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1. Introduction

The idea of a fixed point was started in 19th century and different mathematicians, like Schauder,
Tarski, Brouwer [1–3] and others worked on it in 20th century. The presence for common fixed points
of different families with nonexpansive and contractive mappings in Hilbert spaces as well as in
Banach spaces was the exhaustive topic of research since the early 1960s as explored by many
researchers like Banach, Brouwer and Browder etc. Latterly, Khamsi and Kozlowski [4, 5] proved
results in modular function spaces for common fixed points of nonexpansive, asymptotically
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nonexpansive and contractive mappings. The theory of a fixed point has a substantial position in the
fields of analysis, geometry, engineering, topology, optimization theory, etc. For some latest
algorithms developed in the fields of optimisation and inverse problems, we refer to [6, 7]. For more
detailed study of fixed point and applications, see [8–22] and the references there in.

The concept of fixed points of one parameter semigroups of linear operators on a Banach space
was originated from 19th century from the remarkable work of Hille-Yosida in 1948. Now-a-days, it
has a lot of applications in many fields such as stochastic processes and differential equations.
Semigroups have a monumental position in the fields of functional analysis, quantum mechanics,
control theory, functional equations and integro-differential equations. Semigroups also play a
significant role in mathematics and application fields. For example, in the field of dynamical systems,
the state space will be defined by the vector function space and the system of an evolution function of
the dynamical system will be represented by the map (h)k→ T(h)k. For related study, we refer to [23].

Browder [24] gave a result for the fixed point of nonexpansive mappings in a Banach space.
Suzuki [25] proved a result for strong convergence of a fixed point in a Hilbert space. Reich [26] gave
a result for a weak convergence in a Banach space. Similarly, Ishikawa [27] presented a result for
common fixed points of nonexpansive mappings in a Banach space. Reich and Shoikhet also proved
some results about fixed points in non-linear semigroups, see [20]. Nevanlinna and Reich gave a
result for strong convergence of contraction semigroups and of iterative methods for accretive
operators in Banach spaces, see [28, 29]. There are different results on strong convergence of a fixed
point of semigroups and there are sets of common fixed points of semigroups by the intersection of
two operators from the family. These results are much significant in the field of fixed point theory. In
a recent time, different mathematicians are working to generalize such type of results for a subfamily
of an evolution family, see [30–32].

The fixed point of a periodic evolution subfamily was discussed in [30] by Rahmat et al. They
gave a result for finding common fixed points of the evolution subfamily with the help of a strongly
converging sequence. The method applied in [30] is successfully useful for showing the presence of
a fixed point of an evolution subfamily. The purpose of this work is to show the existence of a fixed
point of an evolution subfamily with the help of a sequence acting on a Banach space.

Definition 1.1. Let v: A→ A be a self-mapping. A point r ∈ A is a fixed point of v if v(r) = r.

The idea of semigroups is originated from the solution of the Cuachy differnetial equations of the
form: Λ̇(b) = K(Λ(b)), b ≥ 0,

Λ(0) = Λ0,

where K is a linear operator.

Definition 1.2. A family Y = {Y(a); a ≥ 0} of bounded linear operators is a semigroup if the following
conditions hold:
(i) Y(0) = I.

(ii) Y(j + k) = Y(j)Y(k), ∀j, k ≥ 0.

When K = K(t), then such a system is called a non-autonomous system. The result of this system
produces the idea of an evolution family.
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Definition 1.3. A family E = {E(u, g); u ≥ g ≥ 0} of bounded linear operators is said to be an evolution
family if the following conditions hold:
(i) E(p, p) = I, ∀p ≥ 0.
(ii) E(j, q)E(q, b) = E(j, b), ∀j ≥ q ≥ b ≥ 0.

Remark 1.4. If the evolution family is periodic of each number r ≥ 0, then it forms a semigroup. If we
take E(c, 0) = Y(c), then
(a1) Y(0) = E(0, 0) = I.

(a2) Y(c + y) = E(c+ y, 0) = E(c+ y, y)E(y, 0) = E(c, 0)E(y, 0) = Y(c)Y(y), which shows that a periodic
evolution family of each positive period, is a semigroup.

Similarly, if we take Y(r − d) = E(r, d), then
(b1) E(r, r) = Y(0) = I.

(b2) E(r, b) = E(r, d)E(d, b) = Y(r − d)Y(d − b) = Y(r − b), which shows that a semigroup is an evolution
family.

Remark 1.5. A semigroup is an evolution family, but the converse is not true. In fact, the converse
holds if the evolution family is periodic of every number s ≥ 0.

Remark 1.6. [33] Let 0 ≤ s ≤ 1 and b, k ∈ H , then the following equality holds:

||sb + (1 − s)k||2 = s||b||2 + (1 − s)||k||2 − s(1 − s)||b − k||2.

In this work, we will generalize results from [33] for an evolution subfamily and also give some
other results for an evolution subfamily.

2. Preliminaries

First, denote the set of real numbers and natural numbers by R and N, respectively. We denote the
family of semigroups by Y, evolution family by E and evolution subfamily by G. By B, H and D,
we will indicate a Banach space, Hilbert space and a convex closed set, respectively. We use→ for a
strong and⇀ for a weak convergence. The set of fixed points of

G = {G(s, 0); s ≥ 0}

is denoted by
F(G) = ∩s≥0F(G(s, 0)).

We generalize results of semigroups from [33] for an evolution subfamily G in a Banach space.
These types of families are not semigroups. The following example illustrates this fact and gives the
difference between them.

Example 2.1. As

E = {E(h, r) =
h + 1
r + 1

; h ≥ r ≥ 0}

is an evolution family because it satisfies both conditions of an evolution family.
If we take r = 0, that is, {E(h, 0)} = G, then it becomes a subfamily of E and it is not a semigroup.
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Suzuki proved the following result in [25]:

Theorem 2.2. Consider a family
Y = {Y(i), i ≥ 0}

of strongly continuous non-expansive operators onD (whereD is a subset of a Hilbert spaceH) such
that F(Y) , ∅. Take two sequences {γm} and {qm} in R with

lim
m→∞
qm = lim

m→∞

γm

qm
= 0,

qm > 0 and γm ∈ (0, 1). Let b ∈ D be fixed and {km} be a sequence inD such that

km = γmb + (1 − γm)Y(qm)km, ∀m ∈ N,

then {km} → h ∈ F(Y).

The following result was given by Shimizu and Takahashi [15] in 1998:

Theorem 2.3. Take a family
Y = {Y(i), i ≥ 0}

of operators which are non-expansive and strongly continuous on D ⊂ H such that F(Y) , ∅. Take
two sequences {ζm} and {λm} in R with

lim
m→∞
ζm = 0, lim

m→∞
λm = ∞,

where ζm ∈ (0, 1) and λm > 0. Let c ∈ D be fixed and {gm} ∈ D be a sequence such that

gm = ζmc + (1 − ζm)
1
λm

∫ λm

0
Y(s)ds

for all m ∈ N. Then {gm} → a ∈ F(Y).

Motivated from above results, we take an implicit iteration for G = {G(b, 0), b ≥ 0} of nonexpansive
mappings, given as: τm = γmτm−1 + (1 − γm)G(ζm, 0)τm, m ≥ 1,

τ0 ∈ D.
(2.1)

We present some results for convergence of Eq (2.1) in a Banach space and a Hilbert space for a
nonexpansive evolution subfamily.

3. Main results

We start with the following lemmas:

Lemma 3.1. Consider an evolution family E and a subfamily G = {G(c, ); c ≥ 0} of E with period
r ∈ R+, then ⋂

c≥0

F(G(c, 0)) =
⋂

0≤c≤r

F(G(c, 0)).
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Proof. As it is obviously true that ⋂
c≥0

F(G(c, 0)) ⊂
⋂

0≤c≤r

F(G(c, 0)),

we are proving the other part, i.e., ⋂
0≤c≤r

F(G(c, 0)) ⊂
⋂
c≥0

F(G(c, 0)).

Take a real number
k ∈
⋂

0≤c≤r

F(G(c, 0)),

then
G(c, 0)k = k, ∀0 ≤ c ≤ r.

As we know that any real number c ≥ 0 is written in the form of c = mr + ε, for some m ∈ Z+ and
0 ≤ ε ≤ r, consider

G(c, 0)k = G(mr + ε, 0)k
= G(mr + ε,mr)G(mr, 0)k
= G(ε, 0)Gm(r, 0)k
= G(ε, 0)k
= k.

This shows that ⋂
0≤c≤r

F(G(c, 0)) ⊂
⋂
c≥0

F(G(c, 0)).

Hence, we conclude that ⋂
c≥0

F(G(c, 0)) =
⋂

0≤c≤r

F(G(c, 0)).

This completes the proof. □

Lemma 3.2. If Y = {Y(β); β ≥ 0} is a semigroup on a Hilbert spaceH , then

F(Y) =
⋂
β≥0

F(Y(β)) =
⋂

0≤β≤1

F(Y(β)).

Proof. Since ⋂
β≥0

F(Y(β)) ⊂
⋂

0≤β≤1

F(Y(β)),

we only prove the other part, that is, ⋂
0≤β≤1

F(Y(β)) ⊂
⋂
β≥0

F(Y(β)).

Take a real number u such that
u ∈
⋂

0≤β≤1

F(Y(β)),
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then we have Y(u) = u, for every β ∈ [0, 1]. Since β ∈ [0, 1], we can write it as β = n+ ϱ, where n ∈ Z+

and 0 ≤ ϱ ≤ 1. Therefore, we have

Y(β)u = Y(n + ϱ)u
= Y(n)Y(ϱ)u
= Yn(1)Y(ϱ)u
= Yn(1)u
= u.

This shows that u ∈
⋂
β≥0 F(Y(β)). It implies that⋂

0≤β≤1

F(Y(β)) ⊂
⋂
β≥0

F(Y(β)).

Thus, ⋂
β≥0

F(Y(β)) =
⋂

0≤β≤1

F(Y(β)).

This completes the proof. □

Now, we give a result for a weak convergence of a sequence in a Hilbert space.

Theorem 3.3. Let G = {G(a, 0)} be a subfamily of E of strongly continuous nonexpansive operators
onD and F(G) , ∅, whereD is a subset ofH . Take two sequences {γm} and {ζm} in R such that

{γm} ⊂ (0, c] ⊂ (0, 1), ζm > 0,

lim inf
m→∞

ζm = 0, lim sup
m→∞

ζm > 0,

and
lim

m→∞
(ζm+1 − ζm) = 0.

Then
τm = γmτm−1 + (1 − γm)G(ζm, 0)τm ⇀ τ,

where τ ∈ F(G).

Proof. Claim (i). For any z ∈ F(G), limm→∞ ||τm − z|| exists. In fact,

||τm − z|| = ||γm(τm−1 − z) + (1 − γm)(G(ζm, 0)τm − z)||
≤ γm||τm−1 − z|| + (1 − γm)||G(ζm, 0)τm − z||

≤ γm||τm−1 − z|| + (1 − γm)||τm−1 − z||, ∀m ≥ 1.

Thus, we have
||τm − z|| ≤ ||τm−1 − z||, ∀m ≥ 1.

This shows that limm→∞ ||τm − z|| exists. Therefore, the sequence {τm} is bounded.
Claim (ii).

lim
m→∞
||G(ζm, 0)τm − τm|| = 0.
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From Remark 1.6, we have

||τm − z||2 = ||γm(τm−1 − z) + (1 − γm)(G(ζm, 0)τm − z)||2

= γm||τm−1 − z||2 + (1 − γm)||G(ζm, 0)τm − z||2

− γm(1 − γm)||τm−1 − G(ζm, 0)τm||
2

≤ γm||τm−1 − z||2 + (1 − γm)||τm − z||2

− γm(1 − γm)||τm−1 − G(ζm, 0)τm||
2.

Thus, we have

||τm − z||2 ≤ ||τm−1 − z||2 − (1 − γm)||τm−1 − G(ζm, 0)τm||
2, ∀m ≥ 1.

As we know that {γm} ⊂ (0, c] ⊂ (0, 1), so we have

(1 − c)||τm−1 − G(ζm, 0)τm||
2 ≤ ||τm−1 − z||2 − ||τm − z||2, (3.1)

i.e.,
(1 − c) lim sup

m→∞
||τm−1 − G(ζm, 0)τm||

2 ≤ lim sup
m→∞

||τm−1 − z||2 − ||τm − z||2 = 0.

Therefore,
lim

m→∞
||τm−1 − G(ζm, 0)τm|| = 0.

On the other hand,

lim
m→∞
||τm − G(ζm, 0)τm|| = lim

m→∞
γm−1||τm−1 − G(ζm, 0)τm|| = 0.

Claim (iii).
{τm}⇀ τ, where τ ∈ F(G).

As {τm} is bounded, take a subsequence {ωmi} of {τm} such that {ωmi} ⇀ τ. Let ωmi = hi, γmi = ξi and
ζmi = vi. From [34], we have

lim
i→∞

vi = lim
i→∞

||hi − G(vi, 0)hi||

vi
= 0.

Now, we will show that G(ζ, 0)τ = τ.
We have

||hi − G(ζ, 0)τ|| ≤

[ ζvi
]−1∑

a=0

||G((a + 1)vi, 0)hi −G(avi, 0)hi|| + ||G([
ζ

vi
]vi, 0)hi

−G(
ζ

vi
vi, 0)τ|| + ||G(

ζ

vi
vi, 0)τ −G(ζ, 0)||

≤
ζ

vi
||G(vi, 0)hi − hi|| + ||hi − τ|| + ||G(ζ − [

ζ

vi
]vi, 0)τ − τ||

≤ ζ
||G(vi, 0)hi − hi||

vi
+ ||hi − τ|| + max

0≤v≤vi
||G(v, 0)τ − τ||, ∀i ∈ N.
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Thus, we get
lim sup

i→∞
||hi − G(ζ, 0)τ|| ≤ lim sup

i→∞
||τi − τ||.

Hence, G(ζ, 0)τ = τ by using Opial’s condition. Therefore, τ ∈ F(G). Now, we need to show that
{τm}⇀ τ. For this, take a subsequence {ηm j} of {τm} such that ηm j ⇀ u and u , τ. By above method, we
can show that u ∈ F(G). Since both limits limm→∞ ||τm − τ|| and limm→∞ ||τm − u|| exist, we can write

lim
m→∞
||τm − τ|| = lim sup

i→∞
||ωmi − τ|| < lim sup

i→∞
||ωmi − u||

= lim
m→∞
||τm − u||

= lim sup
j→∞

||ηm j − u|| < lim sup
j→∞

||ηm j − τ||

= lim
m→∞
||τm − τ||.

It shows that u = τ, which is a contradiction. Thus, τm ⇀ τ.

This completes the proof. □

Now, we will provide a theorem in a Banach space for a weak convergence.

Theorem 3.4. Consider a reflexive Banach space B in R with Opial’s property and a subset D of B.
Let G = {G(a, 0)} be a subfamily of E of nonexpansive and strongly continuous mappings such that
F(G) , ∅. Take two sequences {γm} and {ζm} such that γm ⊂ (0, 1), ζm > 0 and

lim
m→∞
ζm = lim

m→∞

γm

ζm
= 0.

Then
τm = γmτm−1 + (1 − γm)G(ζm, 0)τm → τ ∈ F(G).

Proof. Claim 1. As
lim

m→∞
ζm = lim

m→∞

γm

ζm
= 0,

then we have limm→∞ γm = 0. This shows that there exists a positive integer p, for all k ∈ N so that
γm ⊂ (0, c] ⊂ (0, 1).

From Theorem 3.3, limm→∞ ||τm − z|| exists for each z ∈ F(G).
Claim 2. {G(ζm, 0)τm} is bounded. From (2.1), we have

||G(ζm, 0)τm}|| = ||
1

1 − γm
τm −

γm

1 − γm
τm−1||

≤
1

1 − γm
||τm|| +

γm

1 − γm
||τm−1||

≤
1
c
||τm|| +

c
1 − c

||τm−1||,

which shows that {G(ζm, 0)τm} is bounded.
Claim 3. {τm}⇀ τ.
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As {τm} is bounded, take a sub-sequence {ωml} of {τm} such that ωml ⇀ τ. Let ωml = bl, γml = ρl and
ζml = yl, l ∈ N. Let ζ > 0 be fixed, then

||bl − G(ζ, 0)τ|| ≤

[ ζyl
]−1∑

a=0

||G((a + 1)yl, 0)bl −G(ayl, 0)bl|| + ||G([
ζ

yl
]yl, 0)bl

−G(
ζ

yl
yl, 0)τ|| + ||G(

ζ

yl
yl, 0)τ −G(ζ, 0)||

≤
ζ

yl
||G(yl, 0)bl − bl|| + ||bl − τ|| + ||G(ζ − [

ζ

yl
]yl, 0)τ − τ||

≤ ζ
||G(yl, 0)bl − bl||

yl
+ ||bl − τ|| + max

0≤y≤yl
||G(y, 0)τ − τ||, ∀l ∈ N.

Thus, we have
lim sup

l→∞
||bl − G(ζ, 0)τ|| ≤ lim sup

l→∞
||bl − τ||.

Therefore,
G(ζ, 0)τ = τ ∈ F(G)

by using Opial’s property. By same method given in Theorem 3.3, we can prove that {τm}⇀ τ.

This completes the proof. □

Theorem 3.5. Consider a real reflexive Banach space B with Opial’s property and a subsetD of B. Let
G = {G(a, 0)} be a subfamily of E of strongly continuous nonexpansive mappings such that F(G) , ∅.
Take two sequences {γm} and {ζm} such that γm ⊂ (0, 1), ζm > 0 and

lim
m→∞
ζm = lim

m→∞

γm

ζm
= 0.

Then
τm = γmτm−1 + (1 − γm)G(ζm, 0)τm → τ ∈ F(G).

Proof. Claim 1. For any z ∈ F(G), limm→∞ ||τm − z|| exists.
Claim 2.

||G(ζm, 0)τm − τm|| → 0 as m→ ∞. (3.2)

As from Theorem 3.4, {G(ζm, 0)τm} is bounded. Also, from (1.4), we have

||τm − G(ζm, 0)τm|| = γm||τm−1 − G(ζm, 0)τm|| → 0 as m→ ∞.

Therefore,
||G(ζm, 0)τm − τm|| → 0 as m→ ∞.

Claim 3. For any ζ > 0,
lim

m→∞
||G(ζm, 0)τm − τm|| = 0.
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In fact, we have

||τm − G(ζm, 0)τm|| ≤

ζ
ζm
−1∑

b=0

||G((b + 1)ζm, 0)τm − G(bζm, 0)τm||

+ ||G((
ζ

ζm
)ζm, 0)τm − G(ζ, 0)τm||

≤
ζ

ζm
||G(ζm, 0)τm − τm|| + ||G((ζ −

ζ

ζm
)ζm, 0)τm − τm||

≤ ζ
γm

ζm
||τm−1 − G(ζm, 0)|| + max

s∈[0,ζm]
{||G(v, 0)τm − τm||}, ∀ m ∈ N.

Thus, from this equation and Eq (3.2), we get

lim
m→∞
||G(ζm, 0)τm − τm|| = 0.

Claim 4. Now, we will show that {τm} → τ ∈ F(G).
Since {τm} is bounded, it must have a convergent sub-sequence {µmk} such that µmk → τ. From

Claim 3, we have
||τ − G(ζ, 0)τ|| = lim

k→∞
||µmk −G(ζ, 0)µmk || = 0.

Thus, τ ∈ F(G). Hence, we have

lim
m→∞
||τm − τ|| = lim

k→∞
||µmk − τ|| = 0.

This completes the proof. □

4. An example and open problem

Example 4.1. Consider the Hilbert space H = L2([0, π],C) and let T = {T(a); a ≥ 0} be a semigroup
such that

(T(a)u)(t) =
2
π

∞∑
m=1

e−am2
wm(u)sinmt, t ∈ [0, π], a ≥ 0.

Here,

wm(u) =
∫ π

0
k(a)sin(ma)ds.

Surely, it is nonexpansive and strongly continuous semigroup in this Hilbert space. The linear operator
Λ generates this semigroup such that Λu = ü. Let for all k ∈ H , the setM(Λ) represent the maximal
domain of Λ such that u and ü must be continuous. Also, u(0) = 0 = u(π). Now, consider the non-
autonomous Cauchy problem:

∂h(t,ε)
∂t
= g(t)∂

2h(t,ε)
∂2ε
, t > 0, 0 ≤ ε ≤ π,

h(0, ε) = b(ε),
h(t, 0) = h(t, π) = 0, t ≥ 0,

AIMS Mathematics Volume 8, Issue 9, 20380–20394.



20390

where b(.) ∈ H and g: R+ → [1,∞) are nonexpansive functions on R+. This function g is periodic, i.e.,
g(j + p) = g(j) for every j ∈ R+ and for some p ≥ 1. Take the function

K(t) =
∫ t

0
g(t)dt,

then the property of evolution equations will be satisfied by the solution k(.) of the above
non-autonomous Cauchy problem. Therefore,

k(t) = A(t, h)k(h),

where
A(t, h) = T(K(t) − K(h)),

see Example 2.9b [35].
As the function t→ ert||h(t)|| is bounded for any r ≥ 0 on the set of non-negative real numbers, we

have ∫ ∞

0
||A(t, 0)u||2dt =

2
π

∫ ∞

0

∞∑
r=1

wr2(u)e−2r2K(t)dt

=
2
π

∞∑
r=1

wr2(u)
∫ ∞

0
e−2r2K(t)dt

= ||u||22

∫ ∞

0
e−2r2K(t)dt

≤ ||u||22

∫ ∞

0
e−2K(t)dt.

On the other side, we have ∫ ∞

0
e−2K(t)dt =

∞∑
b=0

∫ (b+1)c

bc
e−2K(t)dt

=

∞∑
b=0

∫ c

0
e−2K(bc+β)dβ

=

∞∑
b=0

e−2bK(c)
∫ c

0
e−2K(β)dβ

≤ c
∞∑

b=0

e−2bK(c)

= c
e2K(c)

e2K(c) − 1
= W.

Therefore, we have ∫ ∞

0
||A(t, 0)u||2dt ≤ W||u||22.
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By using Theorem 3.2 from [36], we have a(A) ≤ −1
2C , where a(A) is the growth bound of the family

A and C ≥ 1. For more details, see [36].
This shows that the evolution family on the Hilbert space H is nonexpansive, so Theorem 3.5 can

be applied to such evolution families and will be helpful in finding its solution and uniqueness.

Example 4.2. Let

E(t, s) =
t + 1
s + 1

be an evolution family on the space l3, then clearly the space l3 is not a Hilbert space, but it is reflexive.
If we take its subfamily G(t, 0) = t + 1 then we still can apply our results to this subfamily. Let γm =

1
m2

and ζm = 1
m , then clearly

lim
m→∞

γm

ζm
= 0,

so by Theorem 3.5 we have the sequence of iteration

τm =
1

m2τm−1 + (1 −
1

m2 )G(
1
m
, 0)τm → 0 ∈ F(G),

where 0 is the unique fixed point of the subfamily G.

Open problem. We have an open problem for the readers that whether Lemmas 3.1 and 3.2 and
Theorem 3.5 can be generalized to all periodic and non-periodic evolution families?

5. Conclusions

The idea of semigroupos arise from the solution of autonomous abstract Cauchy problem while the
idea of evolution family arise from the solution of non-autonomous abstrct Cauchy problem, which
is more genreal than the semigroups. In [33], the strong convergence theorms for fixed points for
nonexpansive semigroups on Hilbert spaces are proved. We generalized the results to a subfamily of
an evolution family on a Hilbert space. These results may be come a gateway for many researchers
to extends these ideas to the whole evolution family rather than the subfamily in future. Also these
results are helpfull for the mathematician and others to use for existence and uniqeness of solution of
non-autonomous abstarct Cauchy problems.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University
for supporting this work grant code: 23UQU4331214DSR003.

AIMS Mathematics Volume 8, Issue 9, 20380–20394.



20392

Conflict of interest

The authors declare that they have no conflicts of interest.

References

1. R. B. Kellogg, Uniqueness in the Schauder fixed point theorem, Proc. Am. Math. Soc., 60 (1976),
207–210.

2. F. Echenique, A short and constructive proof of Tarski fixed-point theorem, Int. J. Game Theory,
33 (2005), 215–218. https://doi.org/10.1007/s001820400192

3. S. Park, Ninety years of the Brouwer fixed point theorem, Vietnam J. Math., 27 (1999), 187–222.

4. M. A. Khamsi, W. M. Kozlowski, On asymptotic pointwise contractions in modular function
spaces, Nonlinear Anal., 73 (2010), 2957–2967. https://doi.org/10.1016/j.na.2010.06.061

5. M. A. Khamsi, W. M. Kozlowski, On asymptotic pointwise nonexpansive
mappings in modular function spaces, J. Math. Anal. Appl., 380 (2011), 697–708.
https://doi.org/10.1016/j.jmaa.2011.03.031

6. Y. Zhang, D. V. Lukyanenko, A. G. Yagola, Using Lagrange principle for solving two-
dimensional integral equation with a positive kernel, Inverse Probl. Sci. Eng., 24 (2016), 811–831.
https://doi.org/10.1080/17415977.2015.1077445

7. Y. Zhang, D. V. Lukyanenko, A. G. Yagola, An optimal regularization method for convolution
equations on the sourcewise represented set, J. Inverse Ill-Posed Probl., 23 (2016), 465–475.
https://doi.org/10.1515/jiip-2014-0047

8. M. Shoaib, M. Sarwar, K. Shah, P. Kumum, Fixed point results and its applications to the systems
of non-linear integral and differential equations of arbitrary order, J. Nonlinear Sci. Appl., 9 (2016),
4949–4962. https://doi.org/10.22436/jnsa.009.06.128

9. M. B. Zada, M. Sarwar, C. Tunc, Fixed point theorems in b-metric spaces and their applications
to non-linear fractional differential and integral equations, J. Fixed Point Theory Appl., 20 (2018),
25. https://doi.org/10.1007/s11784-018-0510-0

10. S. Atsushiba, W. Takahashi, Strong convergence theorems for one-parameter nonexpansive
semigroups with compact domains, Fixed Point Theory Appl., 3 (2002), 15–31.

11. W. Sintunavarat, M. B. Zada, M. Sarwar, Common solution of Urysohn integral equations with the
help of common fixed point results in complex valued metric spaces, Rev. R. Acad. Cienc. Exactas
Fis. Nat., 111 (2017), 531–545. https://doi.org/10.1007/s13398-016-0309-z

12. J. P. Gossez, E. J. L. Dozo, Some geometric properties related to the fixed
point theory for nonexpansive mappings, Pac. J. Math., 40 (1972), 565–573.
https://doi.org/10.2140/pjm.1972.40.565

13. A. Baklouti, M. Mabrouk, Essential numerical ranges of operators in semi-Hilbertian spaces, Ann.
Funct. Anal., 13 (2022), 16. https://doi.org/10.1007/s43034-021-00161-6

14. A. Baklouti, J. Schutz, S. Dellagi, A. Chelbi, Selling or leasing used vehicles considering their
energetic type, the potential demand for leasing, and the expected maintenance costs, Energy Rep.,
8 (2022), 1125–1135. https://doi.org/10.1016/j.egyr.2022.07.074

AIMS Mathematics Volume 8, Issue 9, 20380–20394.

http://dx.doi.org/https://doi.org/10.1007/s001820400192
http://dx.doi.org/https://doi.org/10.1016/j.na.2010.06.061
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2011.03.031
http://dx.doi.org/https://doi.org/10.1080/17415977.2015.1077445
http://dx.doi.org/https://doi.org/10.1515/jiip-2014-0047
http://dx.doi.org/https://doi.org/10.22436/jnsa.009.06.128
http://dx.doi.org/https://doi.org/10.1007/s11784-018-0510-0
http://dx.doi.org/https://doi.org/10.1007/s13398-016-0309-z
http://dx.doi.org/https://doi.org/10.2140/pjm.1972.40.565
http://dx.doi.org/https://doi.org/10.1007/s43034-021-00161-6
http://dx.doi.org/https://doi.org/10.1016/j.egyr.2022.07.074


20393

15. T. Shimizu, W. Takahashi, Strong convergence theorems for asymptotically nonexpansive
semigroups in Hilbert space, Nonlinear Anal., 34 (1998), 87–99.

16. N. Shioji, W. Takahashi, Strong convergence theorems for continuous semigroups in Banach
spaces, Math. Jpn., 50 (1999), 57–66.

17. G. Rahmat, M. Khan, M. Sarwar, H. Aydi, E. Ameer, A strong convergence to a common fixed
point of a subfamily of a nonexpansive evolution family of bounded linear operators on a Hilbert
space, J. Math., 2021 (2021), 2392088. https://doi.org/10.1155/2021/2392088

18. M. A. Khamsi, W. M. Kozlowski, S. Reich, Fixed point theory in modular function spaces,
Nonlinear Anal., 14 (1990), 935–953. https://doi.org/10.1016/0362-546X(90)90111-S

19. K. Goebel, S. Reich, Uniform convexity, hyperbolic geometry and nonexpansive mappings, Marcel
Dekker, 1984.

20. S. Reich, D. Shoikhet, Nonlinear semigroups, fixed points, and geometry of domains in Banach
spaces, Imperial College Press, 2005.

21. F. E. Browder, Fixed-point theorems for noncompact mappings in Hilbert space, Proc. Nat. Acad.
Sci., 53 (1965), 1272–1276. https://doi.org/10.1073/pnas.53.6.1272

22. S. Reich, The fixed point property for nonexpansive mappings, Am. Math. Mon., 83 (1976), 266–
268. https://doi.org/10.1080/00029890.1976.11994096

23. K. J. Engel, R. Nagel, One-parameter semi-groups for linear evolution equations, Springer Verlag,
2000.

24. F. E. Browder, Nonexpansive non-linear operators in a Banach space, Proc. Nat. Acad. Sci., 54
(1965), 1041–1044. https://doi.org/10.1073/pnas.54.4.1041

25. T. Suzuki, On strong convergence to common fixed points of nonexpensive simegroup in Hilbert
spaces, Proc. Am. Math. Soc., 131 (2002), 2133–2136.

26. S. Reich, Weak convergence theorems for nonexpansive mappings in Banach space, J. Math. Anal.
Appl., 67 (1979), 274–276. https://doi.org/10.1016/0022-247X(79)90024-6

27. S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Am.
Math. Soc., 59 (1976), 65–71.

28. O. Nevanlinna, S. Reich, Strong convergence of contraction semigroups and of iterative
methods for accretive operators in Banach spaces, Isr. J. Math., 32 (1979), 44–58.
https://doi.org/10.1007/BF02761184

29. T. Suzuki, W. Takahashi, Strong convergence of Manns type sequences for one-parameter
nonexpansive semigroups in general Banach spaces, J. Nonlinear Convex Anal., 5 (2004), 209–
216.

30. G. Rahmat, T. Shah, M. Sarwar, H. Aydi, H. Alsamir, Common fixed points of a subfamily of
nonexpansive periodic evolution family in strictly convex Banach space, J. Math., 2021 (2021),
6668305. https://doi.org/10.1155/2021/6668305

31. M. Shah, G. Rahmat, S. I. A. Shah, E. Bonyah, Z. Shah, M. Shutaywi, Convergence for a fixed
point of evolution families in Banach space via iterative process, J. Math., 2022 (2022), 4907226.
https://doi.org/10.1155/2022/4907226

AIMS Mathematics Volume 8, Issue 9, 20380–20394.

http://dx.doi.org/https://doi.org/10.1155/2021/2392088
http://dx.doi.org/https://doi.org/10.1016/0362-546X(90)90111-S
http://dx.doi.org/https://doi.org/10.1073/pnas.53.6.1272
http://dx.doi.org/https://doi.org/10.1080/00029890.1976.11994096
http://dx.doi.org/https://doi.org/10.1073/pnas.54.4.1041
http://dx.doi.org/https://doi.org/10.1016/0022-247X(79)90024-6
http://dx.doi.org/https://doi.org/10.1007/BF02761184
http://dx.doi.org/https://doi.org/10.1155/2021/6668305
http://dx.doi.org/https://doi.org/10.1155/2022/4907226


20394

32. S. Fuan, R. Ullah, G. Rahmat, M. Numan, S. I. Butt, X. Ge, Approximate fixed point
sequences of an evolution family on a metric space, J. Math., 2021 (2021), 6764280.
https://doi.org/10.1155/2020/1647193

33. D. V. Thong, An implicit iteration process for nonexpansive semigroups, Nonlinear Anal., 74
(2011), 6116–6120. https://doi.org/10.1016/j.na.2011.05.090

34. S. Saejung, Strong convergence theorem for nonexpansive semigroups without Bochner integrals,
Fixed Point Theory Appl., 2008 (2008), 745010. https://doi.org/10.1155/2008/745010

35. D. Daners, P. K. Medina, Abstract evolution equations, periodic problems and applications, CRC
Press, 1992.

36. C. Buse, A. Khan, G. Rahmat, A. Tabassum, A new estimation of the growth bound of
a periodic evolution family on Banach spaces, J. Funct. Spaces, 2013 (2013), 260920.
https://doi.org/10.1155/2013/260920

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 9, 20380–20394.

http://dx.doi.org/https://doi.org/10.1155/2020/1647193
http://dx.doi.org/https://doi.org/10.1016/j.na.2011.05.090
http://dx.doi.org/https://doi.org/10.1155/2008/745010
http://dx.doi.org/https://doi.org/10.1155/2013/260920
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Main results
	An example and open problem
	Conclusions

