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Abstract: Power-barrier option is a typical exotic option formed by attaching some restrictions to
the power option, where the power option evolves from standard European option with the strike price
and underlying good price attached to some power. Compared with the ordinary options, power-
barrier option can provide investors with stable leverage and premium income. Therefore, power-
barrier option is more favored by investors. This paper mainly discusses the pricing problems of
power-barrier option in uncertain financial market. The fluctuation of stock price is regarded as an
uncertain process and the interest rate is floating. The uncertain differential equation is invoked to
simulate this fluctuation in an uncertain environment. Then, the clear pricing formulas of power-
barrier option are given. Finally, the corresponding numerical examples and a real data example are
put forward to illustrate the method.
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1. Introduction

Power option evolves from standard European option. The main feature of power option is to add
some power to the strike price and the underlying good price to form a non-linear payoff. Certainly
from a practical point of view, the non-linear payoff of power option provides huge leverage and
interesting hedging for fund management. Compared with the ordinary options, power option can
serve to hedge risks and bring more premium income to investors. Therefore, power option is the most
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favored by investors among all options. There are many examples of power options [1,2], for instance,
German Bankers Trust has issued a power option with the power of order 2, known as the parabola
option. In order to meet the different needs of investors, power-barrier option appears in market.
Power-barrier option is a typical exotic option formed by adding some restrictions to the power option,
mainly including knock-in power option and knock-out power option. When the underlying good price
arrives at the preset barrier level during the option’s life, the option becomes an ordinary power option
or invalid. These interesting restrictions essentially limit the stock price within the life of the option,
which can mitigate the investment risks.

Option pricing problem is the most concerning issue in modern financial market. Because uncertain
factors dominate the financial market, stochastic differential equations (SDEs) derived by Wiener
process can be used for option pricing. Black and Scholes [3] proposed the European option pricing
formula. Inspired by Black-Scholes formula, Margrabe [4] extended it to American option, which
provided a basis for the option pricing theory in modern financial market. As a polynomial option,
power option provides market participants with great flexibility. Kim et al. [5] gave a semi-analytical
solution for power option based on the Heston stochastic volatility model. Macovschi and Quittard-
Pinon [1] appropriately deconstructed the complex polynomial options into several simple power
options, and derived a closed formula for the power option. Pasricha and Goel [6] assumed that the
asset price was driven by a jump-diffusion process and presented the valuation of a power exchange
option. It is generally believed the stock price obeys a stochastic process, and the SDEs are used
for option pricing. However, one of the main contributions of Kahneman and Tversky [7] in their
research is the discovery of probability distortions that the deciders usually make decisions based on
the nonlinear transformations of probability measures. Moreover, Liu [8] proposed a paradox about
stochastic financial theory, that is, the stock price can be infinite, which is impossible in the real stock
market.

Actually, the fluctuation of the stock price is not completely random, it is often influenced by the
investors’ belief degree, because investors often make choices according to the market information
they have mastered. Motivated by this, Liu [9] proposed an uncertain process, which is virtually a
series of uncertain variables that change over time to depict the dynamic uncertain environment in
the financial market. Moreover, the uncertain differential equations (UDEs) driven by a Liu process
are used to model the stock price, then European option pricing formula is rendered. This work was
extended to American option by Chen [10]. Compared with ordinary options, exotic options have great
flexibility to adapt to the various needs of investors. A substantial body of researchers investigated the
pricing formulas of exotic options [11]. Zhang and Liu [12] investigated Asian option pricing whose
returns are related to the geometric average value of the underlying good in the option’s life. Gao
et al. [13] gave the Lookback option pricing formula whose returns depend on the optimal price value
of the underlying good during the option’s life. In addition to the above options, barrier option is
also a special exotic option, which becomes effective or invalid when the price of the underlying good
arrives at the predetermined barrier level. As a barrier option, the European barrier option was first
investigated by Yao and Qin [14] under the uncertain environment. Inspired by this, the American
barrier option [15, 16], Asian barrier option [17] and barrier Lookback option [18] were constantly
explored by researchers. However, these options cannot provide investors with huge leverage and
effective risk hedging. This paper first discusses the power-barrier option in uncertain financial market.
Whether from a practical or theoretical perspective, the research on power-barrier option has great
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significance.
In this paper, the UDEs are invoked to model the fluctuation of the stock price. Then, the power-

barrier option pricing formulas are given, including knock-in power option and knock-out power
option. Knock-in power option indicates that the option takes effect when the underlying good price
arrives at the preset barrier level. While, knock-out power option indicates that when the underlying
good price penetrates the preset barrier level, the option becomes invalid and worthless. As far as we
know, the formulas we raise are fresh. This paper is arranged as follows. Section 2 mainly discusses
the knock-in power option and gives the corresponding pricing formulas. Section 3 mainly discusses
the knock-out power option and gives the corresponding pricing formulas. For each of the above
options, the corresponding numerical examples are put forward in Section 4. Section 5 gives a real
data analysis by using Tencent’s stock data and one-year Chinese treasury yield. Section 6 makes a
concise conclusion.

2. Knock-in power option

This section discusses a special barrier option, namely knock-in power option. Generally, this
option indicates that the power option will only take effect when the stock price arrives the barrier level
D. The main elements of the knock-in power option are the expiration time T , the strike prices H and
the barrier level D. The stock price Yt follows the UDE.

dYt = v1Ytdt + v2YtdC1t (2.1)

where C1t is a Liu process, v1 is the log-drift and v2 is the log-diffusion. The solution of the model
(2.1) is

Yt = Y0 exp(v1t + v2C1t).

The inverse uncertainty distribution (IUD) of Yt is

ϕ−1
t (α) = Y0 exp

v1t +

√
3v2t
π

ln
α

1 − α

 , Y0 ≥ 0, v2 > 0.

Most studies [9,14,15,17] believe that interest rate is fixed ut = u. However, as an important tool of
economic market, interest rate fluctuates frequently due to human activities and transactions. To better
describe the real market environment, we assume that the interest rate is floating, that is

ut = u + v3
dC2t

dt
, (2.2)

where v3 is a constant and C2t is a Liu process. Hence, we get the discount rate

exp
(
−

∫ T

0
ut dt

)
= exp(−uT − v3C2T ).

To better describe the barrier option, an indicator function χK is

χK(a) =

1, i f a ≥ K

0, i f a < K

where K is a positive constant number.
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2.1. Knock-in power option pricing formulas

An up-and-in power call (UIPC) option refers to setting a barrier level D higher than the initial stock
price. During the option’s life, when the stock price fluctuates upwards and reaches the preset barrier
value, the option takes effect and becomes an ordinary power option. Consider a UIPC option with
order m and stock price Yt. At the initial time 0, the investor buys the option contract from the issuer at
the price of Fui

c . The payoff that the option brings to invertor at time T is

χD

(
sup

0≤t≤T
Yt

) (
Ym

T − Hm)+ .
Taking the discount rate into account, the payoff at initial time 0 is

Wc = exp(−uT − v3C2T )χD

(
sup

0≤t≤T
Yt

) (
Ym

T − Hm)+ .
The equal expected income of investor and issuer prompts both parties to trade. Thus, the UIPC option
price Fui

c is

Fui
c = E

[
exp(−uT − v3C2T )χD

(
sup

0≤t≤T
Yt

) (
Ym

T − Hm)+] . (2.3)

A down-and-in power put (DIPP) option refers to setting a barrier level D lower than the initial
stock price. During the option’s life, when the stock price fluctuates downwards and reaches the preset
barrier value, the option takes effect and becomes an ordinary power option. Consider a DIPP option
with order m and stock price Yt. At the initial time 0, the investor buys the option contract from the
issuer at the price of Fdi

p . The payoff that option brings to invertor at time T is(
1 − χD

(
inf

0≤t≤T
Yt

))
(Hm − Ym

T )+.

Taking the discount rate into account, the payoff at initial time 0 is

Wp = exp(−uT − v3C2T )
(
1 − χD

(
inf

0≤t≤T
Yt

))
(Hm − Ym

T )+.

The equal expected income of investor and issuer prompts both parties to trade. Thus, the DIPP option
price Fdi

p is

Fdi
p = E

[
exp(−uT − v3C2T )

(
1 − χD

(
inf

0≤t≤T
Yt

))
(Hm − Ym

T )+
]
. (2.4)

2.2. Some theorems

We give two theorems to compute the price of the options mentioned in Section 2.1.

Theorem 2.1. Let a UIPC option for the models (2.1) and (2.2) with order m have a barrier level D,
a strike price H and an exercise data T . The option price is

Fui
c =

∫ 1

a0

exp
(
−uT − v3Ψ

−1(1 − α)
) (

(Yα
T )m − Hm)+ dα
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20399

where

a0 =

(
1 + exp

(
π(v1T + ln Y0 − ln D)

√
3v2T

))−1

,

Yα
T = Y0 exp

v1T +

√
3v2T
π

ln
α

1 − α

 ,
and

Ψ−1(1 − α) =

√
3T
π

ln
1 − α
α

.

Proof. At first, let’s show that the uncertain variable

Wc = exp(−uT − v3C2T )χD

(
sup

0≤t≤T
Yt

) (
Ym

T − Hm)+
has an IUD

Wα
c = exp

(
−uT − v3Ψ

−1(1 − α)
)
χD

(
sup

0≤t≤T
Yα

t

) (
(Yα

T )m − Hm)+
where

Yα
t = Y0 exp

v1t +

√
3v2t
π

ln
α

1 − α


and

Ψ−1(1 − α) =

√
3T
π

ln
1 − α
α

.

On the one hand, assume
Yt(γ) ≤ Yα

t , ∀t ∈ [0,T ]

and

C2T (γ) ≥

√
3T
π

ln
1 − α
α

for some γ ∈ Γ. Then we have

χD

(
sup

0≤t≤T
Yt(γ)

) (
Ym

T (γ) − Hm)+
≤ χD

(
sup

0≤t≤T
Yα

t

) (
(Yα

T )m − Hm)+
and

exp (−uT − v3C2T (γ)) ≤ exp
(
−uT − v3Ψ

−1(1 − α)
)
.

Hence, we have
{Wc ≤ Wα

c } ⊃
{
C2T ≥ Ψ

−1(1 − α)
}
∩

{
Yt ≤ Yα

t , ∀t ∈ [0,T ]
}
.

Based on Theorem A.1 and the independent of C2T and Yt, we get

M{Wc ≤ Wα
c }

≥ M
{{

C2T ≥ Ψ
−1(1 − α)

}
∩

{
Yt ≤ Yα

t , ∀t ∈ [0,T ]
}}

= M
{
C2T ≥ Ψ

−1(1 − α)
}
∧ M

{
Yt ≤ Yα

t , ∀t ∈ [0,T ]
}

= α.
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On the other hand, assume
Yt(γ) > Yα

t , ∀t ∈ [0,T ]

and

C2T (γ) <

√
3T
π

ln
1 − α
α

for some γ ∈ Γ. Then we have

χD

(
sup

0≤t≤T
Yt(γ)

) (
Ym

T (γ) − Hm)+ > χD

(
sup

0≤t≤T
Yα

t

) (
(Yα

T )m − Hm)+
and

exp (−uT − v3C2T (γ)) > exp
(
−uT − v3Ψ

−1(1 − α)
)
.

Hence, we have
{Wc > Wα

c } ⊃
{
C2T < Ψ

−1(1 − α)
}
∩

{
Yt > Yα

t , ∀t ∈ [0,T ]
}
.

Based on Theorem A.1 and the independent of C2T and Yt, we get

M{Wc > Wα
c }

≥ M
{{

C2T < Ψ
−1(1 − α)

}
∩

{
Yt > Yα

t , ∀t ∈ [0,T ]
}}

= M
{
C2T < Ψ

−1(1 − α)
}
∧ M

{
Yt > Yα

t , ∀t ∈ [0,T ]
}

= 1 − α.

Based on the duality axiom, we have

M{Wc ≤ Wα
c } + M{Wc > Wα

c } = 1.

Thus
M{Wc ≤ Wα

c } = α

which means the IUD of Wc is

exp
(
−uT − v3Ψ

−1(1 − α)
)
χD

(
sup

0≤t≤T
Yα

t

) (
(Yα

T )m − Hm)+ .
When

sup
0≤t≤T

Yα
t ≥ D

we have

α ≥

(
1 + exp

(
π(v1T + ln Y0 − ln D)

√
3v2t

))−1

= a0.

Therefore, the price is

Fui
c =

∫ 1

0
exp

(
−uT − v3Ψ

−1(1 − α)
)
χD

(
sup

0≤t≤T
Yα

t

) (
(Yα

T )m − Hm)+ dα

=

∫ 1

a0

exp
(
−uT − v3Ψ

−1(1 − α)
) (

(Yα
T )m − Hm)+ dα.

The theorem is thus proved.
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Theorem 2.2. Let a DIPP option for the models (2.1) and (2.2) with the order m have a barrier level
D, a strike price H and an exercise data T . The option price is

Fdi
p =

∫ 1

a0

exp (−uT − v3Ψ(1 − α))
(
Hm − (Y1−α

T )m
)+

dα

where

a0 =

(
1 + exp

(
π(ln D − ln Y0 − v1T )

√
3v2T

))−1

,

Y1−α
T = Y0 exp

v1T +

√
3v2T
π

ln
1 − α
α

 ,
and

Ψ−1(1 − α) =

√
3T
π

ln
1 − α
α

.

Proof. At first, let’s show that the uncertain variable

Wp = exp(−uT − v3C2T )
(
1 − χD

(
inf

0≤t≤T
Yt

))
(Hm − Ym

T )+

has an IUD

Wα
p = exp

(
−uT − v3Ψ

−1(1 − α)
) (

1 − χD

(
inf

0≤t≤T
Y1−α

t

))
(Hm − (Y1−α

T )m)+

where

Y1−α
t = Y0 exp

v1t +

√
3v2t
π

ln
1 − α
α


and

Ψ−1(1 − α) =

√
3T
π

ln
1 − α
α

.

On the one hand, assume
Yt ≥ Y1−α

t , ∀t ∈ [0,T ]

and

C2T (γ) ≥

√
3T
π

ln
1 − α
α

for some γ ∈ Γ. Then we have(
1 − χD

(
inf

0≤t≤T
Yt

))
(Hm − Ym

T )+ ≤
(
1 − χD

(
inf

0≤t≤T
Y1−α

t

))
(Hm − (Y1−α

T )m)+

and
exp (−uT − v3C2T (γ)) ≤ exp

(
−uT − v3Ψ

−1(1 − α)
)
.

Hence, we have {
Wp ≤ Wα

p

}
⊃

{
C2T ≥ Ψ

−1(1 − α)
}
∧

{
Yt ≥ Y1−α

t

}
.
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Based on Theorem A.1 and the independent of C2T and Yt, we get

M{Wc ≥ Wα
c }

≥ M
{{

C2T ≥ Ψ
−1(1 − α)

}
∩

{
Yt ≥ Y1−α

t , ∀t ∈ [0,T ]
}}

= M
{
C2T ≥ Ψ

−1(1 − α)
}
∧ M

{
Yt ≥ Y1−α

t , ∀t ∈ [0,T ]
}

= α.

On the other hand, assume
Yt(γ) < Y1−α

t , ∀t ∈ [0,T ]

and

C2T (γ) <

√
3T
π

ln
1 − α
α

for some γ ∈ Γ. Then we have(
1 − χD

(
inf

0≤t≤T
Yt

))
(Hm − Ym

T )+ >
(
1 − χD

(
inf

0≤t≤T
Y1−α

t

))
(Hm − (Y1−α

T )m)+

and
exp (−uT − v3C2T (γ)) > exp

(
−uT − v3Ψ

−1(1 − α)
)
.

Hence, we have {
Wp > Wα

p

}
⊃

{
C2T < Ψ

−1(1 − α)
}
∧

{
Yt < Y1−α

t

}
.

Based on Theorem A.1 and the independent of C2T and Yt, we get

M{Wp > Wα
p }

≥ M
{{

C2T < Ψ
−1(1 − α)

}
∩

{
Yt < Y1−α

t , ∀t ∈ [0,T ]
}}

= M
{{

C2T < Ψ
−1(1 − α)

}
∧ M

{
Yt < Y1−α

t , ∀t ∈ [0,T ]
}}

= 1 − α.

Based on the duality axiom, we have

M{Wp ≤ Wα
p } + M{Wp > Wα

p } = 1.

Thus
M{Wp ≤ Wα

p } = α

which means the IUD of Wp is

exp
(
−uT − v3Ψ

−1(1 − α)
) (

1 − χD

(
inf

0≤t≤T
Y1−α

t

))
(Hm − (Y1−α

T )m)+.

When
inf

0≤t≤T
Y1−α

t < D

we have

α >

(
1 + exp

(
π(ln D − ln Y0 − v1T )

√
3v2t

))−1

= a0.
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Therefore, the price is

Fdi
p =

∫ 1

0
exp (−uT − v3Ψ(1 − α))

(
1 − χD

(
sup

0≤t≤T
Y1−α

t

)) (
Hm − (Y1−α

T )m
)+

dα

=

∫ 1

a0

exp (−uT − v3Ψ(1 − α))
(
Hm − (Y1−α

T )m
)+

dα.

The theorem is thus proved.

3. Knock-out power option

Generally, the knock-out power option limits the stock price to the trigger point D. During the
option’s life, if the stock price exceeds the preset barrier value, the option becomes invalid. The main
elements of the knock-out option are the expiration time T , the strike prices H, and the barrier level D.
The stock price Yt and interest rate ut follow the models (2.1) and (2.2), respectively.

3.1. Knock-out power option price formulas

A down-and-out power call (DOPC) option indicates that the stock price is always higher than the
preset barrier level D. Once the stock price falls below the preset value, the option becomes invalid.
Consider a DOPC option with order m and stock price Yt. At the initial time 0, the investor buys the
option contract from the issuer at the price Fdo

c . The payoff that option brings to invertor at time T is

χD

(
inf

0≤t≤T
Yt

)
(Ym

T − Hm)+.

Taking the discount rate into account, the payoff at initial time 0 is

Wc = exp(−uT − v3C2T )χD

(
inf

0≤t≤T
Yt

)
(Ym

T − Hm)+.

The equal expected income of investor and issuer prompts both parties to trade. Thus, the option price
Fdo

c is

Fdo
c = E

[
exp(−uT − v3C2T )χD

(
inf

0≤t≤T
Yt

)
(Ym

T − Hm)+
]
. (3.1)

An up-and-out power put (UOPP) option indicates that the stock price is always lower than the
preset barrier level D. Once the stock price penetrates the preset barrier value, the option becomes
invalid. Consider a UOPP option with order m and stock price Yt. At the initial time 0, the investor
buys the option contract from the issuer at the price of Fuo

p . The payoff that option brings to invertor at
time T is (

1 − χD

(
sup

0≤t≤T
Yt

)) (
Hm − Ym

T
)+ .

Taking the discount rate into account, the payoff at initial time 0 is

Wc = exp(−uT − v3C2T )
(
1 − χD

(
sup

0≤t≤T
Yt

)) (
Hm − Ym

T
)+ .

The equal expected income of investor and issuer prompts both parties to trade. Thus, the option price
Fdo

c is

Fdo
c = E

[
exp(−uT − v3C2T )

(
1 − χD

(
sup

0≤t≤T
Yt

)) (
Hm − Ym

T
)+] . (3.2)
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3.2. Some theorems

We give two theorems to compute the price of the options mentioned in Section 3.1

Theorem 3.1. Let a DOPC option for the models (2.1) and (2.2) with order m have a barrier level D,
a strike price H and an exercise data T . The option price is

Fdo
c = exp(−v1T )

∫ 1

a0

exp(−uT − v3Ψ
−1(1 − α))((Yα

T )m − Hm)+

where

a0 =

(
1 + exp

(
π(v1T + ln Y0 − ln D)

√
3v2t

))−1

,

Yα
T = Y0 exp

v1T +

√
3v2T
π

ln
α

1 − α

 ,
and

Ψ−1(1 − α) =

√
3T
π

ln
1 − α
α

.

Proof. At first, let’s show that the uncertain variable

Wc = exp(−uT − v3C2T )χD

(
inf

0≤t≤T
Yt

)
(Ym

T − Hm)+

has an IUD
Wα

c = exp(−uT − v3Ψ
−1(1 − α))χD

(
inf

0≤t≤T
Yα

t

)
((Yα

T )m − Hm)+

where

Yα
t = Y0 exp

v1t +

√
3v2t
π

ln
α

1 − α


and

Ψ−1(1 − α) =

√
3T
π

ln
1 − α
α

.

On the one hand, assume
Yt(γ) ≤ Yα

t , ∀t ∈ [0,T ]

and

C2T (γ) ≥

√
3T
π

ln
1 − α
α

for some γ ∈ Γ. Then we have

χD

(
inf

0≤t≤T
Yt

)
(Ym

T − Hm)+ ≤ χD

(
inf

0≤t≤T
Yα

t

)
((Yα

T )m − Hm)+

and
exp(−uT − v3C2T ) ≤ exp(−uT − v3Ψ

−1(1 − α)).

Hence, we have {
Wc ≤ Wα

c
}
⊃

{
C2T ≥ Ψ

−1(1 − α)
}
∧

{
Yt ≤ Yα

t
}
.
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Based on Theorem A.1 and the independent of C2T and Yt, we get

M{Wc ≤ Wα
c }

≥ M
{{

C2T ≥ Ψ
−1(1 − α)

}
∩

{
Yt < Yα

t , ∀t ∈ [0,T ]
}}

= M
{
C2T < Ψ

−1(1 − α)
}
∧ M

{
Yt < Yα

t , ∀t ∈ [0,T ]
}

= α.

On the other hand, assume
Yt(γ) > Yα

t , ∀t ∈ [0,T ]

and

C2T (γ) <

√
3T
π

ln
1 − α
α

for some γ ∈ Γ. Then we have

χD

(
inf

0≤t≤T
Yt

)
(Ym

T − Hm)+ > χD

(
inf

0≤t≤T
Yα

t

)
((Yα

T )m − Hm)+

and
exp(−uT − v3C2T ) > exp(−uT − v3Ψ

−1(1 − α)).

Hence, we have {
Wc > Wα

c
}
⊃

{
C2T < Ψ

−1(1 − α)
}
∧

{
Yt > Yα

t
}
.

Based on Theorem A.1 and the independent of C2T and Yt, we get

M{Wc > Wα
c }

≥ M
{{

C2T < Ψ
−1(1 − α)

}
∩

{
Yt > Yα

t , ∀t ∈ [0,T ]
}}

= M
{{

C2T < Ψ
−1(1 − α)

}
∧ M

{
Yt > Yα

t , ∀t ∈ [0,T ]
}}

= 1 − α.

Based on the duality axiom, we have

M{Wc ≤ Wα
c } + M{Wc > Wα

c } = 1.

Thus
M{Wc ≤ Wα

c } = α

which means the IUD of
exp(−uT − v3C2T )χD

(
inf

0≤t≤T
Yt

)
(Ym

T − Hm)+

is
exp(−uT − v3Ψ

−1(1 − α))χD

(
inf

0≤t≤T
Yα

t

)
((Yα

T )m − Hm)+.

When
inf

0≤t≤T
Yα

t ≥ D
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we have

α ≥

(
1 + exp

(
π(v1T + ln Y0 − ln D)

√
3v2t

))−1

= a0.

Therefore, the price is

Fdo
c =

∫ 1

0
χD

(
inf

0≤t≤T
Yα

t

)
exp(−uT − v3Ψ

−1(1 − α))((Yα
T )m − Hm)+

=

∫ 1

a0

exp(−uT − v3Ψ
−1(1 − α))((Yα

T )m − Hm)+.

The theorem is thus proved.

Theorem 3.2. Let a UOPP option for the models (2.1) and (2.2) with order m have a barrier level D,
a strike price H and an exercise data T . The option price is

Fuo
p =

∫ 1

a0

exp(−uT − v3Ψ
−1(1 − α))

(
Hm − (Y1−α

T )m
)+

dα

where

a0 =

(
1 + exp

(
π(ln D − ln Y0 − v1T )

√
3v2t

))−1

,

Y1−α
T = Y0 exp

v1T +

√
3v2T
π

ln
1 − α
α

 ,
and

Ψ−1(1 − α) =

√
3T
π

ln
1 − α
α

.

Proof. At first, let’s show that the uncertain variable

Wp = exp (−uT − v3C2T )
(
1 − χD

(
sup

0≤t≤T
Yt

)) (
Hm − Ym

T
)+

has an IUD

Wα
p = exp

(
−uT − v3Ψ

−1(1 − α)
) (

1 − χD

(
sup

0≤t≤T
Y1−α

t

)) (
Hm − (Y1−α

T )m
)+

where

Y1−α
t = Y0 exp

v1t +

√
3v2t
π

ln
1 − α
α


and

Ψ−1(1 − α) =

√
3T
π

ln
1 − α
α

.

On the one hand, assume
Yt(γ) ≥ Y1−α

t , ∀t ∈ [0,T ]
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and
C2T (γ) ≥ Ψ−1(1 − α)

for some γ ∈ Γ. Then, we have(
1 − χD

(
sup

0≤t≤T
Yt

)) (
Hm − Ym

T
)+
≤

(
1 − χD

(
sup

0≤t≤T
Y1−α

t

)) (
Hm − (Y1−α

T )m
)+

and
exp(−uT − v3C2T ) ≤ exp

(
−uT − v3Ψ

−1
1−α

)
.

Based on the Theorem A.1 and the independent of C2T and Yt, we get

M{Wp ≤ Wα
p }

≥ M
{{

C2T ≥ Ψ
−1(1 − α)

}
∩

{
Yt ≥ Y1−α

t , ∀t ∈ [0,T ]
}}

= M
{
C2T ≥ Ψ

−1(1 − α)
}
∧ M

{
Yt ≥ Y1−α

t , ∀t ∈ [0,T ]
}

= α.

On the other hand, assume
Yt(γ) < Y1−α

t , ∀t ∈ [0,T ]

and
C2T (γ) < Ψ−1(1 − α)

for some γ ∈ Γ. Then, we have(
1 − χD

(
sup

0≤t≤T
Yt

)) (
Hm − Ym

T
)+ > (

1 − χD

(
sup

0≤t≤T
Y1−α

t

)) (
Hm − (Y1−α

T )m
)+

and
exp(−uT − v3C2T ) > exp(−uT − v3Ψ

−1(1 − α).

Based on the Theorem A.1 and the independent of C2T and Yt, we get

M{Wp > Wα
p }

≥ M
{{

C2T ≥ Ψ
−1(1 − α)

}
∩

{
Yt ≥ Y1−α

t , ∀t ∈ [0,T ]
}}

= M
{
C2T < Ψ

−1(1 − α)
}
∧ M

{
Yt < Y1−α

t , ∀t ∈ [0,T ]
}

= 1 − α.

Based on the duality axiom, we have

M{Wp ≤ Wα
p } + M{Wp > Wα

p } = 1.

Thus
M{Wp ≤ Wα

p } = α

which means the IUD of

exp (−uT − v3C2T )
(
1 − χD

(
sup

0≤t≤T
Yt

)) (
Hm − Ym

T
)+
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is

exp
(
−uT − v3Ψ

−1(1 − α)
) (

1 − χD

(
sup

0≤t≤T
Y1−α

t

)) (
Hm − (Y1−α

T )m
)+
.

When
sup

0≤t≤T
Y1−α

t < D

we have

α >

(
1 + exp

(
π(ln D − ln Y0 − v1T )

√
3v2t

))−1

= a0.

Therefore, the price is

Fuo
p =

∫ 1

0
exp(−uT − v3Ψ

−1(1 − α))
(
1 − χD

(
sup

0≤t≤T
Y1−α

t

)) (
Hm − (Y1−α

T )m
)+

dα

=

∫ 1

a0

exp(−uT − v3Ψ
−1(1 − α))

(
Hm − (Y1−α

T )m
)+

dα.

The theorem is thus proved.

4. Numerical examples

In this section, we design four sets of numerical examples corresponding to the above four cases to
illustrate how to price options. We set different model parameters for four options, namely the UIPC
option, DIPP option, DOPC option and UOPP option, and give the corresponding option prices, as
shown in Table 1. For example, the first column in the Table 1 indicates that we set the parameters of
models (2.1) and (2.2) as v1 = 0.05, v2 = 0.04, v3 = 0.01, u = 0.02,Y0 = 3,H = 4,D = 5,T = 5, and
the price of UIPC option is Fui

c = 1.3901.

Table 1. Model parameters and the corresponding option price.

UIPC DIPP DOPC UOPP
v1 0.05 0.05 0.04 0.03
v2 0.04 0.04 0.03 0.04
v3 0.01 0.01 0.015 0.02
u 0.02 0.02 0.02 0.02
Y0 3 4.5 5 3
H 4 5.5 4 6
D 5 3.5 3 5
T 5 5 5 5
F 1.3901 0.2240 21.3919 21.0866

Figure 1 shows the relationship between the option price and barrier level when other factors are
fixed. Take Figure 1(a) as an example, when the barrier level varies from 4.1 dollars to 9 dollars, the
corresponding UIPC option price varies from 2.348 dollars to 0.0457 dollars. The prices of the UIPC
option and DOPC option decrease as the barrier level increase, which is consistent with the constraints
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imposed by the barrier price on options. UIPC option takes effect when the stock price fluctuates
upwards and reaches the present barrier value, which means the higher the barrier level, the harder it is
for the option to take effect, and the lower the option price. While, the DOPC option becomes invalid
when the stock price falls below the present barrier level, which indicates the higher the barrier level,
the easier it is for the option to become invalid, and the lower the option price. However, the prices
of the DIPP option and UOPP option increase as the barrier level increase, which is consistent with
the constraints imposed by the barrier price on options. DIPP option takes effect when the stock price
fluctuates downwards and reaches the present barrier value, which means the higher the barrier level,
the easier it is for the option to take effect, and the higher the option price. While, the UOPP option
becomes invalid when the stock price penetrates the present barrier level, which indicates the higher
the barrier level, the harder it is for the option to become invalid, and the higher the option price.
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2
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F
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F
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c

(a) Prices of UIPC option decrease as the barrier level increase.
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(b) Prices of DIPP option increase as the barrier level increase.
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(c) Prices of DOPC option decrease as the barrier level increase.
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(d) Prices of UOPP option increase as the barrier level increase.

Figure 1. The relationship between option price and barrier level in Example 4.
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5. Real data analysis

In this section, we illustrate our approach with real financial data. We choose the closing stock
price of Tencent and One-year Chinese treasury yield from Sept. 9 to Oct. 26 2021 as research object,
which are available at https://cn.investing.com/markets/ and http://www.chinamoney. com.cn/chinese/,
respectively. The data are shown in Figure 2.
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Figure 2. The stock price of Tencent and one-year Chinese treasury yield from Sept. 9 to
Oct. 26 2021.

First, we use the method based on residuals [19] to estimate the parameters of model (2.1), the
estimation is

v1 = 0.0019, v2 = 0.0234.

It follows from Liu and Liu [19] that the i-th (i = 2, 3, · · · , 30) residual of model (2.1) is

ϵi =

(
1 + exp

(
π(ln xti−1 + v1(ti − ti−1) − ln xti)

√
3v2(ti − ti−1)

))−1

,

which can be regarded as a sample of linear uncertainty distribution L(0, 1), i.e.,

ϵ2, ϵ3, · · · , ϵ30 ∼ L(0, 1).

The uncertain hypothesis test proposed by Ye and Liu [20] proved that testing whether the model fits
the data is equivalent to testing whether the residuals obey a linear uncertainty distribution L(0, 1).
Given the significance level α = 0.05, the test is

H =
{(
ϵ2, ϵ3, · · · , ϵ30

)
: there are at least 2 of indexed t′s with 2 ≤ t ≤ 30

such that ϵi < 0.025 or ϵi > 0.975
}
.

It can be seen from Figure 3 only ϵ19 < [0.025, 0.975], we have (ϵ2, ϵ3, · · · , ϵ30) < H. Thus the model is
a goof fit to the observed data.
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Figure 3. The value of ϵi for model (2.1) as well as the value of α/2 and 1 − α/2 for
i = 2, 3, · · · , 30, respectively.

Then, we use the method of moments [21] to estimate the parameters of model (2.2), the
estimation is

u = 0.0234, v3 = 0.0002.

Thus, we obtain the uncertain stock modeldYt = 0.0019Ytdt + 0.0234YtdC1t

ut = 0.0234 + 0.0002dCt
dt .

Based on the above model, we assume that the initial stock price Y0 = 480, which is the stock price
on Oct. 9 and the expiration date T = 15. For the four options introduce in Sections 3 and 4, we give
the option prices under different strike prices and barrier levels, see Table 2.

Table 2. Prices of four option

UIPC DIPP DOPC UOPP
H 490 500 490 510
D 510 470 500 470
F 78070 32760 78130 35880

6. Conclusions

The paper mainly discussed the pricing formulas of power-barrier option in uncertain financial
market. The stock price was assumed to obey an uncertain process and interest rate was floating.
The UDE was invoked to model the fluctuation of the stock price. Some power-barrier option pricing
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formulas were given, which were knock-in power option and knock-out power option. Moreover, the
corresponding numerical examples and a real data example were presented to demonstrate how to get
the price of the option.

An interesting future research direction is to consider other uncertain differential equations, e.g.,
uncertain Ornstein–Uhlenbeck model, uncertain mean-reverting model, and uncertain exponential
Ornstein–Uhlenbeck model, to describe stock prices and give pricing formulas of power-barrier option.
It is also signification to explore more barrier option pricing formulations in the uncertain financial
market.
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Appendix

In this section, some basic knowledge in uncertainty theory applied in this paper is introduced.

Definition A.1. (Liu [9]) An uncertain process Ct is said to be a Liu process if
(i) C0 = 0 and almost all sample paths are Lipschitz continuous,
(ii) Ct has stationary and independent increments,
(iii) every increment Cs+t −Cs is a normal uncertain variable with expected value 0 and variance t2.
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Theorem A.1. (Liu [22]) Let M be an uncertain measure, and Γ1 and Γ2 be two events. If Γ1 ⊂ Γ2,
then we have

M{Γ1} ≤ M{Γ2}.

Theorem A.2. (Yao and Chen [23]) Let α (0 < α < 1) be a real number. The UDE

dYt = g(t,Yt)dt + h(t,Yt)dCt

has a solution Yt, and the corresponding ordinary differential equation

dYα
t = g(t,Yα

t )dt + |h(t,Yα
t )|ψ−1(α)dt

has the solution α-path Yα
t , where

ψ−1(α) =

√
3
π

ln
α

1 − α
.

Then
M{Yt ≤ Yα

t , ∀t} = α, M{Yt > Yα
t , ∀t} = 1 − α.

Thus, Yt has an IUD
ϕ−1

t (α) = Yα
t .
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