilbert space if and only every unit vector is an L2-summand vector [6],
we obtain the following theorem whose proof we omit.

Theorem 2.5. If X is a Hilbert space, then ΠX = Π
sp
X .

The following theorem generalizes and improves [9, Lemma 2.1]. First, a technical remark is
needed, which is a simple limit from a Calculus course.

Remark 2.1. For each p ∈ (1,∞), lim
x→−1+

1 − (−x)p

(1 + x)p = +∞.

Theorem 2.6. Let X be a Banach space with dim(X) ≥ 2. Let (x, x∗) ∈ ΠX. If x is an Lp-summand
vector of X, for 1 < p < ∞, and ker(x∗) is the Lp-complement of Rx, then (x, x∗) is a stereographic
projection pair.

Proof. In the first place, x is an Lp-summand vector of any 2-dimensional subspace containing it.
Therefore, any 2-dimensional subspace containing x is linearly isometric to ℓ2p, which is rotund and
smooth. Since rotund points and smooth points are 2-dimensional properties, we conclude
that x ∈ rot(BX)∩ smo(BX). By applying Theorem 2.1 and Theorem 2.2, we conclude that the first two
conditions of Definition 2.2 are satisfied. Let us prove the third condition. Take any
sequence (y j) j∈N ⊆ SX \ {−x} converging to −x. Let us write y j = x∗(y j)x + m j, where m j ∈ ker(x∗).
Since

(
x∗(y j)

)
j∈N

converges to −1, we may assume that −1 < x∗(y j) < 0 for all j ∈ N. Notice then
that 1 = (−x∗(y j))p + ∥m j∥

p for all j ∈ N. Then∥∥∥∥∥∥ y j + x
x∗(y j) + 1

∥∥∥∥∥∥p

=

(
1 + x∗(y j)

)p
+ ∥m j∥

p(
x∗(y j) + 1

)p =

(
1 + x∗(y j)

)p
+ 1 − (−x∗(y j))p(

x∗(y j) + 1
)p = 1 +

1 − (−x∗(y j))p(
x∗(y j) + 1

)p → ∞
as j→ ∞ in view of Remark 2.1.
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The final result in this manuscript shows that stereographic projection pairs make possible that
stereographic projections in Banach spaces be homeomorphisms, improving [9, Theorem 2.2].
However, let us recall first the following well-known topological fact [11].

Remark 2.2. Let X,Y be topological spaces. Let f : X → Y be injective. Let x ∈ X. Suppose that
for every net (xi)i∈I ⊆ X such that ( f (xi))i∈I converges to f (x), there exists a subnet (z j) j∈J of (xi)i∈I

convergent to x. Then f −1 : f (X)→ X is continuous at f (x).

One can easily understand that, under the settings of Remark 2.2, if X,Y are both first countable,
then Remark 2.2 remains true if we switch nets with sequences.

Theorem 2.7. Let X be a Banach space. If (x, x∗) ∈ Πsp
X , then the stereographic projection (2.6) is an

homeomorphism.

Proof. First off, let us denote by ϕ to the stereographic projection (2.6). We already know that ϕ is well
defined, continuous, and ϕ(y) ∈ st(−x, y) for all y ∈ SX \{−x}. Let us check now that ϕ is surjective. Fix
an arbitrary z ∈ (x∗)−1({1}). If z = x, then ϕ(x) = x. So let us assume that z , x. Since (x, x∗) ∈ Πsp

X , by
definition we have that st(−x, z)∩(SX \{−x}) , ∅. Let u ∈ R\{0} such that y := −x+u(z+x) ∈ SX \{−x}.
We will show that ϕ(y) = z. Indeed

ϕ(y) = −x + 2
y + x

x∗(y) + 1
= −x + 2

−x + u(z + x) + x
x∗(−x + u(z + x)) + 1

= −x + 2
u(z + x)

2u
= −x + (z + x) = z.

Next step is to prove that ϕ is one-to-one. Indeed, take y1, y2 ∈ SX \ {−x} with ϕ(y1) = ϕ(y2). Then
y2 = −x + x∗(y2)+1

x∗(y1)+1 (y1 + x) ∈ st(−x, y1) ∩ SX = {−x, y1}, meaning that y1 = y2. Let us finally prove
that ϕ−1 is continuous. We will rely on Remark 2.2 for sequences. Fix an arbitrary y ∈ SX \ {−x}. Take
a sequence (yi)i∈N ⊆ SX \ {−x} such that (ϕ(yi))i∈N converges to ϕ(y). We will show the existence of a
subsequence

(
yi j

)
j∈N

convergent to y. Indeed, there exists a subsequence
(
yi j

)
j∈N

such that
(
x∗(yi j)

)
j∈N

is convergent to some r ∈ [−1, 1]. Then
(
ϕ(yi j)

)
j∈N

converges to ϕ(y). This is equivalent to saying

that
(

yi j+x

x∗(yi j )+1

)
j∈N

converges to y+x
x∗(y)+1 . Since

(
x∗(yi j) + 1

)
j∈N

is convergent to r + 1, we conclude that(
(x∗(yi j) + 1)

yi j+x

x∗(yi j )+1

)
j∈N

converges to (r+1) y+x
x∗(y)+1 , in other words,

(
yi j + x

)
j∈N

converges to (r+1) y+x
x∗(y)+1 ,

which is equivalent to stating that
(
yi j

)
j∈N

converges to −x + (r + 1) y+x
x∗(y)+1 . Next, observe that r , −1

since otherwise we obtain that
(
yi j

)
j∈N

converges to −x, reaching the contradiction that
∥∥∥∥∥ yi j+x

x∗(yi j )+1

∥∥∥∥∥→ ∞
as j→ ∞ by bearing in mind that (x, x∗) ∈ Πsp

X . As a consequence, −x+ (r+1) y+x
x∗(y)+1 ∈ st(−x, y)∩SX =

{−x, y}, that is, either −x + (r + 1) y+x
x∗(y)+1 = −x or −x + (r + 1) y+x

x∗(y)+1 = y. If −x + (r + 1) y+x
x∗(y)+1 = −x,

then y = −x, which is impossible since y ∈ SX \ {−x}. Thus, −x + (r + 1) y+x
x∗(y)+1 = y. By relying on

Remark 2.2, we conclude that ϕ−1 is continuous at b.

3. Conclusions

The use of indices in the literature of Geometry of Banach Spaces has always been very useful to
determine the exact shape of the unit ball. The most known indices are the modulus of convexity, the
modulus of smoothness, the index of rotundity, and the Bishop-Phelps-Bollabás index, among others.
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The index of strong rotundity is a novel concept introduced in this manuscript. This index serves to
determine how far a point of the unit sphere is from being an strongly exposed point. As expected,
Hilbert spaces have a very particular index of strong rotundity. Finally, applications to the
stereographic projection are provided, in particular, a novel set of pairs (the stereographic projection
pairs) are introduced in this manuscript which guarantee that the stereographic projection is an
homeomorphism.
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