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1. Introduction

Throughout the years, many works have dealt with beam theories due to their important applications
in high technology of flexible structures. Historically, it is well known that one of the oldest beam
theories is the Euler-Bernoulli beam theory, which is a simplification of linear isotropic beams. It
was first enunciated circa 1750, but it was not applied on a large scale until the development of the
Eiffel Tower and the Ferris Wheel in the late 19th century. Following these successful demonstrations,
it quickly became a cornerstone of engineering and an enabler of the Second Industrial Revolution.
Later on, other beam theories appeared and were considered as improvements of the Euler-Bernoulli
theory, such as the Rayleigh beam theory [28] and the Timoshenko beam theory [31]. In [13–15],
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Elishakoff et al. gave a brief description of the beam model in the one-dimensional case for beam
vibrations. The classical Euler-Bernoulli differential equation for free vibration of uniform beams is
given by

EIφxxxx + ρAφtt = 0, (1.1)

where φ (x, t) is the beam deflection from its equilibrium position, E is the modulus of elasticity, I is
the moment of inertia of the cross section, ρ is the material density of the beam material, A is the cross-
sectional area, x is the axial coordinate, and t is the time. Later, Rayleigh [28] proposed a correction to
the Euler-Bernoulli equation (1.1), by taking into account the rotary movements of the beam elements
in addition to the translatory ones. From a mathematical modeling point of view for vibrating beams, it
is instructive to re-derive briefly this equation. The angle of rotation equals the slope of the deflection
curve φx, and the corresponding angular acceleration is given by φxtt. As a consequence, the moment of
inertia of the element about an axis through its center of mass equals ρIφxtt. By exploiting this moment
and taking into account d’Alembert’s principle for dynamic equilibrium [22], we obtain

V − Mx + ρIφxtt = 0, (1.2)

where V (x, t) is the shearing force, and M (x, t) is the bending moment. Replacing V from Eq (1.2) in
the case of dynamic equilibrium condition for forces in the φ-direction of the transverse vibration, we
have

Vx = −ρAφtt = (Mx − ρIφxtt)x .

Physically and from elastic theory, the bending moment M coincides with EIφxx, which leads to the
final governing equation obtained in the Rayleigh model for the uniform beam oscillations,

EIφxxxx + ρAφtt − ρIφxxtt = 0, (1.3)

which is known as the rotatory inertial equation.
Afterwards, Timoshenko [31] extended Eq (1.3) by incorporating the impact of the shear

deformation. In another term, he expressed the slope of the deflection curve in two parts,

φx = −ψ + β, (1.4)

with ψ as the rotation of the cross-sections with the neglect of the shear deformation and β as the angle
associated with the shear deformation at the neutral axis in the same cross-section. On the other hand,
according to the mechanics of solids we can write

M = EIψx, (1.5)
V = k1βAG = k1AG (φx + ψ) , (1.6)

where k1 is the shear coefficient, and G is the shear modulus. The state of dynamic equilibrium of
forces in the vertical direction is given by

ρAφtt − Vx = 0. (1.7)

Deriving with respect to t Eq (1.4) and substituting it in the dynamic equilibrium equation of
motion (1.2), we get

V − Mx + ρIψtt = 0. (1.8)
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The Timoshenko system was obtained by substituting, respectively, (1.6) and (1.5) into (1.7)
and (1.8), thus: {

−k1AG (φx + ψ)x + ρAφtt = 0,
k1AG (φx + ψ) − EIψxx + ρIψtt = 0,

where ρ1 = ρA represents the mass density, ρ2 = ρI is the moment mass inertia, b = EI is the
rigidity coefficient (of the cross-section), and k = k1AG is the shear modulus of elasticity. Then, the
Timoshenko system takes the following form:{

ρ1φtt − k (φx + ψ)x = 0,
ρ2ψtt − bψxx + k (φx + ψ) = 0.

It should be noted that the mentioned problem plays a crucial role in engineering applications, and
for more details on the valuable resources that have been realized regarding the Timoshenko system,
we refer the readers to [5–9,31].

For the physical and technical reasons mentioned in [13], Elishakoff proposed a combination of
Eq (1.2) which comes from d’Alembert’s principle with Eq (1.7) from the Timoshenko hypothesis,
resulting in the following coupled system:{

ρ1φtt − k (φx + ψ)x = 0,
−ρ2φttx − bψxx + k (φx + ψ) = 0.

Many investigations have been realized concerning the asymptotic behavior of the solution of
the Bresse-Timoshenko system. Among them, we cite the works [18, 19, 34], in which the authors
established different types of stability results such as exponential and general decay based on many
dissipation terms.

There are also other investigations concerning the delay which appear in many models of
mathematics that come from engineering biological science, economics, physiology and epidemiology.
Delay effects arise in many applications depending not only on the present state but also on some past
occurrences, and they have attracted a lot of attention from researchers in diverse fields of human
endeavors, such as mathematics, engineering, science and economics. The presence of delay may be
a source of instability of systems which are uniformly asymptotically stable in the absence of delay
unless additional control terms have been used (see [10, 11, 17, 25, 26, 33]). Also, the introducing
of this complementary may lead to ill-posedness, as shown in many works such as [11, 27] and the
references therein. On the other hand, the delay has an important role in the control of PDEs, and
this has appeared in a lot of studies (see [1–4, 17, 20, 21, 24–26, 33]). In addition to the well-known
discrete delays, there are several others. We are interested here in the neutral delay, where the delay
is occurring in the second (highest) derivative. For more details, see previous studies ([12–16,23,32])
and the references therein.

Among the investigations that have been realized concerning the asymptotic behavior with neutral
delay, we cite the work of Tatar [30] where he considered the wave equation with neutral delay, and
he showed that the solution decays in an exponential manner under some conditions on the kernel of
distributed neutral delay.
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In [29], Seghour et al. studied the following thermoelastic laminated system with neutral delay:
ρwtt +G (ψ − wx)x + Awt = 0, x ∈ (0, 1) , t > 0,
Iρ (3stt − ψtt) −G (ψ − wx) − (3s − ψ) + µθx = 0, x ∈ (0, 1) , t > 0,
3Iρ

(
st +

∫ t

0
h (t − r) st (r) dr

)
t
+ 3G (ψ − wx) + 4γs − 3sxx = 0, x ∈ (0, 1) , t > 0,

θt − κθxx + µ (3s − ψ)tx = 0, x ∈ (0, 1) , t > 0,

with boundary conditions{
ψ (0, t) = s (0, t) = θx (0, t) = wx (0, t) = 0, t ≥ 0,
θ (1, t) = w (1, t) = sx (1, t) = ψx (1, t) = 0, t ≥ 0,

and initial data {
(w, ψ, s, θ) (x, 0) = (w0, ψ0, s0, θ0) , x ∈ (0, 1) ,
(wt, ψt, st) (x, 0) = (w1, ψ1, s1) , x ∈ (0, 1) .

They showed that the dissipation given by the combination of heat effect and the frictional damping
stabilize exponentially the system in the case of equal speeds of wave propagation even if the delays,
in general, are of a destructive nature. In the case of non-equal wave speeds and with an additional
assumption on the kernel, they proved a polynomial stability.

Motivated by the previous works, in this paper we consider the following Bresse-Timoshenko
system subject to a neutral delay: ρ1

(
φt +

∫ t

0
h (t − s)φt (s) ds

)
t
= k (φx + ψ)x − µ1φt,

−ρ2φttx = bψxx − k (φx + ψ) ,
in (0, 1) × (0,+∞),
in (0, 1) × (0,+∞),

(1.9)

with the initial and boundary conditions
φ (x, 0) = φ0 (x) , φt (x, 0) = φ1 (x) ,
ψ (x, 0) = ψ0 (x) , ψt (x, 0) = ψ1 (x) ,
φ (0, t) = φ (1, t) = ψ (0, t) = ψ (1, t) = 0,

x ∈ (0, 1),
x ∈ (0, 1),
t ∈ (0,+∞).

(1.10)

First, we give an existence and uniqueness result of the solution using the Faedo-Galerkin method.
Then, based on the energy method and by constructing a suitable Lyapunov functional using the
multipliers method as well as under an appropriate assumptions on the kernel of the neutral delay term,
we prove that the system is exponentially stable in spite of the existence of the neutral delay irrespective
of any stability number. In the absence of neutral delay, there is a similarity with the previous works
like [18,19,34] concerning the estimation of the energy terms. In our case and compared to the work of
Seghour et al. in [29], we were able to dispense the thermal effect depending on the viscous damping
acting on vertical displacement of the beam to control the neutral delay term and to guarantee an
exponential stability of the solution irrespective of wave speeds or any other relationship between the
system parameters. In other words, the unique dissipation given only by the viscous damping is strong
enough to provoke an exponential stability and control the neutral delay. Finally, we present some
numerical results using MATLAB software to validate the theoretical result obtained by carrying out a
discretization using the classical finite difference method for the spatial and temporal discretization.

This paper is organized as follows: In Section 2, we introduce some assumptions needed in
the next sections to prove the main result, and we give a result concerning the well-posedness of
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problem (1.9)–(1.10). In Section 3, we prove the energy decay of the system. In Section 4, we use
the energy method to prove the exponential decay result. In Section 5, some numerical simulations are
presented.

2. Preliminaries

In this section we present our assumptions on both kernels and introduce the energy functional and
another functional.

We use the standard Lebesgue space L2 (0, 1) and the Sobolev space H1
0 (0, 1) with their usual scalar

products and norms. Also, in what follows we will use the following notations:

(h ◦ Ψ) (t) =
∫ t

0
h(t − s)

(∫ 1

0
(Ψ(t) − Ψ(s))2 dx

)
ds, t ≥ 0,

and

(h ∗ Ψ) (t) =
∫ 1

0

∫ t

0
h(t − s)Ψ(s)2dsdx, t ≥ 0.

To achieve our goal, we need to introduce the following hypothesis and assumptions:
(H1) The kernel h is a nonnegative continuously differentiable and summable function satisfying

−µh (t) ≤ h′ (t) ≤ 0, ∀t ≥ 0, where µ > 0, h̄ =
∫ ∞

0
h(s)ds < 1.

(H2) exp (ςt) h(t) ∈ L1 (R+) for some ς > 0.
Note that if

∫ +∞
0

eςsh(s)ds < ∞, and lim
t−→∞

exp (ςt) h(t) < ∞, then∫ +∞

0
eςs |h′(s)| ds = −

∫ +∞

0
eςsh′(s)ds = −eςsh(s) |∞0 +ς

∫ +∞

0
eςsh(s)ds < ∞.

To simplify the calculations, we are obligated to announce this lemma which is usable in the
following sections.

Lemma 1 ( [29]). For any function Ψ ∈ C1
(
[0,∞) ; L2 (0, 1)

)
and any h ∈ C1 ([0,∞)), we have the

following identity: ∫ 1

0
Ψ (t)

(∫ t

0
h (t − s)Ψt(s)ds

)
dx

= −
1
2

(
h′ ◦ Ψ

)
(t) +

1
2

d
dt

∫ 1

0

(∫ t

0
h (t − s)Ψ2(s)ds

)
dx

+
h (t)

2

∫ 1

0
Ψ2dx − h(t)

∫ 1

0
Ψ(0)Ψ (t) dx.

For completeness, we state without proof the following global existence and regularity result which
can be proved by using the standard Faedo-Galerkin method, for which we refer the reader to [24].

Theorem 1. Let (φ0, φ1) ∈ H1
0 (0, 1) × L2 (0, 1) and (ψ0, ψ1) ∈ H1

0 (0, 1) × L2 (0, 1) be given. Assume
that (H1)–(H2) are satisfied, and then the problem (1.9)–(1.10) has a unique global (weak) solution
satisfying

φ, ψ ∈ C
(
R+,H1

0 (0, 1)
)
∩C1

(
R+, L2 (0, 1)

)
.
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3. Energy decay

In this section, we use the energy method to study the asymptotic behavior of solutions of the
system (1.9)–(1.10). First, we state and prove the following lemma.

Lemma 2. Let (φ, ψ) be a solution of system (1.9)–(1.10). Then, the energy associated to the
system (1.9)–(1.10) is defined by

E (t) =
1
2

∫ 1

0

(
ρ1φ

2
t + k (φx + ψ)2 + ρ2φ

2
tx + bψ2

x +
ρ1ρ2

k
φ2

tt

)
dx

+ ρ1 (h ∗ φt) (t) +
ρ1ρ2

k
(h ∗ φtt) (t) , (3.1)

satisfying

d
dt

E (t) ≤
ρ1

2
(
h′ ◦ φt

)
(t) −

µ1ρ2

k

∫ 1

0
φ2

ttdx +
ρ1ρ2

k
(
h′ ◦ φtt

)
(t)

− µ1

∫ 1

0
φ2

t dx + ζh (t) , ζ > 0. (3.2)

Proof. Multiplying (1.9)1 and (1.9)2, respectively, by φt and ψt and integrating by parts, we get
ρ1

2
d
dt

∫ 1

0
φ2

t dx + ρ1

∫ 1

0
φt

(∫ t

0
h (t − s)φt (s) ds

)
t

dx

= −k
∫ 1

0
(φx + ψ)φtx dx − µ1

∫ 1

0
φ2

t dx,

ρ2

∫ 1

0
φttψxtdx +

b
2

d
dt

∫ 1

0
ψ2

xdx = −k
∫ 1

0
(φx + ψ)ψtdx.

(3.3)

Taking the derivative of (1.9)1 with respect to t, we obtain

ψtx =
ρ1

k
φttt − φtxx +

ρ1

k

(∫ t

0
h (t − s)φt (s) ds

)
tt
+
µ1

k
φtt,

noting that (∫ t

0
h (t − s)φt (s) ds

)
tt

=

(∫ t

0
h (t − s)φtt (s) ds + h (t)φt (0)

)
t

=

∫ t

0
h (t − s)φttt (s) ds + h (t)φtt (0) + h′ (t)φt (0) .

So,

ψtx =
ρ1

k
φttt − φtxx +

ρ1

k

∫ t

0
h (t − s)φttt (s) ds
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+
ρ1

k
h (t)φtt (0) +

ρ1

k
h′ (t)φt (0) +

µ1

k
φtt. (3.4)

Substituting (3.4) in (3.3)2, the system (3.3) becomes

ρ1

2
d
dt

∫ 1

0
φ2

t dx + ρ1

∫ 1

0
φt

(∫ t

0
h (t − s)φt (s) ds

)
t

dx

= −k
∫ 1

0
(φx + ψ)φtxdx − µ1

∫ 1

0
φ2

t dx,
ρ1ρ2

2k
d
dt

∫ 1

0
φ2

ttdx +
ρ2

2
d
dt

∫ 1

0
φ2

txdx +
ρ1ρ2

k

∫ 1

0
φtt

(∫ t

0
h (t − s)φttt (s) ds

)
dx

+
ρ1ρ2

k
h (t)

∫ 1

0
φttφtt (0) dx +

ρ1ρ2

k
h′ (t)

∫ 1

0
φttφt (0) dx +

b
2

d
dt

∫ 1

0
ψ2

xdx

= −
µ1ρ2

k

∫ 1

0
φ2

ttdx − k
∫ 1

0
(φx + ψ)ψtdx.

(3.5)

On the other hand, by applying Lemma 1, we have

ρ1

∫ 1

0

(∫ t

0
h (t − s)φt (s) ds

)
t
φt dx

= ρ1h (t)
∫ 1

0
φtφt (0) dx + ρ1

∫ 1

0
φt

(∫ t

0
h (t − s)φtt (s) ds

)
dx

= ρ1h (t)
∫ 1

0
φtφt (0) dx −

ρ1

2
(
h′ ◦ φt

)
(t) +

ρ1

2
d
dt

∫ 1

0

(∫ t

0
h (t − s)φ2

t (s) ds
)

dx

+
ρ1

2
h (t)

∫ 1

0
φ2

t dx − ρ1h (t)
∫ 1

0
φtφt (0) dx,

and

ρ1ρ2

k

∫ 1

0
φtt

(∫ t

0
h (t − s)φttt (s) ds

)
dx

=
ρ1ρ2

2k
d
dt

∫ 1

0

(∫ t

0
h (t − s)φ2

tt (s) ds
)

dx −
ρ1ρ2

k
h (t)

∫ 1

0
φttφtt (0) dx

+
ρ1ρ2

k
h (t)

∫ 1

0
φ2

ttdx −
ρ1ρ2

k
(
h′ ◦ φtt

)
(t) .

Therefore, the system (3.5) is equivalent to

d
2dt

∫ 1

0

(
ρ1φ

2
t + k (φx + ψ)2 + ρ2φ

2
tx + bψ2

x +
ρ1ρ2

k
φ2

tt

+ρ1

∫ t

0
h (t − s)φ2

t (s) ds +
ρ1ρ2

k

∫ t

0
h (t − s)φ2

tt (s) ds
)

dx

=
ρ1

2
(
h′ ◦ φt

)
(t) −

ρ1ρ2

k

(
1 +

h (t)
2

) ∫ 1

0
φ2

ttdx +
ρ1ρ2

k
(
h′ ◦ φtt

)
(t)

−

(
ρ1

2
h (t) + µ1

) ∫ 1

0
φ2

t dx −
ρ1ρ2

k
h (t)

∫ 1

0
φttφt (0) dx.
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By using Young’s inequality and the hypothesis (H1), we obtain

−
ρ1ρ2

2
h′ (t)

∫ 1

0
φttφt (0) dx =

ρ1ρ2

2
µh (t)

∫ 1

0

1
√

k
φtt

√
kφt (0) dx

≤
ρ1ρ2

2k
µh (t) δ1

∫ 1

0
φ2

ttdx +
ρ1ρ2

2δ1
µh (t) k

∫ 1

0
φ2

t (0) dx,

and taking δ1 =
1

2µ

−
ρ1ρ2

2
h′ (t)

∫ 1

0
φttφt (0) dx

≤
ρ1ρ2

4k
h (t)

∫ 1

0
φ2

ttdx +
ρ1ρ2

4
µ2h (t) k

∫ 1

0
φ2

t (0) dx.

Then,

d
dt

E (t) ≤
ρ1

2
(
h′ ◦ φt

)
(t) −

ρ1ρ2

k

∫ 1

0
φ2

ttdx +
ρ1ρ2

k
(
h′ ◦ φtt

)
(t)

−µ1

∫ 1

0
φ2

t dx + ζh (t) ,

where ζ =
ρ1ρ2

4
µ2k

∫ 1

0
φ2

t (0) dx. □

4. Exponential stability of solution

In this section, we establish an exponential decay result of solutions for the considered problem.
For that, we need the following lemmas to achieve our goal.

Lemma 3. Let (φ, ψ) be the solution of (1.9)–(1.10). Then, the functional

F1 (t) = −ρ1

∫ 1

0
φt

(
φt +

∫ t

0
h (t − s)φt (s) ds

)
dx − k

∫ 1

0
φtxφxdx −

µ1

2

∫ 1

0
φ2

t dx,

satisfies the estimate

F′1 (t) ≤ − k
∫ 1

0
φ2

txdx +
((

3 +
h (t)

2

)
ρ1 +

k2

4ε1

) ∫ 1

0
φ2

ttdx + ε1

∫ 1

0
ψ2

xdx

+
ρ1

2
(3 + h (t))

∫ 1

0
φ2

t dx + ρ1h (t)
∫ 1

0
φ2

t (0) dx +
ρ1h
2

(h ∗ φt) (t) + ρ1h (h ∗ φtt) (t) .

Proof. By differentiating F1 (t) with respect to t, using the first equation of (1.9) and integrating by
parts, we obtain

F′1 (t) = −2ρ1

∫ 1

0
φttφtdx + ρ1

∫ 1

0
φ2

ttdx − k
∫ 1

0
φttψxdx − k

∫ 1

0
φ2

txdx
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−ρ1

∫ 1

0
φtt

∫ t

0
h (t − s)φt (s) dsdx − ρ1

∫ 1

0
φt

∫ t

0
h (t − s)φtt (s) dsdx

+ρ1

∫ 1

0
φtt

∫ t

0
h (t − s)φtt (s) dsdx

−ρ1h (t)
∫ 1

0
φtφt (0) dx + ρ1h (t)

∫ 1

0
φt (0)φttdx. (4.1)

By using Young’s inequality, we obtain

−2ρ1

∫ 1

0
φttφtdx ≤ ρ1

∫ 1

0
φ2

ttdx + ρ1

∫ 1

0
φ2

t dx, (4.2)

−ρ1h (t)
∫ 1

0
φtφt (0) dx ≤

ρ1

2
h (t)

∫ 1

0
φ2

t dx +
ρ1

2
h (t)

∫ 1

0
φ2

t (0) dx, (4.3)

ρ1h (t)
∫ 1

0
φt (0)φttdx ≤

ρ1

2
h (t)

∫ 1

0
φ2

ttdx +
ρ1

2
h (t)

∫ 1

0
φ2

t (0) dx, (4.4)

−k
∫ 1

0
φttψxdx ≤ ε1

∫ 1

0
ψ2

xdx +
k2

4ε1

∫ 1

0
φ2

ttdx. (4.5)

By using Young’s and Cauchy Schwarz inequalities, we obtain

−ρ1

∫ 1

0
φtt

∫ t

0
h (t − s)φt (s) dsdx ≤

ρ1

2

∫ 1

0
φ2

ttdx +
ρ1h
2

(h ∗ φt) (t) , (4.6a)

−ρ1

∫ 1

0
φt

∫ t

0
h (t − s)φtt (s) dsdx ≤

ρ1

2

∫ 1

0
φ2

t dx +
ρ1h
2

(h ∗ φtt) (t) , (4.7)

ρ1

∫ 1

0
φtt

∫ t

0
h (t − s)φtt (s) dsdx ≤

ρ1

2

∫ 1

0
φ2

ttdx +
ρ1h
2

(h ∗ φtt) (t) . (4.8)

Inserting (4.2)–(4.8) in (4.1), we obtain (4.1). □

Lemma 4. Let (φ, ψ) be the solution of (1.9)–(1.10). Then, the functional

F2 (t) := −ρ2

∫ 1

0
φtxψdx + ρ1

∫ 1

0
φ

(
φt +

∫ t

0
h (t − s)φt (s) ds

)
dx, (4.9)

satisfies the estimate

F′2 (t) ≤ −b
∫ 1

0
ψ2

xdx − k
∫ 1

0
(φx + ψ)2 dx + ρ2

∫ 1

0
φ2

txdx

+
3ρ1

2

∫ 1

0
φ2

t dx +
ρ1h
2

(h ∗ φtt) (t) . (4.10)
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Proof. By differentiating F2 (t) with respect to t, exploiting (1.9), integrating by parts and using the
Timoshenko hypothesis (1.4), we obtain

F′2 (t) = −b
∫ 1

0
ψ2

xdx + ρ2

∫ 1

0
φ2

txdx − k
∫ 1

0
(φx + ψ)2 dx

+ρ1

∫ 1

0
φ2

t dx + ρ1

∫ 1

0
φt

∫ t

0
h (t − s)φt (s) dsdx.

By using Young’s and Cauchy Schwarz inequalities, we have (4.10). □

Lemma 5. Let (φ, ψ) be the solution of (1.9)–(1.10). Then, the functional

F3(t) := e−ζt
∫ 1

0

∫ t

0
eζsH̃1 (t − s)φ2

t (s) dsdx, (4.11)

satisfies the following estimate:

F′3(t) = −ζF3(t) + H̃1 (0)
∫ 1

0
φ2

t dx − (h ∗ φt) (t) , (4.12)

where H̃1 (t) =
∫ ∞

t
h (s) eζsds.

Proof. By differentiating F3 (t) with respect to t,

F′3(t) = −ζe−ζt
∫ 1

0

∫ t

0
eζsH̃1 (t − s)φ2

t (s) dsdx

+ e−ζt
∫ 1

0

(∫ t

0
eζsH̃1 (t − s)φ2

t (s) ds
)

t
dx

= −ζF3(t) + e−ζt
∫ 1

0

(
eζtH̃1 (0)φ2

t −

∫ t

0
eζth (t − s)φ2

t (s) ds
)

dx

= −ζF3(t) + H̃1 (0)
∫ 1

0
φ2

t dx − (h ∗ φt) (t) ,

which gives (4.12). □

Lemma 6. Let (φ, ψ) be the solution of (1.9)–(1.10). Then, the functional

F4(t) := e−ζt
∫ 1

0

∫ t

0
eζsH̃1 (t − s)φ2

tt (s) dsdx (4.13)

satisfies the estimate

F′4 (t) ≤ −ζF4(t) + H̃1 (0)
∫ 1

0
φ2

ttdx − (h ∗ φtt) (t) . (4.14)

Proof. By differentiating F4 (t) with respect to t, as in the case of F3 (t), we obtain the desired result. □
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Next, we define a Lyapunov function L (t) by

L (t) := NE (t) + N1F1 (t) + N2F2 (t) + N3 (F3 (t) + F4 (t)) , (4.15)

where N, N1, N2 and N3 are positive constants that will be chosen appropriately later.

Lemma 7. Let (φ, ψ) be the solution of (1.9)–(1.10). Then, there exist two positive constants κ1 and κ2

such that the Lyapunov functional (4.15) satisfies

κ1 (E (t) + F3 (t) + F4 (t)) ≤ L(t) ≤ κ2 (E (t) + F3 (t) + F4 (t)) , ∀t ≥ 0, (4.16)

and
L′(t) ≤ −β1 (E(t) + F3 (t) + F4 (t)) +C2h(t), β1 > 0. (4.17)

Proof. From (4.15), we have

|L (t) − NE (t) − N3 (F3 (t) + F4 (t))|

= N1 |F1 (t)| + N2 |F2 (t)| + N3 |F3 (t) + F4 (t)|

≤ ρ1N1

∫ 1

0

∣∣∣∣∣∣φt

(
φt +

∫ t

0
h (t − s)φt (s) ds

)∣∣∣∣∣∣ dx + kN1

∫ 1

0
|φtxφx| dx

+
µ1

2
N1

∫ 1

0
φ2

t dx + ρ2N2

∫ 1

0
|φtxψ| dx + ρ1N2

∫ 1

0

∣∣∣∣∣∣φ
(
φt +

∫ t

0
h (t − s)φt (s) ds

)∣∣∣∣∣∣ dx.

By Young’s, Cauchy Schwarz and Poincaré’s inequalities and with some transformations, we obtain

|L (t) − NE (t) − N3 (F3 (t) + F4 (t))| ≤ λ1E(t).

Therefore,

(N − λ1) E (t) + N3 (F3 (t) + F4 (t)) ≤ L(t) ≤ (N + λ1) E (t) + N3 (F3 (t) + F4 (t)) .

By choosing N (depending on N1, N2, N3) sufficiently large, we obtain (4.16) with

κ1 = min {N − λ1,N3} ,

κ2 = max {N + λ1,N3} .

Now, by differentiating L (t), recalling (3.2), (4.1), (4.10), (4.12) and (4.14), and setting ε1 =
1

N1
, we

arrive at

L′ (t) ≤ −
[
Nµ1 − N1

ρ1

2
(3 + h (t)) −

3ρ1

4
N2 − N3H̃1 (0)

] ∫ 1

0
φ2

t dx

−N3H̃1 (0)
∫ 1

0
ψ2

t dx − kN2

∫ 1

0
(φx + ψ)2 dx − (kN1 − N2ρ2)

∫ 1

0
φ2

txdx

−

[
ρ1ρ2

k
N − N2

1
k2

4
− N3H̃1 (0)

] ∫ 1

0
φ2

ttdx
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− (N2b − 1)
∫ 1

0
ψ2

xdx −
N3 −

ρ1h
2

N1

 (h ∗ φtt) (t)

−

N3 −
ρ1h
2

N1 −
ρ1h
2

N2

 (h ∗ φt) (t) +
(
ρ1

2
N
) (

h′ ◦ φt
)

(t)

+

(
ρ1ρ2

k
N
) (

h′ ◦ φtt
)

(t) − N3ζ (F3 (t) + F4 (t)) . (4.18)

At this point, we need to choose our constants very carefully. First, we choose N2 large enough such
that

N2b − 1 > 0.

Once N2 is fixed, we take N1 large enough so that

kN1 − N2ρ2 > 0.

After that, we pick N3 large enough such that
N3 −

ρ1h
2

N1 −
ρ1h
2

N2 > 0,

and

N3 −
ρ1h
2

N1 > 0.

Finally, we select N large enough so that
Nµ1 − N1

ρ1

2
(3 + h (t)) −

3ρ1

4
N2 − N3H̃1 (0) > 0,

and
ρ1ρ2

k
N − N2

1
k2

4
− N3H̃1 (0) > 0.

With all these choices, we obtain (4.17). □

We are now ready to state and prove the following exponential stability result.

Lemma 8. Let (φ, ψ) be a solution of (1.9)–(1.10), and assume that (H1)–(H2) hold. Then, there exist
two positive constants τ1 and τ2 such that

E (t) ≤ τ2e−τ1t, ∀t ≥ 0. (4.19)

Proof. By using (4.17) and the right side of (4.16), we get

L′(t) ≤ −C1L(t) +C2h(t), (4.20)

where C1 =
β1

κ2
> 0.

Multiplying (4.20) by exp (C1t), we obtain

d
dt

(
L(t) exp (C1t)

)
≤ C2 exp (C1t) h(t). (4.21)
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Integrating over (0,T ) the inequation (4.21) and choosing C1 smaller than ς, we have

L(T ) exp (C1T ) ≤ L(0) +C2

∫ T

0
exp (ςt) h(t)dt

≤ L(0) +C2

∫ ∞

0
exp (ςt) h(t)dt.

Thanks to the hypothesis (H2), we can write

L(T ) ≤ C3 exp (−C1T ) , C3 > 0,

which yields the serial result (4.19), using the fact that F3 (t) , F4 (t) are positive and the other side of
the equivalence relation (4.16) again. The proof is complete. □

5. Numerical approximation

In this section, we will solve numerically the system (1.9)–(1.10) in the one-dimension domain.
For that, we use the classic finite difference method for the spatial and temporal discretization.
Furthermore, in order to verify the asymptotic behavior of the solution of the discretized problem,
we give an example in which the numerical experiment shows that the discrete energy En decays
exponentially for different choices of the system parameters. Let us introduce the functions φ̂ = φt,

and for any M,N ∈ N, we introduce the nets

ΩN =

{
xi = i∆x, i = 0, ...,N + 1 where ∆x =

1
N + 1

}
,

ΓM =

{
tn = n∆t, n = 0, ...,M + 1 where ∆t =

T
M + 1

}
.

Our problem is to find (φ̂, ψ) satisfying the following numerical scheme:

ρ1

∆t

(
φ̂n

i − φ̂
n−1
i

)
=

k
(∆x)2

(
φn

i+1 − 2φn
i + φ

n
i−1

)
+

k
2∆x

(
ψn

i+1 − ψ
n
i−1

)
− µ1φ̂

n
i

−
ρ1

(∆t)2

∫ tn
0

h (tn − s)
(
φ̂n′

i − φ̂
n′−1
i

)
ds + h (tn)φ1 (xi) ,

−ρ2

2∆x∆t

(
φ̂n

i+1 − φ̂
n
i−1

)
=
−ρ2

2∆x∆t

(
φ̂n−1

i+1 − φ̂
n−1
i−1

)
+

b
(∆x)2

(
ψn

i+1 − 2ψn
i + ψ

n
i−1

)
−

k
2∆x

(
φn

i+1 − φ
n
i−1

)
− kψn

i ,

(5.1)

where sn′ = n′∆sn′ , n′ = 0, ...,M′+1 with ∆sn′ =
tn

M′ + 1
, φn

i = φ (xi, tn) , φ̂n
i = φt (xi, tn) , ψn

i = ψ (xi, tn) ,

ψ̂n
i = ψt (xi, tn) , for all i = 1, ...,N and n = 1, ...,M. To simplify our numerical calculations in our

scheme, we consider the discrete boundary conditions given by{
ψn

0 = ψ
n
N+1 = φ

n
N+1 = φ

n
0 = 0, (5.2)

and initial conditions

ψ0
i = ψ0 (xi) , ψ̂0

i = ψ1 (xi) , φ0
i = φ0 (xi) , φ̂0

i = φ1 (xi) , (5.3)
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where
φn

i = φ
n−1
i + ∆tφ̂n

i , ψ
n
i = ψ

n−1
i + ∆tψ̂n

i ,

for all i = 1, ...,N and n = 1, ...,M.
Note that to find (φ̂, ψ), we need to solve two coupled systems of algebraic equations. So, to solve

the problem (5.1)–(5.3) at each time step, we propose to consider the following fixed-point algorithm
that is stopped when the difference between two successive iterations becomes smaller than a given
tolerance ε. 

φ̂n,l
i =

k
c1 (∆x)2

(
φn,l−1

i+1 − 2φn,l−1
i + φn,l−1

i−1

)
+

k
c12∆x

(
ψn,l−1

i+1 − ψ
n,l−1
i−1

)
+
ρ1

c1∆t
φ̂n−1

i −
ρ1

(∆t)2

∫ tn
0

h (tn − s)
(
φ̂n′,l−1

i − φ̂n′−1,l−1
i

)
ds + h (tn)φ1 (xi) ,

b
(∆x)2ψ

n,l
i+1 −

(
2

b
(∆x)2 + k

)
ψn,l

i +
b

(∆x)2ψ
n,l
i−1 =

−ρ2

2∆x∆t

(
φ̂n,l

i+1 − φ̂
n,l
i−1

)
+

ρ2

2∆x∆t

(
φ̂n−1,l

i+1 − φ̂
n−1,l
i−1

)
+

k
2∆x

(
φn,l

i+1 − φ
n,l
i−1

)
,

(5.4)

with {
φn,0

i = φ
n−1
i , ψn,0

i = ψ
n−1
i , φn,l

i = φ
n−1
i + ∆tφ̂n,l

i ,

ψn,l
i = ψ

n−1
i + ∆tψ̂n,l

i ,

for all i = 1, ...,N and n = 1, ...,M and l = 1, 2...
To approximate the continuous energy (3.1), we use the trapezoidal quadrature formula to compute

the integral I =
∫ 1

0
f (x)dx:

IN =

N∑
i=1

ai f (xi) ≈ I,

where the weights {ai}
N
i=1 are given by a1 = aN =

K
2

, for i = 2, 3, ...,N − 1, ai = K with K =
1
N
.

The same quadrature formula is used to evaluate the integral with respect to s at each time step tn.

Therefore, the discrete energy formula is given by

E(tn) ≈ Jn =
1
2

N∑
i=1

ai[ρ1
(
φ̂n

i
)2
+ k

(
(φx)n

i + ψ
n
i
)2
+
ρ2ρ1

k
(
(φ̂t)n

i
)2 (5.5)

+ ρ2
(
(φtx)n

i
)2
+ b

(
(ψx)n

i
)2] + ρ1(hn ∗ φ̂

n
i )

+
ρ2ρ1

k
(hn ∗ (φ̂t)n

i ),

with

φ̂n
i = φt (xi, tn) , (φ̂t)n

i =
1
∆t

(
φ̂n+1

i − φ̂n
i

)
,

(φ̂t)n
i =

1
∆t

(
φ̂n+1

i − φ̂n
i

)
,

(φx)n
i =

φn
i+1 − φ

n
i−1

2∆x
, (ψx)n

i =
ψn

i+1 − ψ
n
i−1

2∆x
and (φtx)n

i =
φ̂n

i+1 − φ̂
n
i−1

2∆x
.

Next, we describe the following numerical example:
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Example 1. For this numerical test, we choose the following different values for the coefficients of the
system:

ρ1 = 1.1, ρ2 = 10, k = 0.01, µ1 = 10, b = 1.5.

We run our code for the following discretization parameters: N = 100, M = 200, T = 1. We take
ε = 10−5. Also, we choose the following initial conditions:

φ0 (x) =
17
20

x2e−2x, φ1 (x) =
1
4

(
x3 −

2
3

x2
)
, h(t) = exp(−4t),

ψ0 (x) = x3 (1 − x)2 , φ2 (x) = x3 −
2
3

x2.

Here are the evolution in time of the solutions φ and ψ, the discrete energy and the evolution with
respect to x of φ throughout time.
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−0.04
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P
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Figure 1. Evolution in time of the
function φ.
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Figure 2. Evolution in time of the
function ψ.
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Figure 3. Evolution in time of the
discrete energy.
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Figure 4. Evolution in x of the function
φ throughout time.
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In the above numerical example, the graphics presented in Figures 1 and 2 show the evolution in
time of the approximation solutions φ and ψ on the interval [0,T ], for different choices of the system
parameters and of the initial data. Furthermore, Figures 3 and 4 show that the approximate energy (5.5)
decays in an exponential manner, which confirms the main theoretical result obtained and the evolution
of φ with respect to x throughout time.

6. Conclusions

In this work we investigated the sufficient conditions on the kernel of the neutral delay term to assure
the exponential stability of solutions of the Bresse-Timoshenko system subject to this complementary
control based on the multipliers technique to construct a suitable Lyapunov functional that allows us
to estimate the energy of the considered system. As a future work, we propose to consider the same
problem without dissipation due to the frictional damping, and we will search for additional conditions
on the kernel of neutral delay term from which the energy can be decreased in an exponential manner.
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