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1. Introduction

Traditional mathematical methods are frequently unable to address a wide range of complicated
problems that arise in a variety of fields, including economics, engineering, sociology, medicine,
environmental science, and many others. This is because many problems are inherently vague and
uncertain. Uncertainty related issues and situations are dealt with using an antiquated and powerful
instrument of probability theory, which is only appropriate when the occurrence of events is solely
determined by chance. Along with probability theory, additional well-known theories have been
created to address uncertainty, including fuzzy sets, intuitionistic fuzzy sets, rough sets, soft sets, and
combinations of these theories.

The idea of fuzzy sets, which Lotfi. A. Zadeh [1] introduced in 1965, has shown to be a highly
effective theoretical solution to ambiguity and vagueness. This idea is founded on fuzzy membership
functions, which depict an element’s membership in a set. By focusing on the fuzzy information
granularity, fuzzy set theory can be utilized to obtain, simulate, and even explain the fuzziness in many
practical materials of information. Almost all areas of mathematics, medicine, engineering, and other
fields have had concepts reinterpreted using fuzzy sets as a result of their extensive uses.

Pawlak [2] proposed the theory of rough sets in the early 1980’s which is another nice mathematical
tool dealing the set’s approximation for dealing with the uncertainty of imprecise data and vagueness.
Given the facts at hand, this idea is the best replacement for fuzzy set theory and tolerance theory. Rough
sets and fuzzy set theory are two distinct approaches used to address the ambiguity, imprecision, and
haziness of real-world situations. Each of these theories has its inherent limitations. Many applications
together with machine learning, data mining, knowledge discovery and pattern recognition can be found
in [3–8]. The fundamental idea of traditional rough set theory is the lower/upper approximation concept,
which is typically based on equivalence relations and partitions. Sometimes dealing with a real-world
issue while constrained by an equivalence relation is challenging. In order to tackle such kind of
situations, the concept of rough set has been extended to the notion of covering rough sets introduced
in [9–15] which are an important generalizations of classical and traditional rough sets by relaxing
partition of universe to covering. A more all-encompassing notion used to handle the attribute subset is
covering, which is a method to expand any partition. Covering-based rough sets are more rational and
logical than traditional rough sets for addressing uncertainty related issues, and this theory has attracted
significant attention and produced numerous useful research outcomes.

In 1999, Molodtsov [16] introduced the concept of soft sets which is a very new and effective
mathematical technique for handling uncertainties. It is a set connected with parameters and has been
used in many different contexts. Several methods have been developed for addressing the imprecision,
uncertainty, and ambiguity of real-world situations including fuzzy set theory, the rough, soft sets and
blend of these theories. Each of these theories comes with certain built in drawbacks. [14–21] has
several uses, including machine learning, data mining, pattern detection, and knowledge discovery.

In order to establish an applicable mathematical systems for covering-based rough set and promote
its applications in various fields of life, it has been linked with some other theories like fuzzy set theory,
soft set theory, neutrosophic set theory, graph theory and blend of theories [7, 14, 21–24]. The notion
of a family of fuzzy complementary β-neighborhood and thus four types of covering-basedoptimistic
(pessimistic) multigranulation fuzzy rough sets models are presented in [25]. Also, four new kinds of
covering-based M-optimistic (pessimistic) multigranulation fuzzy rough sets models are constructed.
Some characterizations of these models and its relation with Zhan’s model are studied.
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Lattice theory and partial order play an important role in many fields of engineering and computer
science and they have many applications in distributed computing, that is, vector clocks and
global predicate detection, concurrency theory, occurrence nets and pomsets, programming language
semantics (fixed-point semantics), and data mining [26]. They are also useful in other disciplines of
mathematics such as combinatorics, group theory and number theory. Many authors have combined
the rough set theory and lattice theory, and some useful results have been obtained. Based on the
existing works about the connection of rough sets and lattice theory, Chen et al. [4] used the notion of
covering to define the approximation operators on a completely distributive lattice and set up a unified
framework for generalizations of rough sets. Shah et al. [27] discussed another approach to roughness
of soft graphs with applications in decision making, see also [19, 24, 28–31]. Rough approximation
models via graphs based on neighborhood systems can be seen in [32]. Some applications of soft
graphs linked with rough sets and soft sets can be seen in [27, 33–36]. Further, the concept of dual
hesitant fuzzy graphs (DHFGs) proposed by [37], where a two-stage MADM approach is constructed
by means of DHFGs for addressing complicated MADM situations with correlations and prioritization
relationships. He et al. [38] revised the “tight” bounds for path-factor critical avoidable graphs. Since
the avoidable graph is a special case of deleted graphs, a link is established between the path-factor
critical graph and the path-factor deleted graph. In [34], Praba defined a novel rough set called minimal
soft rough set by using minimal soft description of the objects. They also analyzed the relation between
modified soft rough set and minimal soft rough set. They proposed a lattice structure on minimal soft
rough sets. Uncertainty measures associated with neighborhood based soft covering rough graphs such
as roughness measure, entropy measure and granularity are proposed in [36]. Atef and Nada [39]
introduced the concept of the complementary fuzzy soft neighborhood as a generalization of Zhan’s
method, which increases the lower approximation and decreases the upper approximation. As a result,
three new types of soft fuzzy rough covering models are constructed. These constructions’ properties
are discussed. They define three categories of fuzzy soft measure degrees in light of these results. A
decision-making algorithm is then described based on the suggested operations, and its performance is
illustrated with a numerical example. Further the relationships among these three models and Zhan’s
model are presented [39, 40]. Li and Zhu [11] introduced the lattice structures of fixed points of the
lower approximations of two types of covering-based rough sets in which they discussed that under
what conditions two partially ordered sets are some lattice structures. They defined two types of sets
called the fixed point set of neighborhoods and the fixed point set of covering, respectively. Fixed points
of covering upper and lower approximation operators are introduced in [41] in which by using some
results about the Feynman paths, they have shown that the family of all fixed points of covering upper
and lower approximation operators is an atomic frame and a complete lattice, respectively.

Z-soft rough covering models introduced by Zhan et al. [42] are important generalizations of
classical rough set theory to deal with data structure and more complex problems of the real world.
It can be seen in [43] that the CS R approach uses property soft neighborhoods to establish models
that successfully grow the lower approximation and lower the upper approximation and study the
relationships between these models and some of the topological properties based on the CS R approach.
In order to solve MGDM problems, they finally developed an algorithm for the presented model.
Different kinds of uncertainty measures related to Li-soft rough covering sets and their limitations are
presented in [44]. The concept of fixed point sets by using Z-soft rough covering models is introduced
by Imran et al. [45], where they have discussed different algebraic structures along with their limitations
connecting both lattices and Z-soft rough covering models. The purpose of introducing soft graphs is to
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discretize these fundamental mathematical ideas, which are inherently continuous, and to provide new
tools for applying mathematical analysis technology to real-world applications including imperfect and
inexact data or uncertainty. Li et al. presented the idea of soft rough covering models (briefly, SRC-
Models) , a novel theory that addresses uncertainty. Two new notions have been introduced in the
current paper. Li-soft rough covering graphs (Li-SRCGs ) and the notion of fixed point sets, also
known as Li-SRCFP sets of such graphs. Several types of approximation operators and their related
properties are discussed using Li-SRCGs . We also investigated a few algebras that dealt with the
fixed points of Li-SRCGs . Applications of the algebraic structures available in covering soft sets
to soft graphs may open up new areas of graph theory. We go over the prerequisites for the family
of Li-SRCFP sets acquiring lattice structure, distributive lattice, complete lattice, and some algebra
pertaining to soft graphs. This paper is organized as follows.

The basics of rough sets, covering soft sets, Li-soft rough covering models, lattices and soft graphs
are reviewed in Section 2 of this article. In Section 3, we define the concept of Li-SRCGs , Li-soft
reduct of covering soft sets, and their attributes based on Li-SRCGs . Further, we investigate the
conditions in which the soft neighborhood Li-SRCFP sets transform into particular lattice structures.
In Section 4, we explore the idea of soft graphs’Li-soft rough covering fixed point sets (Li-SRCFP
sets). We have talked about the idea of bounds for any two Li-SRCGs elements. Several algebraic
structures related toLi-SRCGs are also addressed. In Section 5, we finally put our paper to conclusion.

2. Preliminaries

This section provides a succinct review of certain essential concepts, results, and core ideas that will
be useful in comprehending the remaining chapters of this thesis. The universe V is assumed to be a
non-void finite set throughout this article, along with the void (empty) set ∅ and R, the parameter’s set.

Definition 2.1. A family C of non-void subsets of U is said to be a covering of U if
⋃

C = U. Also, for
a subset Y of U, the sets

(i) given below, denoted by LC(Y) and HC (Y), are called respectively, the second type covering lower
and upper approximation of Y,

FL (Y) = ∪{K ∈ C : K ⊆ Y},

FH (Y) = ∪{K ∈ C : K ∩ Y , ∅},

(ii) given below, denoted by FL(Y) and FH (Y), are called respectively, covering lower and upper
approximations of sixth type of Y

LC (Y) = {x ∈ U : N (x) ⊆ Y},

HC (Y) = {x ∈ U : N (x) ∩ Y , ∅},

where N (x) =
⋂
{Q ∈ C : x ∈ Q} is called neighborhood of x with respect to C.

Proposition 2.1. For any subset Y of U, the following laws always hold true:

(i) FL (∅) = ∅ and LC (∅) = ∅
(ii) FL (U) = U and LC (U) = U
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(iii) FL (Y) ⊆ Y and LC (Y) ⊆ Y (iv) FL (FL (Y)) = FL (Y) and LC (LC (Y)) = LC (Y) (v) Y ⊆ X
implies FL (Y) ⊆ FL (X) and LC (Y) ⊆ LC (X) (vi) for all K ∈ C, FL (K) = (K) and LC (K) =
LC (K) .

Definition 2.2. Let τ : R → P (U) is a set valued mapping, then the ordered pair T = (π,R) is called
a soft set over U. In this case, the pair D = (U,T), is called soft approximation space (briefly, SAS) .

Definition 2.3. A soft set (τ,R) is called covering soft set ( briefly, CSS)if

(i) it is full, that is, if
⋃
σ∈R
τ (σ) = U and,

(ii) for every σ ∈ R, τ (σ) , ∅.

In such case, the ordered pair T =
(
U, C

V

)
is called SCAS (soft covering approximation space) .

Then, for W⊆ U, the following two sets:

F
C
V

(W) = ∪{τ (σ) ∈ C
V

: τ (σ) ⊆ W} and

F
C
V

(W) = ∪{τ (σ) ∈ C
V

: τ (σ) ∩W , ∅}

In the above sets the operators F
C
V

(W) and F
T

(W) are called respectively, Li−SCLA operator and

Li−SCUA operator.

Definition 2.4. A partial ordered set (or briefly, a poset) is an ordered pair (L,⪯), consisting of a
non-void L and a partial order ⪯ on L.

Definition 2.5. A lattice is a poset (L,⪯) in which a ∧ b = inf(a, b) and a ∨ b = sup(a, b) exist for any
pair of elements a and b of L. Also, L is said to have a lower bound 0 if and only for any t in L we
have, 0 ⪯ t. Analogously, L is said to have an upper bound 1 if and only for any t in L we have, t ⪯ 1.
A lattice (L,⪯) is bounded if and only if has both 0 and 1.

Definition 2.6. A lattice (L,⪯) is said to be distributed if and only if for any a, b,t in L we have,
a ∧ (b ∨ t) = (a ∧ b) ∨ (a ∧ t) and a ∨ (b ∧ t) = (a ∨ b) ∧ (a ∨ t). Otherwise, (L,⪯) is said to be non
distributive.

Definition 2.7. Let 0 be a lower bound and 1 be an upper bound in a lattice (L,⪯). An element p in L
is said to be

(i) join irreducible if p = a ∨ b implies p = a or p = b.
(ii) complement of t if p ∨ t = 1 and p ∧ t = 0.

(iii) pseudocomplement of t ∈ L, if p ∧ t = 0 and for all r ∈ L, t ∧ r = 0 implies r ⪯ p.
(iv) dual pseudocomplement of t ∈ L, if p ∨ t = 1 and for all r ∈ L, t ∨ r = 1 implies p ⪯ r.

Definition 2.8. A lattice (L,⪯) is said to be

(i) complemented if it is (a) bounded and (b) every element of L has a complement ;
(ii) pseudocomplemented (briefly, pseudCd) if every member of L has pseudocomplement ;

(iii) a Stone algebra if it is a lattice which is (a) distributive (b) pseudCd and (c) satisfying the identity
p∗ ∨ p∗∗ = 1, for all p ∈ L, (where p∗is pseudocomplemented of p) ;

(iv) a dual pseudocomplemented (briefly, D-pseudCd) if each of its member has dual
pseudocomplement;

AIMS Mathematics Volume 8, Issue 9, 20415–20436.



20420

(v) a dual Stone algebra, if the lattice meets the conditions of being (a) distributive (b) D-pseudCd,
and (c) satisfying the identity (dual Stone identity) p∗ ∧ p∗∗ = 1, for all p ∈ L ;

(vi) a double p-algebra if it is simultaneously (a) pseudCd and (b) D-pseudCd ;
(vii) a double Stone algebra, if it is (a) Stone algebra and (b) dual Stone algebra.

Definition 2.9. Let Ω = (V,E) be a graph. Then, a quadruple Θ = (Ω, δ, γ,R) is called a soft graph,
provided

(i) δ : R→ P (V) is a soft set over vertexV;
(ii) γ : R→ P (E) is a soft set over E and for every σ ∈ R, the pair H = (δ (σ) , γ (σ)) represents a

subgraph of Ω.

Further, if Θ is a soft graph such that

(a)
⋃
σ∈R
δ (σ) = V, then Θ is called full soft vertex graph;

(b)
⋃
σ∈R
γ (σ) = E, then Θ is called full soft vertex graph ;

(c)
( ⋃
σ∈R
δ (σ) ,

⋃
σ∈R
γ (σ)

)
= (V,E) ,then Θ is called full soft graph.

3. Li-soft rough covering graphs and their fixed points

Li-S RC sets are significant mathematical tools for addressing challenges in real world that involve
uncertainty. Another useful tool for displaying information through matrices, relations, and diagrams
is graph theory, which has obvious applications. This section focuses on the description of a novel
blend of Li-soft rough covering sets and graphs, called Li-soft rough covering graphs (Li-SRCGs).
This approach will assist us discuss the idea of uncertainty in these concepts as well as improve the
application of Li-SRC sets and soft graphs. It is shown that the family of Li-SRCFP sets is a lattice.
We have also proposed some basic properties and related examples in details.

Definition 3.1. Let Θ be a CSV -Graph and Q = (V,CV) be a SVCAS. Then, for any W ⊆ V, SVCL
and SVCU approximation operators are respectively, defined as:

F
C
V

(W) = ∪{τ (σ) ∈ C
V

: τ (σ) ⊆ W} and

F
C
V

(W) = ∪{τ (σ) ∈ C
V

: τ (σ) ∩W , ∅}.

In the above sets, the operators F
C
V

(W) and F
T

(W) are called respectively, Li-SVCL operator

and Li-SVCU operator. In case, F
C
V

(W) = F
C
V

(W) , then W is called Li -soft vertex covering

definable, where the graph G
Q

:= (V,E) is called Li-SVC definable. But on the other hand, if
F

C
V

(W) , F
C
V

(W) , then the set W is called Li-SRVC set and the graph G
Q

is called Li-SRVC

Example 3.1. Suppose Ω = (V,E) is a graph given in Figure 1 below, with V = {x1, x2, ..., x7}, E =
{e1, e2, ..., e10},
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Figure 1. A simple graph Ω = (V,E) having vertex set V and edge set E which can be used
to find the SVCAS.

Let Q = (V,CV) be a SVCAS, where CV = (δ,R), R = {σ1, σ2, ..., σ6} is parameters set and
δ : R → P (V) is a set valued mapping, presented in Table 1 such that δ (σ1) = {x3, x4, x5} , δ (δ2) =
{x1, x2} , δ (σ3) = {x3, x5, x6} , δ (σ4) = {x3, x4} , δ (σ5) = {x1, x2, x3} , δ (σ6) = {x1, x2, x5},

Table 1. Tabular representation of soft set (δ,R).

R⧹V x1 x2 x3 x4 x5 x6 x7

σ1 0 0 1 1 1 0 0
σ2 1 1 0 0 0 0 0
σ3 0 0 1 0 1 1 1
σ4 0 0 1 1 0 0 0
σ5 1 1 1 0 0 0 0
σ6 1 1 0 0 1 0 0

Then, clearly, the pair Q = (V,CV) is a SVCAS. Suppose we have a subset W = {x1, x2, x4} of
vertex set V. Then, F

C
V

(W) and F
C
V

(W) can be calculated in the following manners:

F
C
V

(W) = ∪{τ (σ) ∈ C
V

: τ (σ) ⊆ W} = {x1, x2} and

F
C
V

(W) = ∪{τ (σ) ∈ C
V

: τ (σ) ∩W , ∅} = {x1, x2, x3, x4, x5} .

Since F
C
V

(W) , F
C
V

(W) , so W is a SVCR and ∆
Q

:= (V, E) is Li-SRVC -Graph with

∆
Q
=

(
F

C
V

(W) , E
)
= ({x1, x2} , {e1, e2, ..., e10}) ,

∆
Q
=

(
F

C
V

(W) , E
)
= ({x1, x2, x3, x4} , {e1, ..., e10}) and
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Note if W = {x1, x2} ⊆ V, then F
C
V

(W) = F
C
V

(W) = {x1, x2} showing that W is a Li-SVC definable

setF
C
V

(W) = F
C
V

(W) = {x1, x2}. Also,

∆
Q
=

(
F

C
V

(W) ,E
)
= ({x1, x2} , {e1, e2, ..., e10}) = ∆Q =

(
F

C
V

(W) ,E
)

Definition 3.2. A full soft edge graph Θ, such that γ (σ) , ∅ for all σ ∈ R, is called CSE Graph. In
this case, D = (E,CE) is called SECAS.

Definition 3.3. Let D = (E,CE) be a SECAS then, the sets

F
C
E

(N) = ∪{γ (σ) ∈ C
E

: γ (σ) ⊆ N} and

F
C
E

(N) = ∪{γ (σ) ∈ C
E

: γ (σ) ∩ N , ∅}, N ⊆ E,

are called the Li-SECL and Li-SECU approximations of N , respectively.
Also, if F

C
E

(N) = F
C
E

(N) , whereN is a subset of E. Then,N is called Li-SEC definable set and

the graph ∆Q := (V,E) is called Li-SEC definable. The graph ∆Q is called Li-SECAS Graph only if
F

C
E

(N) , F
C
E

(N) . In this case, the subset N of E is called Li-SECR set.

Example 3.2. Continued from Example 3.2, if Q = (E,CE) represents a SECAS with γ (σ1) =
{e1, e3, e5, e10} , γ (σ2) = {e4} , γ (σ3) = {e4, e5, e6} , γ (σ4) = {e1, e2, e5, e6, e10}, γ (σ5) = {e1, e3} and
γ (σ6) = {e6, e7, e9}, see Table 2 below.

Table 2. A table for soft set.

R⧹E e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

σ1 1 0 1 0 1 0 0 0 0 1
σ2 0 0 0 1 0 0 0 0 0 0
σ3 0 0 0 1 1 1 0 0 0 0
σ4 1 1 0 0 1 1 0 0 0 1
σ5 1 0 1 0 0 0 0 0 0 0
σ6 0 0 0 0 0 1 1 0 1 0

Let N = {e1, e3, e4, e10} ⊆ E. Then

F
C
E

(N) = ∪{γ (σ) ∈ C
E

: γ (σ) ⊆ N} = {e1, e3, e4} and

F
C
E

(N) = ∪{γ (σ) ∈ C
E

: γ (σ) ∩ N , ∅} = {e1, e2, e3, e4, e5, e6, e10} .

Here, N is a Li-SREC set and ∆D := (V, E) is Li-SRECG because F
C
E

(N) , F
C
E

(N) such that

G
D
=

(
V,F

C
E

(N)
)
= ({x1, x2, ..., x7} , {e1, e3, e4}) and

G
D
=

(
V,F

C
E

(N)
)
= ({x1, x2, ..., x7} , {e1, .., e6, e10}) .
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Definition 3.4. Suppose Θ is a soft graph. Then, Θ is called

(i) Li-soft covering definable if F
C
V

(W) = F
C
V

(W) and F
C
E

(N) = F
C
E

(N),

(ii) Li-soft rough covering graph (briefly,Li-SCR Graph) if F
C
V

(W) , F
C
V

(W) and F
C
E

(N) ,

F
C
E

(N) , whereW ⊆ V and N ⊆ E.

Definition 3.5. Let Θ be a CSE-Graph such that Q = (V,CV) is a SVCAS and δ (σ) ∈ Cv. Then,
δ (σ) is called Li-soft union reducible element (briefly, Li-SUred element) if δ (σi) is the union of
some δ

(
σ j

)
∈C
V
−{δ (σi)} for i , j. Any other element which is not Li-SUred element, is called

Li-soft union irreducible element (Li-SUirred element). If every δ (σi) ∈ CV is Li-SUirred element,
then C

V
is called Li-soft irreducible, otherwise C

V
is called Li-soft reducible.

It can be seen that if δ (σi) is a Li-SUred element of CV , then CV − {δ (σi)} is still a covering soft
set over the universe set V.

Example 3.3. Consider a CSV-Graph Θ = (Ω, δ, γ,R) where, V = a finite universe (vertex set) =
{r1, r2, r3, r4} and R = {σ1, σ2, σ3, σ4} such that (δ,R) is CSS over V, see below in Table 3,
so that δ

(
σ1

)
= {r1} , δ

(
σ2

)
= {r2, r3} , δ (σ3) = {r1, r2, r3} , δ (σ4) = {r2, r4} and C

V
=

{δ
(
σ1

)
, δ

(
σ2

)
, δ (σ3) , δ (σ4)} = {{r1} , {r2, r3} , {r1, r2, r3} , {r2, r4}}.

Table 3. Tabular representation of soft set (δ,R).

R \ V r1 r2 r3 r4

σ1 1 0 0 0
σ2 0 1 1 0
σ3 1 1 1 0
σ4 0 1 0 1

Clearly, δ (σ3) = {r1, r2, r3} = δ
(
σ1

)
∪ δ

(
σ2

)
, where δ

(
σ1

)
, δ

(
σ2

)
∈ C

V
− {δ (σ3)} showing that

δ (σ3) is a Li-SUred element in C
V
. The elements δ

(
σ1

)
, δ

(
σ2

)
and δ (σ4) are Li-SUirred elements

in C
V
.

Definition 3.6. Let CSV-Graph be Θ = (Ω, δ, γ,R) and Q = (V,CV), be a SVCAS. Then, family
F f ix

(
C
V

)
of subsets ofV, defined by F f ix

(
C
V

)
= {W ∈ P (V) : F

C
V

(W) =W}, is called Li-soft rough

vertex covering fixed point set (briefly Li-SRVCFP set) induced by C
V
.

Example 3.4. Consider a CSV-Graph Θ = (Ω, δ, γ,R) as shown in Figures 2 and 3, whereΩ = (V,E)
with vertex set V = {x1, x2, x3, x4}, E = {e1, e2, , , , e8} and parameters set R =

{
σ1, σ2, σ3, σ4

}
, (δ,R)

is a CSS over V,below in Table 4 , so that δ
(
σ1

)
= {x1, x2} , δ

(
σ2

)
= {x3} , δ (σ3) = {x1, x2, x3} ,

δ (σ4) = V.
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Table 4. Tabular representation of soft set (δ,R).

R \ V x1 x2 x3 x4

σ1 1 1 0 0
σ2 1 1 1 0
σ3 0 0 1 0
σ4 1 1 1 1

Figure 2. Simple graph Ω = (V,E) and two of its subgraphs corresponding to first two
parameters.

Figure 3. The rest of two subgraphs corresponding to last two parameters.

Here, C
V
= {{x1, x2} , {x3} , {x1, x2, x3} , , {x1, x2, x3, x4}}. Let W = {x1, x2} ⊆ V, then F

C
V

(W) =

∪{δ (σ) ∈C
V

: δ (σ) ⊆ W} = {r1, r2} =W. That is, F
C
V

(W) = W In this case, W is a member of

Li-SRCFP set orW ∈ F f ix

(
C
V

)
.

Similarly, whenW = {r1, r2, r3} then F
C
V

(W) =W, showing thatW ∈ F f ix

(
C
V

)
.

Proposition 3.1. Suppose Θ = (Ω, δ, γ,R) is a CSV-Graph and δ (σ) is a Li-SUirred element of C
V
,

then F f ix

(
C
V

)
= F f ix

((
C
V

)
− {δ (σ)}

)
.

Proof. By definition, F f ix

(
C
V

)
= { W ∈ P (V) : F

C
V

(W) = W} and F f ix

((
C
V

)
− {δ (σ)}

)
=
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{W ∈ P (V) : F
C
V
−{δ(σ)}

(W) = W}. But F
C
V

-{δ(σ)}
(W) = F

C
V

(W) for anyW ∈ P (V) . Therefore,

F f ix

(
C
V

)
= F f ix

((
C
V

)
− {δ (σ)}

)
. □

Now, the following proposition shows that Li-SRVCFP set with respect to soft covering C
V

is the
same as that of one, induced by the reduction of the CSS C

V
.

Definition 3.7. If every δ (σi) ∈ C
V

is Li-SUirred element, then C
V

is called Li-soft irreducible,
otherwise C

V
is called Li-soft reducible. It can be seen that if δ (σi) is a Li-S Ured element of C

V
,

then C
V
− {δ (σi)} is still a CS S over the universe set V. For C

V
, the newly Li-soft union irreducible

covering soft set with respect to the above reduction, is called Li-soft reduct of C
V
, and is denoted by

Li-S redct
(
C
V

)
.

Proposition 3.2. Let Θ = (Ω, δ, γ,R) be a CSV-Graph and let C
V

is a covering soft set over V, then
F f ix

(
C
V

)
= F f ix

(
Li-Sredct

(
C
V

))
.

Proof. By definition,

F f ix

(
C
V

)
= {W ∈ P (V) : F

C
V

(W) =W} and

F f ix

(
Li-Sredct

(
C
V

))
= {W ∈ P (V) : F

Li-Sredct(CV)
(W) =W}.

Since, F
Li-Sredct(CV)

(W) = F
C
V

(W) , for anyW ∈ P (V) . Thus, F f ix

(
C
V

)
= F f ix

(
Li-Sredct

(
C
V

))
. □

The Li-SRCFP- set induced by C
V

together with the set inclusion,
(
F f ix

(
C
V

)
,⊆

)
, is a POS.

Actually, we see that whether this POS is a lattice or not. In the theorem given below, we show that
F f ix

(
C
V

)
(Li-SRCFP- set ) is a lattice and for any two members of this lattice. And for such lattice,

we have find its lub and glb.

Proposition 3.3. Let Q = (V,CV), be a SVCAS for CSV-Graph Θ = (Ω, δ, γ,R). Suppose, W,
Y ∈ F f ix

(
C
V

)
. Then,

(
F f ix

(
C
V

)
,⊆

)
is a lattice, where W ∨ Y = W ∪ Y and W ∧ Y = F

C
V

(W∩Y).

Proof. We have to prove only thatW∪Y ∈ F f ix

(
C
V

)
as well as F

C
V

(W∩Y) ∈ F f ix

(
C
V

)
for anyW,

Y ∈ F f ix

(
C
V

)
. If possible, supposeW∪Y < F f ix

(
C
V

)
, then there exists r ∈ W ∪ Y such that for all

δ (σ) ∈C
V

and x ∈ δ (σ) implies δ (σ) ⊈W∪Y. Since r ∈W ∪Y, so r ∈W or r ∈ Y. Hence δ (σ) ⊈
W or δ (σ) ⊈ Y, that is, r < F

C
V

(W) or r < F
C
V

(Y), which gives a contradictory with the factW,

Y ∈ F f ix

(
C
V

)
. Therefore,W∪Y ∈ F f ix

(
C
V

)
. Now, for anyW, Y ∈ F f ix

(
C
V

)
, ifW∩Y ⊆ V then

by using the fact F
C
V

(
F

C
V

(M)
)
= F

C
V

(M) , we get F
C
V

(
F

C
V

(W∩Y)
)
= F

C
V

(W∩Y) . This

implies that F
C
V

(W∩Y) ∈ F f ix
(
C
V

)
for anyW, Y ∈ F f ix

(
C
V

)
. Thus,

(
F f ix

(
C
V

)
,⊆

)
is lattice. □

The above theorem shows that the Li-SRCFP- set having the relation of set inclusion is a POS
and for any two members of the Li-SRCFP- set, the lub is the join of these two members, while the
glb is the lower approximation of the intersection of these two members. Actually,

(
F f ix

(
C
V

)
,∧,∨

)
is defined from the view point of algebra and

(
F f ix

(
C
V

)
,⊆

)
is defined from the viewpoint of partially

ordered set. Further,
(
F f ix

(
C
V

)
,∧,∨

)
and

(
F f ix

(
C
V

)
,⊆

)
are both lattices.
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Remark 3.1. In above Proposition, we have seen that
(
F f ix

(
C
V

)
,⊆

)
is a lattice such that the sets U

and ∅ are respectively, the greatest and least of
(
F f ix

(
C
V

)
,⊆

)
. But we know a lattice having least and

greatest elements is bounded. Therefore,
(
F f ix

(
C
V

)
,⊆

)
is a lattice which is bounded.

Therefore, in the assertion that follows, we shall demonstrate that any Li-SUirred element of C
V

is
also a Join Li-SUirred element of C

V
, and any Li-SUred element of C

V
is a Join Li-SUred element

of F f ix
(
C
V

)
.

Proposition 3.4. Let Θ = (Ω, δ, γ,R) be a CSV-Graph and Q = (V,CV), be a SVCAS such that
δ (σi) ∈ CV . Then,

(i) the set δ (σi) is a Join Li-SUirred element of F f ix
(
C
V

)
, if δ (σi) is a Li-SUirred element of C

V
.

(ii) the set δ (σi) is Join Li-SUred element of F f ix
(
C
V

)
, if δ (σi) is a Join Li-SUred element of C

V

for parameters σi.

Proof. Since for any parameter σi ∈ Q and δ (σi) ∈ CV , F
C
V

(δ (σi)) = δ (σi) . This shows δ (σi) ∈

F f ix
(
C
V

)
as F f ix

(
C
V

)
= { W ∈ P (V) : F

C
V

(W) =W}.

(i) Suppose there are elements Y, Z in F f ix
(
C
V

)
such that δ (σi) = Y ∪ Z, then there exists some

elements δ
(
σ j

)
, ( j ∈ I) and δ (σk) , (k ∈ K) in C

V
such that δ

(
σ j

)
⊆ Y, δ (σk) ⊆ Z and

Y =
⋃
{δ

(
σ j

)
∈ C

V
: δ

(
σ j

)
⊆ Y ( j ∈ I)},

Z =
⋃
{δ (σk) ∈ CV : δ (σk) ⊆ Z (k ∈ K)},

where I,K ⊆ {1, 2, ...,
∣∣∣C
V

∣∣∣}.
Therefore, δ (σi) =

 ⋃
δ(σ j)⊆Y ( j∈I)

δ
(
σ j

) ∪
( ⋃
δ(σk)⊆Z (k∈K)

δ (σk)
)
. Since δ (σi) is a Li-SUirred element

of C
V

, so there exists t ∈ I ∪ K so that δ (σi) = δ (σt) . But δ (σi) = Y ∪ Z implies Y ⊆ δ (σi) and
Z ⊆ δ (σi). If δ (σt) ⊆ Y, then δ (σi) = Y. If δ (σt) ⊆ Z δ (σi) = Z. This indicates that δ (σi) = Y
or δ (σi) = Z. Thus, δ (σi) is a Join Li-SUirred element of F f ix

(
C
V

)
. Hence, the set δ (σi) is a

Join Li-SUirred element of F f ix
(
C
V

)
, if δ (σi) is a Li-SUirred element of C

V
.

(ii) Suppose δ (σi) is aLi-SUred element of C
V

for parameters σi ∈ Q. Then there are some elements
in C

V
− {δ (σi)} in such away that δ (σi) is the union of those elements. In other words, there are

some elements δ
(
σ j

)
, ( j ∈ I) such that δ (σi) =

⋃
j∈I
δ
(
σ j

)
, where I ⊆ S = {1, 2, ...,

∣∣∣C
V

∣∣∣}.
Since, for any H ⊆ S , we have δ (σk)

(k∈H)
⊆

⋃
j∈H
δ
(
σ j

)
. Then,

F
C
V

⋃
j∈H

δ
(
σ j

) = ⋃
{δ (σk)

(k∈H)
: δ (σk) ⊆

⋃
j∈H

δ
(
σ j

)
} =

⋃
j∈H

δ
(
σ j

)
,

Therefore, for any K, T ⊆ I,

F
C
V

⋃
k∈K

δ (σk)

 =⋃
k∈K

δ (σk) ,
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and

F
C
V

⋃
t∈T

δ (σt)

 = ⋃
t∈T

δ (σt) .

Hence,we have
⋃
k∈K
δ (σk) ∈ F f ix

(
C
V

)
and

⋃
t∈T
δ (σt) ∈ F f ix

(
C
V

)
. As a result, K1 and T1 ⊆ I exists

such that
⋃
j∈I
δ
(
σ j

)
= δ (σi) =

 ⋃
k∈K1

δ (σk)

∪ =  ⋃
t∈T1

δ (σt)
 . This shows that δ (σi) is a Join Li-SUred

element for F f ix
(
C
V

)
. Thus, the set δ (σi) is a Join Li-SUred element of F f ix

(
C
V

)
, if δ (σi) is a Li-

SUred element of C
V

for parameters σi. □

Proposition 3.5. Let Q = (V,CV), be a SVCAS of CSV-Graph Θ = (Ω, δ, γ,R). Then, for any r ∈ V,
N
B
(r) is a Join Li-SUirred element of the lattice

(
F f ix

(
C
V

)
,⊆

)
.

Proof. Suppose
(
F f ix

(
C
V

)
,⊆

)
is a lattice and there existW,Y ∈ F f ix

(
C
V

)
such that N

B
(r) =W∪Y.

Since r ∈ N(r), r ∈ W ∪ Y. Therefore, r ∈ W or r ∈ Y. Furthermore, as W,Y ∈ F f ix
(
C
V

)
, then

N
B
(r) ⊆W ⊆W ∪Y = N

B
(r) or N

B
(r) ⊆ Y ⊆W ∪Y = N

B
(r) Therefore, N

B
(r) =W or N

B
(r) = Y.

Thus N
B
(r) is a Join Li-SUirred element of the lattice F f ix

(
C
V

)
, for every r ∈ V. □

We have already shown that the set
(
F f ix

(
C
V

)
,⊆

)
is a lattice if and only if W ∨ Y = W ∪ Y and

W ∧ Y = F
C
V

(W∩Y). Now in the following we show that
(
F f ix

(
C
V

)
,⊆

)
, is a complete lattice.

Proposition 3.6. Let Θ = (Ω, δ, γ,R) be a CSV-Graph and Q = (V,CV), be a SVCAS. Then, the
lattice

(
F f ix

(
C
V

)
,⊆

)
is complete.

Proof. For any G ⊆ F f ix
(
C
V

)
, we need to prove that ∧G ∈ F f ix

(
C
V

)
and ∨G ∈ F f ix

(
C
V

)
. Equivalently,

we have to prove that F
C
V

(∩G) ∈ F f ix
(
C
V

)
and ∪G ∈ F f ix

(
C
V

)
. Since G ⊆ F f ix

(
C
V

)
then ∩G ⊆ V.

According to the fact that F
C
V

(
F

C
V

(∩G)
)
= F

C
V

(∩G) , that is, F
C
V

(∩G) ∈ F f ix
(
C
V

)
. If ∪G <

F f ix
(
C
V

)
then there exists t ∈ ∪G such that δ (σi) ⊊ ∪G, for any δ (σi) ∈ CV and t ∈ δ (σi). Hence,

there exists an elementW in G so that t ∈ W and δ (σi) ⊊W, for any δ (σi) ∈ CV and t ∈ δ (σi) . So,
t < F

C
V

(W) that is,W < F f ix
(
C
V

)
.Which is contradictory with the fact thatW ∈ F f ix

(
C
V

)
. Hence

∪G ∈ F f ix
(
C
V

)
. Therefore,

(
F f ix

(
C
V

)
,⊆

)
is a complete lattice. □

Note that the Li-SRCFP-set induced by C
V

need not be always a distributive lattice. The example
that follows will support our assertion.

Example 3.5. Suppose we have a CSV-Graph Θ = (Ω, δ, γ,R) such that Q = (V,CV), is a SVCAS
where V = {x1, x2, x3, x4} is a vertex set and R =

{
σ1, σ2, σ3

}
, set representing all parameters

σ1, σ2, σ3, σ4 as shown in Table 5, with δ
(
σ1

)
= {x1, x2} , δ

(
σ2

)
= {x2, x3} , δ (σ3) = {x1, x3, x4} .

Also,C
V
= {δ

(
σ1

)
, δ

(
σ2

)
, δ (σ3)} = {{x1, x2} , {x2, x3} , {x1, x3, x4}}.
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Table 5. A Table for soft set (δ,R).

R⧹V x1 x2 x3 x4

σ1 1 1 0 0
σ2 0 1 1 0
σ3 1 0 1 1

Then, by using the expression F f ix
(
C
V

)
= { W ∈ P (V) : F

C
V

(W) = W}, we obtain F f ix
(
C
V

)
=

{∅, {x1, x2} , {x1, x2, x3} , {x2, x3} , {x1, x3, x4} ,V}. Also, {x1, x2, x3} ∧ ({x1, x3, x4} ∨ {x1, x2}) = {x1, x2, x3} ,

but ({x1, x3, x4} ∧ {x1, x2, x3}) ∨ ({x1, x2, x3} ∧ {x1, x2}) = {x1, x2} . Which shows that F f ix
(
C
V

)
= {∅,

{x1, x2} , {x2, x3} , {x1, x3, x4} , {x1, x2, x3} ,V} is not a distributive lattice. In other words, Li-SRCFP-
set, that is not distributive.

In the statement that follows, we investigate the requirement for the Li-SRCFP set to transform
into a distributive lattice.

Proposition 3.7. Let Θ be a CSV-Graph and Q = (V,CV), be a SVCAS. If C
V

is soft unary, then(
F f ix

(
C
V

)
,⊆

)
is a distributive lattice.

Proof. SupposeW,Y andZ ∈ F f ix
(
C
V

)
whereW,Y, Z ⊆ V. then for parameters σi, σ j, σk there are

some elements δ (σi) , (i ∈ I), δ
(
σ j

)
, ( j ∈ I) and δ (σk) , (k ∈ K) inC

V
such that δ (σi) ⊆ W, δ

(
σ j

)
⊆ Y,

δ (σk) ⊆ Z with

W =
⋃
{δ (σi) ∈

(
C
V

)
: δ (σi) ⊆ W, (i ∈ I) },

Y =
⋃
{δ (σJ) ∈

(
C
V

)
: δ (σJ) ⊆ Y, ( j ∈ J) },

Z =
⋃
{δ (σk) ∈

(
C
V

)
: δ (σk) ⊆ Z, (k ∈ K) },

where I, J, K ⊆{1, 2, ...,
∣∣∣C
V

∣∣∣}.
It can easily be seen that

W∧ (Y ∨ Z) = F
C
V

(W∩ (Y ∪ Z)) = F
C
V

((W∩Y) ∪ (W∩ Z))

= F
C
V



 ⋃
δ(σi)⊆W(i∈I)

δ (σi) ∩
⋃

δ(σ j)⊆Y( j∈J)
δ
(
σ j

)∪
( ⋃
δ(σi)⊆W(i∈I)

δ (σi) ∩
⋃

δ(σk)⊆Z(k∈K)
δ (σk)

)


= F
C
V



 ⋃
δ(σi)⊆W(i∈I)
δ(σ j)⊆Y( j∈J)

{δ (σi) ∩ δ
(
σ j

)
}

∪ ⋃
δ(σi)⊆W(i∈I)
δ(σk)⊆Z(k∈K)

{δ (σi) ∩ δ (σk)}




.

Moreover,

F
C
V

(W∩Y) ∪ F
C
V

(W∩ Z) = (W∧Y) ∨ (W∧ Z)
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= F
C
V


⋃

δ(σi)⊆W(i∈I)
δ(σ j)⊆Y( j∈J)

{δ (σi) ∩ δ
(
σ j

)
}


∪ F

C
V


⋃

δ(σi)⊆W(i∈I)
δ(σk)⊆Z(k∈K)

{δ (σi) ∩ δ (σk)}


Since, C

V
is unary, then for every x ∈ V, |MdesT (x)| = 1. We suppose, MdesT (x) = {δ (σx)} for any

x ∈ V. Then, δ (σi) ∩ δ
(
σ j

)
is the union of finite elements in C

V
. Hence,

δ (σi) ∩ δ
(
σ j

)
=

⋃
x∈δ(σi)∩δ(σ j)

δ (σx) . Therefore,W∧ (Y ∨ Z) = F
C
V

(W∩ (Y ∪ Z)))

=
⋃

x∈


⋃

δ(σi)⊆W(i∈I)
δ(σ j)⊆Y( j∈J)

{δ(σi)∩δ(σ j)}


∪


⋃

δ(σi)⊆W(i∈I)
δ(σk)⊆Z(k∈K)

{δ(σi)∩δ(σk)}



δ (σx)

=



⋃
y∈


⋃

δ(σi)⊆W(i∈I)
δ(σ j)⊆Y( j∈J)

{δ(σi)∩δ(σ j)}



δ
(
σy

)

∪


⋃

z∈


⋃

δ(σi)⊆W(i∈I)
δ(σk)⊆Z(k∈K)

{δ(σi)∩δ(σk)}



δ (σz)


= (W∧Y)∨ (W∧Z) .

□

Hence, F f ix( CV) is a distributive lattice.

Proposition 3.8. Let Q = (V,CV), be a SVCAS such that C
V

is soft unary. Then, P∩ Q ∈ F f ix
(
C
V

)
,

for any P, Q ∈ F f ix
(
C
V

)
.

Proof. Let p ∈ P∩Q then p ∈ P and p ∈ Q. Since, C
V

is soft unary so, for every x ∈ V, |MdesT (x)| = 1.
We suppose, MdesT (x) = {δ (σx)} for any x ∈ V. As, P, Q ∈ F f ix

(
C
V

)
, then δ

(
σy

)
⊆ P and δ

(
σy

)
⊆Q,

that is, δ
(
σy

)
⊆ P∩Q. Therefore,

F
C
V

(P ∩ Q) =
⋃
{δ (σi) ∈

(
C
V

)
: δ (σi) ⊆ P ∩ Q}

=
⋃
{δ

(
σy

)
: y ∈ P ∩ Q} = P ∩ Q

showing that F
C
V

(P ∩ Q) = P ∩ Q.

Thus, P∩Q∈ F f ix
(
C
V

)
, that is, an intersection of any two members of

(
F f ix

(
C
V

))
Li-SRCFP set

induced by C
V

, a soft unary covering, is closed. □

AIMS Mathematics Volume 8, Issue 9, 20415–20436.



20430

4. Algebraic Structures related toLi-Soft Rough Covering Graphs

In this section, we will prove Li-SRCFP set, with respect to a soft unary covering C
V

over the
vertex set V is a pseudCd lattice and a D- pseudCd lattice. It means any element of Li-SRCFP set has
both a pseudocomplement and a D- pseudocomplement. Also, we will see that for any member of Li-
S RCFP set, its pseudCmt(pseudocomplement) represents the S LA of its complement and D- pseudCmt

represents the union of all Join Li-SUirred elements containing the element in its complement. We
also discuss some algebras connected with Li-SRCFP sets.

Proposition 4.1. Let T =
(
V, C

V

)
be a SCAS such that C

V
is soft unary. Then,

(i) F f ix
(
C
V

)
is a pseudCd lattice such that W∗ = F

C
V

(∼ W) , where W ∈ F f ix
(
C
V

)
;

(ii) F f ix
(
C
V

)
is a D- pseudCd lattice, and W+ =

⋃
x∈∼W(x∈δ(σi)∈J(F f ix(CV)))

δ (σi) , for any W ∈ F f ix
(
C
V

)
,

parameter (σi) ∈ Q, where ∼ W is the complement of W in V and J(F f ix
(
C
V

)
) denotes all Join Li-

S Uirred elements in F f ix
(
C
V

)
.

Proof. (i) Suppose W ∈ F f ix
(
C
V

)
, then we have F

C
V

(
F

C
V

(∼ W)
)
= F

C
V

(∼ W), showing that

F
C
V

(∼ W) ∈ F f ix
(
C
V

)
. But

(
F

C
V

(∼ W)
)
⊆ (∼ W) , so W ∩

(
F

C
V

(∼ W)
)
= ∅. Therefore,

F
C
V

(
W∩

(
F

C
V

(∼ W)
))
= ∅. Now it is needed to prove thatY ⊆

(
F

C
V

(∼ W)
)

if F
C
V

(W∩Y) = ∅

for anyY ∈ F f ix
(
C
V

)
,W∩Y ∈ F f ix

(
C
V

)
forW,Y ∈ F f ix

(
C
V

)
. Hence, F

C
V

(W∩Y) = (W∩Y) .

Further, if F
C
V

(W∩Y) = ∅ thenW∩Y = ∅. Therefore, for any Y ∈ F f ix
(
C
V

)
if F

C
V

(W∩Y) =

(W∩Y) then (W∩Y) = ∅. As (W∩Y) = ∅ so Y ⊆ (∼ W) . Which shows F
C
V

(Y) ⊆(
F

C
V

(∼ W)
)
. But Y ∈ F f ix

(
C
V

)
gives Y =F

C
V

(Y) and so Y =F
C
V

(Y) ⊆
(
F

C
V

(∼ W)
)
. Thus,

W∗ = F
C
V

(∼ W) for anyW ∈ F f ix
(
C
V

)
. That is, F f ix

(
C
V

)
is a pseudCd lattice.

(ii) For anyW ∈ F f ix
(
C
V

)
,

F
C
V

 ⋃
x∈∼W(x∈δ(σi)∈J(F f ix(CV)))

δ (σi)

 = ⋃
x∈∼W(x∈δ(σi)∈J(F f ix(CV)))

δ (σi) .

So, ⋃
x∈∼W(x∈δ(σi)∈J(F f ix(CV)))

δ (σi) ∈ F f ix
(
C
V

)
, for anyW ∈ F f ix

(
C
V

)
.

Further it is easy to show thatW∪

 ⋃
x∈∼W(x∈δ(σi)∈J(F f ix(CV)))

δ (σi)

 = V. now we need only to show that

for any
Y ∈ F f ix

(
C
V

)
, ifW∪Y = V, then

⋃
x∈∼W(x∈δ(σi)∈J(F f ix(CV)))

δ (σi) ⊆ Y.
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The following two cases serve as evidence for it.
Case 1 : If

⋃
x∈∼W(x∈δ(σi)∈J(F f ix(CV)))

δ (σi) =∼W, then
⋃

x∈∼W(x∈δ(σi)∈J(F f ix(CV)))
δ (σi) ⊆ Y.

Case 2 : If ∼ W ⊂
⋃

x∈∼W(x∈δ(σi)∈J(F f ix(CV)))
δ (σi), then ∼ W ⊂ Y. If ∼ W = Y, then F

C
V

(∼ W) =

F
C
V

(Y) = Y = ∼W. Since,

F
C
V

(∼ W) = ∪{δ (σi) ∈ CV : δ (σi) ⊆∼ W}

= ∪{δ (σx) ∈ MdesT (x) : x ∈ MdesT (x) }
= ∪{δ (σi) ∈ J(F f ix

(
C
V

)
) : x ∈∼ W∧x∈ δ

(
σ⟩

)
}

=
⋃

x∈∼W(x∈δ(σi)∈J(F f ix(CV)))
δ (σi) ,

⋃
x∈∼W(x∈δ(σi)∈J(F f ix(CV)))

δ (σi) =∼ W,

which is contradictory with ∼ W ⊂
⋃

x∈∼W(x∈δ(σi)∈J(F f ix(CV)))
δ (σi) .

Suppose Y ⊂
⋃

x∈∼W(x∈δ(σi)∈J(F f ix(CV)))
δ (σi), then there will exist y ∈

⋃
x∈∼W(x∈δ(σi)∈J(F f ix(CV)))

δ (σi) such

that y < Y. So, y <∼ W showing that there exists z ∈∼ W such that y ∈ δ (σi) for any δ (σi) ∈
J(F f ix

(
C
V

)
and z ∈ δ (σi) . Since, ∼ W is properly contained in Y and z ∈ Y, so, δ (σi) ⊊ Y for any

δ (σi) ∈ J(F f ix
(
C
V

)
) and z ∈ δ (σi) . That is, z < F

C
V

(Y). Equivalently, we can say that F
C
V

(Y) , Y,

which is a contradiction to the fact that Y ∈ F f ix
(
C
V

)
. Hence,

⋃
x∈∼W(x∈δ(σi)∈J(F f ix(CV)))

δ (σi) ⊆ Y. As

a Consequence, W+ =
⋃

x∈∼W(x∈δ(σi)∈J(F f ix(CV)))
δ (σi) for any W ∈ F f ix

(
C
V

)
, that is, F f ix

(
C
V

)
is a D-

pseudCd lattice. Thus, we have seen that Li-SRCFP- set induced by any soft unary covering C
V

over
V represents a pseudCd lattice and also a D- pseudCd lattice. This shows that F f ix

(
C
V

)
is a double

p-algebra. □

Remark 4.1. In general, no soft unary covering by the Li-SRCFP set will generate a Stone algebra
or a dual Stone algebra.

Example 4.1. Let Θ = (Ω, δ, γ,R) represents a CSV-Graph and Q = (V,CV), be a SVCAS, where
V = {x1, x2, x3, x4} is a vertex set and R =

{
σ1, σ2, σ3, σ4

}
, set representing all parametersσ1, σ2, σ3, σ4

as shown in Table 6, with δ
(
σ1

)
= {x3} , δ

(
σ2

)
= {x1} , δ (σ3) = {x1, x3, x4} , δ (σ4) = {x2, x3} .

Table 6. Table of soft set (δ,R).

R \ V x1 x2 x3 x4

σ1 1 1 1 0
σ2 1 0 0 0
σ3 1 0 1 1
σ4 0 1 1 0

Let

C
V
= {{x3} , {x1} , {x1, x3, x4} , {x2, x3}}.
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Then,

F f ix
(
C
V

)
= {∅, {x1} , {x3} , {x1, x3} , {x2, x3} , {x1, x3, x4} , {x1, x2, x3} ,V}.

Let

M = {x3} and N = {x2, x3} .

Then,

M∗ = F
C
V

(∼ M) = {x1} ,

since,

M∗ = F
C
V

(∼ M) = {x1} , soM∗∗ = F
C
V

(∼ M∗) = {x2, x3} .

That is,M∗ ∪M∗∗ , V. Therefore, F f ix
(
C
V

)
is not a Stone algebra.

Also,

N+ =
⋃

x∈∼N(x∈δ(σi)∈J(F f ix(CV)))
δ (σi) = {x1, x3, x4} ,

N++ =
⋃

x∈∼N+(x∈δ(σi)∈J(F f ix(CV)))
δ (σi) = {x2, x3} ,

showing that

N+ ∩ N++ , ∅.

Thus, F f ix
(
C
V

)
is not a dual Stone algebra.

The purpose of the following claim is to investigate the circumstances and conditions under which
the Li-SRCFP-set, which is caused by any soft covering, yields a double Stone algebra and a boolean
lattice, respectively.

Proposition 4.2. Suppose a CSV-Graph is represented by Θ having a SVCAS, denoted by Q =
(V,CV) . If Li-S redct

(
C
V

)
is a partition of V, then F f ix

(
C
V

)
represents a boolean lattice.

Proof. We need first to show that ifLi-Sredct
(
C
V

)
is a partition, then C

V
is a soft unary covering. We

assume on contrary that C
V

is not soft unary covering. Therefore, there will be an element x ∈ V
such that |MdesT (x)| ≩ 1. So, we have parameters σ1 , σ2 ∈ R with δ

(
σ1

)
, δ (σ2) ∈ Li-Sredct

(
C
V

)
so that δ

(
σ1

)
, δ (σ2) ∈ MdesT (x) , that is, x ∈ δ

(
σ1

)
∩ δ (σ2) , which is contradictory with the fact

that Li-Sredct
(
C
V

)
is a partition of V. Therefore, one can see that C

V
is a soft unary covering. But,

F f ix
(
C
V

)
is distributive lattice. Moreover, F f ix

(
C
V

)
represents a bounded lattice. Now, we will have

to show only that F f ix
(
C
V

)
is a lattice which is complemented. Equivalently, we have to prove that ∼

W ∈ F f ix
(
C
V

)
for anyW ∈ F f ix

(
C
V

)
. If we assume that ∼ W < F f ix

(
C
V

)
, then there is an element

y in ∼ W such that for σi ∈ R, δ (σi) ⊊∼ W. Since, C
V

is soft unary then for every vertex x ∈ V
we have MdesT (x) = {δ (σx)}. So, δ

(
σy

)
⊊ ∼ W. As a result, there is x ∈ W such that x ∈ δ

(
σy

)
exists. But it is given Li-Sredct

(
C
V

)
is partitioning the universe V, so we have δ

(
σy

)
= δ (σx) . Thus,

δ (σx) ⊊ W, i.e, x < F
C
V

(W). In other words, F
C
V

(W) , W, which is contradictory with W ∈

F f ix
(
C
V

)
. Therefore, ∼W ∈ F f ix

(
C
V

)
, showing that F f ix

(
C
V

)
is a complemented lattice. Hence, as a

consequence, F f ix
(
C
V

)
is a boolean lattice. □

AIMS Mathematics Volume 8, Issue 9, 20415–20436.
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Proposition 4.3. Suppose a CSV-Graph is represented by Θ having a SVCAS, denoted by Q =
(V,CV). If Li-S redct

(
C
V

)
partitioning the vertex set V, then F f ix

(
C
V

)
is a double Stone algebra.

Proof. For any W ∈ F f ix
(
C
V

)
, we prove W∗ =∼ W =W+. We know that F f ix

(
C
V

)
is a boolean

lattice, therefore ∼ W ∈ F f ix
(
C
V

)
that is, F

C
V

(∼ W) =∼ W. So,W∗ = F
C
V

(∼ W) =∼W. For any

y ∈∼W, if δ
(
σy

)
∈ MdesT (y) , then δ

(
σy

)
is a Join Li-SUred element of C

V
. Using Proposition 4.1,

δ
(
σy

)
∈ J(F f ix

(
C
V

)
). Assume that x ∈ W exists such that x ∈ δ

(
σy

)
. Since Li-Sredct

(
C
V

)
, being

a partition of V, leads to the fact that δ
(
σy

)
∈ MdesT (x). In the light of this, we conclude that,

δ
(
σy

)
⊊W, that is, x < F

C
V

(W). So, F
C
V

(W) ,W orW < F f ix
(
C
V

)
. Which is a contradiction

becauseW ∈ F f ix
(
C
V

)
. Therefore,

W+ =
⋃

x∈∼W(x∈δ(σi)∈J(F f ix(CV)))
δ (σi) =

⋃
x∈∼Wδ(σi)∈MdesT (y)

δ (σi) =∼ W

Similarly, it is easy to prove that W∗∗ =∼∼ W = W = W++. Therefore, W∗∪ W∗∗ = V,W+∩

W++ = ∅, demonstrating that F f ix
(
C
V

)
is both a dual Stone algebra and a Stone algebra. □

5. Conclusions and future works

Soft set theory and rough set theory are two newer tools to discuss uncertainty. Soft graph theory
is a nice way to depict certain information. In order to discuss uncertainty in soft graphs, a possible
amalgamation of three different concepts, that is, rough sets, soft sets and graphs is discussed. In
this paper, we have introduced two new concepts Li-soft rough covering graphs (Li-SRCGs ) and
the concept of fixed point sets,called Li-SRCFP set, induced by soft covering C

V
of such graphs.Li-

SRCGs are used to discuss various kinds of approximation operators and the properties associated
with them. We review the conditions for the family of Li-SRCFP sets to become a lattice structure,
distributive lattice and complete lattice. It is shown that the Li-SRCFP set is both a double Stone
algebra and a boolean lattice. Furthermore, we looked into some algebras that dealt with the fixed
points of Li-SRCGs . Applications of the algebraic structures available in covering soft sets to soft
graphs may reveal new facets of graph theory. This work shows a novel approach for dealing with fixed
points based on soft rough covering graphs. The future work will be focused on
(i) constructing the fixed points sets based on some other kind of soft rough graphs;
(ii) constructing the fixed points sets based on multi-granular soft rough covering sets;
(iii) constructing the fixed points sets based on upper approximation operators;
(iv) comparison between the proposed study and the study to be used in (iii);
(v) developing the family of SRCFP sets based on soft neighborhood (of elements of universe set)
and studying the conditions that these sets become some lattice structure. Further, some algebra can be
discussed related to SRCFP sets based on soft neighborhoods.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

AIMS Mathematics Volume 8, Issue 9, 20415–20436.



20434

Acknowledgments

The authors acknowledge the financial support provided by the Center of Excellence in Theoretical
and Computational Science (TaCS-CoE), KMUTT.

This research was funded by National Science, Research and Innovation Fund (NSRF), and King
Mongkut’s University of Technology North Bangkok with Contract no. KMUTNB-FF-66-05.

Conflict of interest

The authors declare that they do not have any competing interests.

References

1. L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-
9958(65)90241-X

2. Z. Pawlak, Rough sets, Int. J. Comput. Inform. Sci., 11 (1982), 341–356.
https://doi.org/10.1007/BF01001956

3. Z. Bonikowski, E. Bryniariski, V. W. Skardowska, Extension and intensions in the rough set theory,
Inform. Sci., 107 (1998), 149–167. https://doi.org/10.1016/S0020-0255(97)10046-9

4. D. G. Chen, W. X. Zhang, D. Yeung, E. C. C. Tsang, Rough approximations on a complete
completely distributive lattice with applications to generalized rough sets, Inform. Sci., 176 (2006),
1829–1848. https://doi.org/10.1016/j.ins.2005.05.009

5. T. Y. Lin, Y. Y. Yao, L. A. Zadeh, Rough sets, granular computing and data mining, Heidelberg:
Physica-Verlag, 2001.

6. J. Y. Liang, K. S. Chin, C. Y. Dang, R. C. M. Yam, A new method for measuring
uncertainty and fuzziness in rough set theory, Int. J. Gen. Syst., 31 (2002), 331–342.
https://doi.org/10.1080/0308107021000013635

7. G. L. Liu, Y. Sai, A comparison of two types of rough sets induced by coverings, Int. J. Approx.
Reason., 50 (2009), 521–528. https://doi.org/10.1016/j.ijar.2008.11.001

8. Z. Pawlak, Rough sets: Theoretical aspects of reasoning about data, Springer Science Business
Media, 1991.

9. Y. F. Liu, W. Zhu, Characteristic of partition-circuit matroid through approximation
number, In: 2012 IEEE International conference on granular computing, 2012, 314–319.
https://doi.org/10.1109/GrC.2012.6468668

10. Y. Liu, W. Zhu, Y. Zhang, Relationship between partition matroid and rough set through k-rank
matroid, J. Inform. Comput. Sci., 8 (2012), 2151–2163.

11. Q. Li, W. Zhu, Lattice structures of fixed points of the lower approximations
of two types of covering-based rough sets, arXiv preprint, 2012, 109–145.
https://doi.org/10.48550/arXiv.1209.5569

12. S. P. Wang, Q. X. Zhu, W. Zhu, F. Min, Quantitative analysis for covering-based
rough sets using the upper approximation number, Inform. Sci., 220 (2012), 483–491.
https://doi.org/10.1016/j.ins.2012.07.030

AIMS Mathematics Volume 8, Issue 9, 20415–20436.

http://dx.doi.org/https://doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/https://doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/https://doi.org/10.1007/BF01001956
http://dx.doi.org/https://doi.org/10.1016/S0020-0255(97)10046-9
http://dx.doi.org/https://doi.org/10.1016/j.ins.2005.05.009
http://dx.doi.org/https://doi.org/10.1080/0308107021000013635
http://dx.doi.org/https://doi.org/10.1016/j.ijar.2008.11.001
http://dx.doi.org/https://doi.org/10.1109/GrC.2012.6468668
http://dx.doi.org/https://doi.org/10.48550/arXiv.1209.5569
http://dx.doi.org/https://doi.org/10.1016/j.ins.2012.07.030


20435
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