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Abstract: Control charts are widely used to efficiently detect small to moderate shifts and they include 

exponentially moving average control charts, named memory type control charts. Today, memory type 

control charts are a significant tool to assure quality standards and monitor manufacturing goods. The 

proposed study suggests a novel Bayesian exponentially weighted moving average (EWMA) control 

chart design utilizing various pair ranked set sampling schemes for posterior and posterior predictive 

distributions given an informative prior. The proposed chart strategy is evaluated in terms of the small 

run length characteristic by using Monte Carlo simulation methods. The comparative analysis is also 

carried out by using a Bayesian EWMA control chart to apply simple random sampling for the 

respective average and standard deviation of the run length values in the both control chart designs. 

The results revealed efficient and rapid detection of shifts in process means which proves the success 

and superiority of the suggested design. A real-life data sets is used to elaborate the efficient application 

of the suggested Bay-EWMA-PRSS control chart design. The overall research findings support the 

theoretical and simulation results, which are provided in the form of extensive tables. 
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1. Introduction 

To overcome the problems in the production process in industries, statistical process control (SPC) 

tools are used because they have the ability to diagnose the system of the production process. The 

quality control charts are important tools of the SPC to monitor the infrequent variations in the 

production process and to detect nonconforming/ defective items. The main purpose of SPC is to 

enhance the quality of finished products by detecting and addressing unusual variations that can impact 

process stability. SPC is designed to continuously monitor processes and identify areas for 

improvement (Montgomery [1]). The concept of control charts was first introduced by Walter A. 

Shewhart [2]. Shewhart's control charts are often referred to as memoryless type control charts, as they 

rely solely on current sample information to analyze process performance. The memoryless type control 

charts are easily implemented and interpreted although they are very sensitive to a large shift in the 

production process. Page [3] and Roberts [4] suggested the techniques of memory type control charts 

which are useful for detecting the small/ moderate shift in the production process. The memory type 

control charts not only use the current sample information but also the past sample information is known 

as a cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts, 

respectively. Several authors have studied the use of CUSUM and EWMA control charts to monitor 

production processes, including Sweet [5], Lu and Reynolds [6], Maravelakis and Castagliola [7], 

Huwang et al. [8], H. Altoum et al. [9], Noor-ul-Amin et al. [10] and Makhlouf et al. [11]. Estimation 

and hypothesis testing are the two main branches of statistical inference. The procedure which is 

performed to estimate the unknown population parameter is known as an estimation. The estimation 

of the unknown parameter is done via two approaches i.e. classical approach and the Bayesian 

approach. The classical method of estimation relies solely on available sample information and does 

not consider any prior knowledge of population parameters. In contrast, the Bayesian approach to 

estimation uses both sample and prior information to derive Bayes estimators. Menzefricke [12] 

suggested a Bayesian control chart for unknown location parameters and also studied a control chart 

for dispersion. Menzefricke [13] has investigated the combined performance of the process mean and 

variance in the Bayesian EWMA control chart, which is based on the normal distribution assumption 

for the population variance. In Bayesian analysis, the loss function (LF) plays a significant role in 

reducing risk related to the Bayes estimator. The best Bayes estimator utilizes the LF to get maximum 

precision. Tsui and Woodall [14] proposed a multivariate control chart with different LFs. Wu and 

Tian [15] proposed the use of the CUSUM control chart, which employs a weighted LF to detect 

shifts in both the mean and variance of the production process. Elghribi et al. [16] studied the 

homogenous function using new characterization and their application to improve the detection 

power. Riaz et al. [17] proposed a Bayesian EWMA control chart that incorporates informative and 

non-informative priors to obtain posterior and posterior predictive distributions. The authors used three 

different functions in their study. A Bayesian hybrid EWMA control chart for posterior and posterior 

predictive distributions given informative and non-informative prior using different LF was studied by 

Noor et al. [18]. To assess the performance of a control chart, the average run length (ARL) and 

standard deviation of run length (SDRL) are commonly used. In their study, Noor et al. [19] proposed 

a Bayesian adaptive EWMA (AEWMA) control chart that employs various LFs to monitor changes in 

the process mean. 

The above-mentioned works were completed for classical and Bayesian approaches using simple 

random sampling schemes for monitoring the process mean. Paired ranked set sampling (PRSS) is a 
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sampling method commonly used in quality control to reduce the cost of data collection while 

improving the accuracy and efficiency of the control chart. By selecting paired samples, PRSS can 

improve the precision of the estimate compared to simple random sampling. Additionally, PRSS is 

useful for monitoring quality control processes because it can help capture changes in the underlying 

population distribution over time. Furthermore, the combination of PRSS with a Bayesian approach 

and an EWMA control chart can improve the performance of the control chart. This approach takes 

advantage of the efficient sampling method of PRSS and the flexibility of Bayesian updating to adjust 

the control limits based on the available data. By combining PRSS with the Bayesian approach in the 

EWMA control chart, it is possible to achieve significant advantages in scenarios where data collection 

costs are high or the sample size is limited. This approach allows for more precise control limits, which 

can improve the ability of the control chart to detect small shifts or changes in the process mean. In 

this regard, we suggest a Bayesian EWMA control chart that utilizes three different PRSS schemes: 

PRSS, extreme PRSS (EPRSS), and quartile PRSS (QPRSS). The control chart introduced in the study 

is constructed using informative priors and relies on two distinct LFs using posterior and posterior 

predictive distributions. To evaluate the efficacy of the proposed Bayesian EWMA control chart, the 

study measured its ARL and SDRL. The results of the study indicate that the proposed Bayesian 

EWMA control chart is effective in detecting small shifts or changes in the process mean. Additionally, 

the use of informative priors and different PRSS schemes can further enhance the performance of the 

control chart. The rest of paper is structured as follows: In Section 2, the Bayesian theory is introduced, 

including basic terminologies under different LFs. Section 3 discusses the PRSS, EPRSS, and QPRSS, 

while Section 4 presents the proposed Bayesian EWMA control chart. Section 5 includes an extensive 

simulation study, and Section 6 presents the results, discussions, and main findings. Real-life 

applications of the proposed control chart are presented in Section 7. Finally, Section 8 provides the 

conclusion and recommendations. 

2. Bayesian inference 

This section presents an overview of Bayesian terminologies, specifically the concept of posterior 

distributions and different types of prior distributions such as informative and non-informative priors, 

which are used in conjunction with various LF. This article considers the study variable X, which 

follows a normal distribution with a mean of θ and variance of 𝛿2 . So, the details of the basic 

terminologies are as follows: 

2.1. Posterior and prior distribution 

Bayesian analysis combines sample information with prior information to obtain a posterior 

distribution. The choice of prior information for the study parameters is of central importance. If the 

prior information for the unknown population parameter is available, it is referred to as an informative 

prior. When the posterior density resembles the informative prior density, the prior is known as a 

conjugate prior. 

In the present study, the conjugate prior (normal prior) with parameter 𝜃 considers the hyper-

parameters 𝜃0 and 𝛿0
2 as  



20327 

AIMS Mathematics Volume 8, Issue 9, 20324–20350. 

𝑝(𝜃) =
1

√2𝜋𝛿0
2

𝑒𝑥𝑝 {−
1

2𝛿0
2 (𝜃 − 𝜃0)2}       (1) 

When prior information is not available, a non-informative prior is used, which has minimal 

influence on the inference. Bayes-Laplace proposed that when there is no prior knowledge about the 

parameter θ, a prior distribution proportional to a uniform distribution can be considered. In this case, 

all possible values of the parameter are assigned equal weightage. The expression for the uniform prior 

for the parameter θ in the case of a normal distribution with an unknown mean θ and a known variance 

𝜎2 is given below: 

𝑝(𝜃) ∝ √
𝑛

𝛿2 = 𝑐√
𝑛

𝛿2         (2) 

Here, 𝑐 is the constant of proportionality and 𝑛 represent the sample size. 

While the uniform prior distribution is commonly used in Bayesian analysis, it has been noted 

that this approach does not always satisfy the invariance property. In other words, different 

parameterization methods can lead to different posteriors and therefore different conclusions. To 

address this issue, Jeffreys [20] proposed a prior distribution proportional to Fisher's information, 

which ensures that prior probabilities are invariant across all possible parameterizations. This approach 

also results in the same posteriors regardless of the way the model is represented. The 𝑝(𝜃) is defined 

as: 𝑝(𝜃) ∝ √𝐼(𝜃) , where 𝐼(𝜃) = −𝐸 (
𝜕2

𝜕𝜃2 𝑙𝑜𝑔 𝑓 (𝑋/𝜃))  known as Fisher’s information, which 

measures the amount of information that a sample provides about an unknown parameter, and the 

likelihood function captures this information. To fully characterize the parameter, the prior knowledge 

and sample information are combined using Bayes' theorem to obtain the posterior distribution. The 

posterior distribution, denoted as ( )|p x  , represents the updated probability distribution of an 

unknown parameter θ, given observed data X and any prior knowledge about θ. It is expressed 

mathematically as: 

( )
( ) ( )

( ) ( )

|
|

|

p x p
p x

p x p d

 


  
=


         (3) 

The posterior predictive distribution is computed by applying the posterior distribution as the 

prior distribution. The posterior predictive distribution for a new data point Y is mathematized as: 

( ) ( ) ( )| | |p y x p y p x d  =         (4) 

2.2. Loss function 

The LF is important to minimize the risk encountered by the estimator when applying Bayesian 

analysis to estimate the parameter. In the presented study, both symmetric and asymmetric LF values 

are considered as both play their significant roles in minimizing the risk influencing the estimation. A 

commonly used LF is the symmetric LF, which yields the same Bayes estimator as the posterior. On 

the other hand, asymmetric LF lead to different Bayes estimator results, which are treated as the 

posterior distribution. The Squared Error LF (SELF) is a type of symmetric LF suggested by Gauss [21]. 
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2.2.1. Square error loss function 

Gauss [21] proposed a symmetric LF known as the SELF. Suppose that θ is the unknown 

population parameter for the variable X under study, and 𝜃
^

 is an estimator that minimizes the expected 

LF. Then, the SELF is mathematized as: 

𝐿 (𝜃, 𝜃
^

) = (𝜃 − 𝜃
^

)
2

         (5) 

and the Bayesian estimator under SELF becomes: 

𝜃
^

= 𝐸𝜃/𝑥(𝜃).          (6) 

2.2.2. LINEX loss function 

The LINEX LF (LLF) is an asymmetric LF, introduced by Varian [22]. The LLF is defined as: 

𝐿 (𝜃, 𝜃
^

) = (𝑒
𝑐(𝜃−𝜃

^
)

− 𝑐 (𝜃 − 𝜃
^

) − 1)      (7) 

where the estimator 𝜃
^

 is used to estimate the unknown population parameter 𝜃, defined as  

𝜃
^

= −
1

𝑐
𝐼𝑛𝐸𝜃/𝑥(𝑒−𝑐𝜃).          (8) 

3. Paired ranked set sampling 

An efficient sampling scheme for estimating the population means named a PRSS scheme 

proposed by Muttlak [23]. In this sampling scheme, two units are selected from each set instead of a 

single sampling unit. The procedure to select sampling units under PRSS is as follows: 

• For the even set size𝑙, the (
𝑙2

2
) sampling units are selected from the population. 

• The selected sampling units are allocated at random in (
𝑙

2
) sets with the same sample size 𝑙. 

Every set size 𝑙 is an array in increasing order based on auxiliary information or some sort of 

expert knowledge. 

• After ranking each set the first and 𝑙𝑡ℎ units are selected from the first set, the second and 

(𝑙 − 1)𝑡ℎ unit are selected from the second set and the procedure remains to continue until the 

last set (
𝑙

2
) 𝑡ℎ and ((

𝑙

2
) + 1) 𝑡ℎ sampling units are selected.  

• In the case of an odd set size 𝑙 , the (
𝑙(𝑙+1)

2
)  sampling units are selected. These units are 

allocated randomly in (
(𝑙+1)

2
) sets, each with the same size 𝑙. 

• After arranging all values as some ordered sets, the first and 𝑙th sampling units are selected to 

from the first, 2nd and (𝑙 − 1)th units are selected to form the 2nd set, and the sampling continue 

until the (
(𝑙+1)

2
) 𝑡ℎ unit is selected from the (

(𝑙+1)

2
) 𝑡ℎ set.  
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If needed, the two aforementioned steps are repeated r times to achieve the desired sample size. 

The PRSS procedure can be exemplified as follows: consider a set of observations labeled as i, j= 1, 2, 

3, ..., l, and c sets of samples identified as 1, 2, 3, ..., c. Let the jth order statistic in the ith sample set 

with cycle r be denoted ( )i iZ . 

If 𝑙 is even, the mean and variance under PRSS are as follow:  

𝑍(𝑃𝑅𝑆𝑆)𝑒 =
1

𝑙
[∑ 𝑍𝑖(𝑖)

𝑙

2

𝑖=1
+ ∑ 𝑍𝑖(𝑙+1−𝑖)

𝑙

2

𝑖=1
]     (9) 

and 

𝑣𝑎𝑟(𝑍(𝑃𝑅𝑆𝑆)𝑒) = 𝑣𝑎𝑟(𝑍(𝑅𝑆𝑆)) +
2

𝑙2
∑ ∑ 𝑐𝑜𝑣(𝑍(𝑖), 𝑍(𝑙+1−𝑖))

𝑙

2

𝑖<𝑙+1−𝑖

𝑙

2

𝑖=1
.  (10) 

If 𝑙 is odd then 

𝑍(𝑃𝑅𝑆𝑆)𝑜 =
1

𝑙
[∑ 𝑍𝑖(𝑖)

(𝑙+1)

2

𝑖=1
+ ∑ 𝑍𝑖(𝑙+1−𝑖)

(𝑙−1)

2

𝑖=1
]     (11) 

and 

𝑣𝑎𝑟(𝑍(𝑃𝑅𝑆𝑆)𝑜) = 𝑣𝑎𝑟(𝑍(𝑅𝑆𝑆)) +
2

𝑙2
∑ ∑ 𝑐𝑜𝑣(𝑍(𝑖), 𝑍(𝑙+1−𝑖))

(𝑙−1)

2

𝑖<𝑙+1−𝑖

(𝑙−1)

2

𝑖=1
.  (12) 

3.1. Extreme pair ranked set sampling 

Balci et al. [24] suggested another modified PRSS scheme called  

EPRSS, to selecting a representative sample from the population. The procedure for selecting a sample 

by EPRSS is as follows:  

• if 𝑙 is even, then (
𝑙2

2
) sampling units are selected from the population and allocated randomly 

to (
𝑙

2
) sets with sample size 𝑙.  

• Then 𝑙 units in each set are ordered as in ranked set sampling; then, the smallest and largest 

ordered sampling units from each set are selected as samples.  

• If l is an odd number, a total of (l(l+1)/2) sampling units are picked at random from the 

population and then divided into ((l+1)/2) sets with equal numbers of units. 

• Once the population has been ranked or ordered, the first and last units from each of the ((l-

1)/2) sets are selected, and the median unit from the final set is chosen as the sample. 

• If necessary, the EPRSS sampling process can be repeated r times in order to achieve the 

desired sample size of n=lr. 

If 𝑙 is even then the mean estimator for EPRSS along with the variance for a single computation is defined 

as: 

𝑍(𝐸𝑃𝑅𝑆𝑆)𝑒 =
1

𝑙
∑ [𝑍𝑖(1) + 𝑍𝑖(1)]

𝑙

2

𝑖=1
        (13) 

and 
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𝑉 𝑎𝑟(𝑍(𝐸𝑃𝑅𝑆𝑆)𝑒) =
1

2𝑙
[
𝑉𝑎𝑟(𝑍(1)) + 𝑉𝑎𝑟(𝑍(𝑙))

+2𝐶𝑜𝑣(𝑍(1), 𝑍(𝑙))
].    (14) 

If 𝑙 is odd then  

𝑍(𝐸𝑃𝑅𝑆𝑆)𝑜 =
1

𝑙
[∑ (𝑍𝑖(1) + 𝑍𝑖(𝑙)) +

(𝑙−1)

2

𝑖=1
𝑍𝑙+1

2
(

𝑙+1

2
)
]    (15) 

and 

𝑉 𝑎𝑟(𝑍(𝐸𝑃𝑅𝑆𝑆)𝑜) =
𝑙−1

2𝑙2 [
𝑉𝑎𝑟(𝑍(1)) + 𝑉𝑎𝑟(𝑍(𝑙))

+2𝐶𝑜𝑣(𝑍(1), 𝑍(𝑙))
] +

1

𝑙2 [𝑉𝑎𝑟 (𝑍
(

𝑙+1

2
)
)].   (16) 

3.2. Quartile pair ranked set sampling 

Tayyab et al. [25] proposed a QPRSS scheme for choosing a sample from the population. The 

complete method of selecting a sample is described as follow:  

• if 𝑙 is even, then (
𝑙2

2
) sampling units are selected from the population and distributed to (

𝑙

2
) 

sets each with sample size 𝑙.  

• The sampling units in each set are ordered according to cost-effective sources such as auxiliary 

information or any other source. After ranking, the (
(𝑙+1)

4
) 𝑡ℎ and (

3(𝑙+1)

4
) 𝑡ℎ sampling units 

are selected from each set. 

• If 𝑙 is odd, then (
𝑙(𝑙+1)

2
) sampling units are selected and allocated randomly to (

𝑙+1

2
) sets. 

• After ranking the population, the sampling procedure selects the (((l+1))/4)th and (3(l+1)/4)th 

ordered units from each of the ((l-1)/2) sets, and the median units from the final set. If necessary, 

this process can be repeated r times to obtain a sample of size n=lr.  

If 𝑙 is even then the mean estimator for QPRSS for one complete cycle is defined as 

𝑍(𝑄𝑃𝑅𝑆𝑆)𝑒 =
1

𝑙
[∑ 𝑍𝑖(𝑞1(𝑙+1):𝑙) +

𝑙

2

𝑖=1
∑ 𝑍𝑖(𝑞3(𝑙+1):𝑙)

𝑙

2

𝑖=1
]   (17) 

and if 𝑙 is odd then  

𝑍(𝑄𝑃𝑅𝑆𝑆)𝑒 =
1

𝑙
[∑ 𝑍𝑖(𝑞1(𝑙+1):𝑙) +

𝑙

2

𝑖=1
∑ 𝑍𝑖(𝑞3(𝑙+1):𝑙)

𝑙

2

𝑖=1
+ 𝑍𝑙+1

2
(𝑞2(𝑙+1):𝑙)

] (18) 

with the respective variances as 

𝑉 𝑎𝑟(𝑍(𝑄𝑃𝑅𝑆𝑆)𝑒) =
1

2𝑙
[𝛿(𝑞1(𝑙+1))

2 + 𝛿(𝑞3(𝑙+1))
2 + 2𝛿(𝑞1(𝑙+1),𝑞3(𝑙+1))] (19) 

and 
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𝑉 𝑎𝑟(𝑍(𝑄𝑃𝑅𝑆𝑆)𝑜) =
𝑙−1

2𝑙2 [
𝛿(𝑞1(𝑙+1))

2 + 𝛿(𝑞3(𝑙+1))
2

+2𝛿(𝑞1(𝑙+1),𝑞3(𝑙+1))

] +
1

𝑙2 𝛿(𝑞1(𝑙+1))
2 .   (20) 

4. Suggested Bayesian-EWMA control chart design under different under PRSS schemes 

This section presents the development of a Bayesian EWMA control chart, which utilizes various 

PRSS (PRSS, EPRSS, and QPRSS) schemes and symmetric/asymmetric LFs (SELF and LLF) for 

posterior and productive posterior distributions. The chart is characterized as Bayesian EWMA control 

chart. The structure of the Bayesian EWMA plotting statistic using PRSS with LFs is defined as: 

𝑉𝑡 = 𝜆(𝜃(𝑃𝑅𝑆𝑆)𝐿𝐹) + (1 − 𝜆)𝑉𝑡−1     (21) 

and 𝑉0 = 𝐸(𝜃(𝑅𝑆𝑆)𝐿𝐹); the above Bayesian EWMA statistic used under the prior distribution is given 

below: 

4.1. Posterior distribution utilizing normal prior distribution 

In this section, the control limits based on posterior distribution using an informative prior 

(normal distribution) are discussed. The posterior distribution for the normal prior and likelihood 

function is defined as 

( )

2
2 2

0 0 0

2 2
1 0

2 2 2 2

0 0

2 2 2 2

0 0

1 1
| exp

2
2

n
i

i

x

n
P x

n n

  


 


   


   

=

  +  −
 + 

= −  
  

  + +  


   (22) 

where 𝜃𝑛 =
𝑛𝑥𝛿0

2+𝛿2𝜃0

𝛿2+𝑛𝛿0
2  and 𝛿𝑛

2 =
𝛿2𝛿0

2

𝛿2+𝑛𝛿0
2. 

The control limits for the Bayesian EWMA control chart using an informative normal prior and 

various PRSS schemes under different LFs are defined based on the posterior distribution as follows: 

4.1.1. Utilizing the SELF, Control limits applying PRSS sampling designs  

The construction of Bayesian EWMA control limits under the condition of a symmetric LF (SELF) 

for different PRSS schemes such as PRSS, EPRSS, and QPRSS is provided. The Bayes estimator 𝜃
^

 

for the SELF is defined as  

𝜃
^

𝑆𝐸𝐿𝐹(𝑃𝑅𝑆𝑆𝑖) =
𝑛𝑥(𝑃𝑅𝑆𝑆𝑖)𝛿0

2+𝛿2𝜃0

𝛿2+𝑛𝛿0
2 .      (23) 

The properties of 𝜃
^

𝑆𝐸𝐿𝐹 are mathematized as 
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𝐸 (𝜃
^

𝑆𝐸𝐿𝐹) =
𝑛𝜃1𝛿0

2+𝛿2𝜃0

𝛿2+𝑛𝛿0
2        (24) 

and 

𝑣𝑎𝑟 (𝜃
^

𝑆𝐸𝐿𝐹) =
𝑛𝛿(𝑅𝑆𝑆𝑖)

2 𝛿0
4

𝛿2+𝑛𝛿0
2 .       (25) 

Using SELF, the asymptotic Bayesian EWMA control limits based on the PRSS designs are expressed 

as follows: 

𝑈𝐶𝐿𝑃𝑅𝑆𝑆𝑖
= 𝐸 (𝜃

^

𝑆𝐸𝐿𝐹) + 𝐿√𝑣𝑎𝑟 (𝜃
^

𝑆𝐸𝐿𝐹) √
𝜆

2−𝜆
.   (26) 

𝐶𝐿𝑃𝑅𝑆𝑆𝑖
= 𝐸 (𝜃

^

𝑆𝐸𝐿𝐹).        (27) 

𝐿𝐶𝐿𝑃𝑅𝑆𝑆𝑖
= 𝐸 (𝜃

^

𝑆𝐸𝐿𝐹) − 𝐿√𝑣𝑎𝑟 (𝜃
^

𝑆𝐸𝐿𝐹) √
𝜆

2−𝜆
.   (28) 

Here, 𝑖 = 1,2,3. is elaborated as; 

𝑃𝑅𝑆𝑆1 = 𝑃𝑅𝑆𝑆 

𝑃𝑅𝑆𝑆2 = 𝐸𝑃𝑅𝑆𝑆 

𝑃𝑅𝑆𝑆3 = 𝑄𝑃𝑅𝑆𝑆. 

4.1.2. Implementing LLF, control limits applying PRSS schemes  

In this section, the control limits construction under PRSS schemes for Bayesian EWMA given 

an asymmetric LF(LLF) Bayes estimator 𝜃
^

 is defined as 

𝜃
^

𝐿𝐿𝐹(𝑃𝑅𝑆𝑆𝑖) =
𝑛𝑥(𝑃𝑅𝑆𝑆𝑖)𝛿0

2+𝛿2𝜃0

𝛿2+𝑛𝛿0
2 −

𝐶 ′

2
𝛿𝑛

2      (29) 

The mean and variance for 𝜃
^

𝐿𝐿𝐹 is given below: 

𝐸 (𝜃
^

𝐿𝐿𝐹) =
𝑛𝜃1𝛿0

2+𝛿2𝜃0

𝛿2+𝑛𝛿0
2 −

𝐶 ′

2
        (30) 

and 

𝑣𝑎𝑟 (𝜃
^

𝐿𝐿𝐹) =
𝑛𝛿(𝑅𝑆𝑆𝑖)

2 𝛿0
4

(𝛿2+𝑛𝛿0
2)

2.       (31) 

The following expressions define the asymptotic control limits for the Bayesian EWMA control 

chart using the LLF and PRSS 
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𝑈𝐶𝐿𝑃𝑅𝑆𝑆𝑖
= 𝐸 (𝜃

^

𝐿𝐿𝐹) + 𝐿√𝑣𝑎𝑟 (𝜃
^

𝐿𝐿𝐹) √
𝜆

2−𝜆
.    (32) 

𝐶𝐿𝑃𝑅𝑆𝑆𝑖
= 𝐸 (𝜃

^

𝐿𝐿𝐹).          (33) 

𝐿𝐶𝐿𝑃𝑅𝑆𝑆𝑖
= 𝐸 (𝜃

^

𝐿𝐿𝐹) − 𝐿√𝑣𝑎𝑟 (𝜃
^

𝐿𝐿𝐹) √
𝜆

2−𝜆
.    (34) 

Here, the respective 𝑖 values are 𝑖 = 1,2,3. 

𝑃𝑅𝑆𝑆1 = 𝑃𝑅𝑆𝑆 

𝑃𝑅𝑆𝑆2 = 𝐸𝑃𝑅𝑆𝑆 

𝑃𝑅𝑆𝑆3 = 𝑄𝑃𝑅𝑆𝑆. 

4.2. Posterior predictive distribution utilizing a normal prior 

The construction of the suggested Bayesian EWMA control chart using posterior predictive 

distribution is outlined below: 

Let 𝑦1, 𝑦2, . . . . , 𝑦𝑘, be the future observations then, the posterior predictive distribution 𝑦|𝑥 is 

expressed as:  

𝑝(𝑦|𝑥) =
1

√2𝜋𝛿1
2

𝑒𝑥𝑝 {−
1

2𝛿1
2 (𝑌 − 𝜃𝑛)2}     (35) 

where 𝛿1
2 = 𝛿2 +

𝛿2𝛿0
2

𝛿2+𝑛𝛿0
2 , for different LFs; the control limits for Bayesian EWMA using PRSS 

schemes are mentioned. 

Implementing LLF, control limits based on PRSS designs 

The proposed Bayesian EWMA control chart with different PRSS schemes given an asymmetric 

LLF for the Bayes estimator 𝜃
^

𝐿𝐿𝐹 is defined as: 

𝜃
^

𝐿𝐿𝐹(𝑃𝑅𝑆𝑆𝑖) =
𝑛𝑥(𝑃𝑅𝑆𝑆𝑖)𝛿0

2+𝛿2𝜃0

𝛿2+𝑛𝛿0
2 −

𝐶 ′

2
𝛿
∼

1
2    (36) 

where 𝛿
∼

1
2 =

𝛿2

𝑘
+

𝛿2𝛿0
2

𝛿2+𝑛𝛿0
2; the properties of 𝜃

^

𝐿𝐿𝐹 are mathematized as:  

𝐸 (𝜃
^

𝐿𝐿𝐹) =
𝑛𝜃1𝛿0

2+𝛿2𝜃0

𝛿2+𝑛𝛿0
2 −

𝐶 ′

2
𝛿
∼

1
2      (37) 

𝑣𝑎𝑟 (𝜃
^

𝑆𝐸𝐿𝐹) =
𝑛𝛿(𝑅𝑆𝑆𝑖)

2 𝛿0
4

(𝛿2+𝑛𝛿0
2)

2.       (38) 

Below are the control limits for the Bayesian EWMA control chart with the LLF and different 
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PRSS schemes. 

𝑈𝐶𝐿𝑃𝑅𝑆𝑆𝑖
= 𝐸 (𝜃

^

𝐿𝐿𝐹) + 𝐿√𝑣𝑎𝑟 (𝜃
^

𝐿𝐿𝐹) √
𝜆

2−𝜆
.    (39) 

𝐶𝐿𝑃𝑅𝑆𝑆𝑖
= 𝐸 (𝜃

^

𝐿𝐿𝐹)         (40) 

𝐿𝐶𝐿𝑃𝑅𝑆𝑆𝑖
= 𝐸 (𝜃

^

𝐿𝐿𝐹) − 𝐿√𝑣𝑎𝑟 (𝜃
^

𝐿𝐿𝐹) √
𝜆

2−𝜆
.    (41) 

Here, the 𝑖 values are as follows 𝑖 = 1,2,3. 

𝑃𝑅𝑆𝑆1 = 𝑃𝑅𝑆𝑆 
𝑃𝑅𝑆𝑆2 = 𝑃𝐸𝑅𝑆𝑆 
𝑃𝑅𝑆𝑆3 = 𝑄𝑃𝑅𝑆𝑆. 

5. Simulation study 

The Monte Carlo simulation procedure was used to evaluate the performance of the suggested 

Bayesian EWMA control chart. The ARL and SDRL values were computed for various shift values 

using the concept of a zero-state ARL. The specified in-control ARL value was 370 for 𝜆 = 0.10 and 

0.25 to see the performance of the proposed Bayesian EWMA control chart. The computational 

findings are provided in Tables 1–6. The simulation procedure was carried out in the following steps: 

Step 1: Setting the threshold for in-control ARL 

i. The mean and variance of the posterior and posterior predictive distributions are calculated for 

different LFs using a standard normal distribution as the sampling and prior distribution. i.e., 

( )

^

iRSS LFE 
 
 
 

 and 
( )iRSS LF

 . 

ii. Choose the values for 𝜆 and L for the initial control limits. 

iii. Generate different ranked set sampling schemes for the in-control process and compute the 

plotting statistic of the proposed Bayesian EWMA control chart. 

iv. If the plotting statistic falls between the control limits, repeat steps (iii-iv) to check for any 

errors or anomalies. These steps are designed to ensure the accuracy and reliability of the data, 

and they should be repeated as necessary until all issues have been resolved. 

v. Once the process has been deemed as in-control, continue to repeat the aforementioned steps 

until the process displays out-of-control signals. During this time, keep track of the number of 

consecutive in-control run lengths. 

Step 2: Evaluate ARL and SDRL out-of-control limits 

i. To see the influence of the paired ranked-based sampling schemes, the respective data are 

generated with some shift in the process mean. 

ii. Compute the plotting statistic as per the design of the proposed Bayesian EWMA control chart. 

iii. The respective RL is recorded as the statistic value falls out of the control limits, regarded as 

an out-of-control process. 

iv. The whole procedure is repeated 10,000 times to compute the ARL and SDRL values. 
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Table 1. The ARL and SDRL values of the Bayesian EWMA control chart for posterior and predictive posterior distributions 

given SELF λ = 0.10, n = 5. 

Shift 

Bayesian-EWMA 

SRS 

Bayesian-AEWMA 

SRS 

Bayesian-EWMA 

PRSS 

Bayesian-EWMA 

EPRSS 

Bayesian-EWMA 

QPRSS 

ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

L = 2.7042 h = 0.0856 L = 2.7123 L = 2.7195 L = 2.7189 

0.00 371.82 367.80 372.86 537.77 371.67 368.08 370.93 368.80 370.78 367.61 

0.10 250.59 239.54 190.13 188.22 174.06 171.40 179.34 173.95 170.15 166.76 

0.20 125.58 114.98 70.61 91.12 65.10 61.89 68.40 63.30 61.81 56.29 

0.30 66.576 57.92 35.40 44.53 31.81 26.97 33.11 27.83 29.91 24.65 

0.40 41.68 32.78 21.15 26.36 18.92 14.48 19.71 15.26 17.80 13.34 

0.50 28.35 20.12 13.55 16.69 12.51 8.69 13.30 9.66 11.91 8.41 

0.60 20.98 13.49 9.46 11.23 9.20 6.10 9.69 6.58 8.74 5.87 

0.70 16.26 9.59 7.08 7.70 7.08 4.52 7.50 4.88 6.83 4.35 

0.75 14.72 8.30 6.15 6.43 6.40 3.97 6.65 4.17 6.04 3.74 

0.80 13.41 7.14 5.62 5.82 5.74 3.48 5.91 3.68 5.40 3.31 

0.90 11.42 5.69 4.51 4.18 4.79 2.83 4.93 2.96 4.48 2.64 

1.00 9.78 4.50 3.85 3.20 3.99 2.30 4.14 2.40 3.79 2.14 

1.50 5.79 2.03 2.25 1.29 2.16 1.07 2.23 1.13 2.08 1.04 

2.00 4.16 1.20 1.66 0.78 1.46 0.62 1.51 0.66 1.41 0.59 

2.50 3.31 0.84 1.36 0.56 1.15 0.37 1.18 0.41 1.13 0.35 

3.00 2.76 0.66 1.17 0.39 1.04 0.19 1.05 0.22 1.02 0.16 

4.00 2.12 0.38 1.02 0.14 1 0 1 0 1 0 
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Table 2. The ARL and SDRL values of the Bayesian EWMA control chart for posterior and predictive posterior distributiona 

given the SELF, for 𝜆 = 0.25, n = 5. 

Shift 

Bayesian-EWMA 

SRS 

Bayesian-AEWMA 

SRS 

Bayesian-EWMA 

PRSS 

Bayesian-EWMA 

EPRSS 

Bayesian-EWMA 

QPRSS 

ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

L = 2.8987 h = 0.241 L = 2.9052 L = 2.9179 h = 0.0758 

0.00 369.49 364.82 369.00 367.39 371.34 367.87 372.02 369.08 370.92 367.90 

0.10 292.01 288.73 201.12 190.98 227.87 226.17 240.56 236.01 238.65 258.92 

0.20 178.20 175.14 97.04 80.91 104.95 101.53 114.37 111.28 99.26 98.83 

0.30 104.70 100.95 55.71 42.80 51.65 48.16 53.52 49.92 48.57 45.13 

0.40 63.11 58.20 36.15 25.09 28.01 24.80 29.75 26.14 27.15 24.08 

0.50 41.21 36.61 25.95 17.04 17.41 14.30 18.45 15.36 16.38 13.40 

0.60 28.45 24.57 19.80 12.20 12.11 9.27 12.50 9.51 11.25 8.67 

0.70 20.61 16.37 15.41 9.09 8.81 6.21 9.18 6.46 11.43 8.66 

0.75 17.97 13.87 14.11 8.17 7.73 5.35 8.13 5.71 8.37 5.84 

0.80 15.71 11.75 12.87 7.26 6.77 4.46 7.23 4.80 6.45 4.21 

0.90 12.51 8.86 10.76 5.97 5.40 3.36 5.82 3.81 5.25 3.27 

1.00 10.22 6.77 9.17 4.96 4.49 2.74 4.73 2.86 4.35 2.58 

1.50 5.15 2.51 4.90 2.77 2.37 1.17 2.45 1.25 2.25 1.11 

2.00 3.46 1.33 2.98 1.83 1.58 0.69 1.62 0.71 1.53 0.66 

2.50 2.66 0.86 1.98 1.15 1.21 0.43 1.25 0.46 1.18 0.40 

3.00 2.19 0.61 1.48 0.72 1.06 0.24 1.07 0.26 1.04 0.20 

4.00 1.66 0.50 1 0 1 0 1 0 1 0 
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Table 3. The ARL and SDRL values of the Bayesian EWMA control chart for the posterior distribution given the LLF, for 

𝜆 = 0.10, n = 5. 

Shift 

Bayesian-EWMA 

SRS 

Bayesian-AEWMA 

SRS 

Bayesian-EWMA 

PRSS 

Bayesian-EWMA 

EPRSS 

Bayesian-EWMA 

QPRSS 

ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

L =2.7047 h = 0.086 L = 2.7157 L = 2.7212 L = 2.7165 

0.00 370.63 368.13 370.98 539.06 371.22 366.89 370.51 368.23 371.02 365.29 

0.10 250.27 240.24 195.78 190.09 172.08 172.62 179.90 177.01 166.75 162.64 

0.20 123.94 115.00 71.98 92.48 63.17 58.87 67.68 62.17 62.94 56.58 

0.30 115.00 57.42 36.26 45.49 31.60 25.87 32.87 27.04 30.37 25.27 

0.40 41.33 32.49 21.09 26.30 18.82 14.31 19.84 15.29 18.14 13.50 

0.50 28.51 20.18 13.71 16.73 12.70 8.92 13.34 9.44 12.13 8.48 

0.60 20.95 13.50 9.53 11.25 9.16 6.07 9.68 6.55 7.94 5.45 

0.70 16.46 9.64 7.09 7.86 7.10 4.56 7.41 4.76 6.82 4.29 

0.75 14.79 8.35 6.20 6.50 6.28 3.98 6.62 4.15 6.02 3.73 

0.80 13.38 7.17 5.54 5.54 5.66 3.49 5.90 3.63 5.48 3.37 

0.90 11.29 5.57 4.52 4.17 4.67 2.80 4.93 2.98 4.45 2.62 

1.00 9.79 4.49 3.83 3.20 3.97 2.28 4.19 2.41 3.80 2.19 

1.50 5.82 2.03 2.26 1.27 2.13 1.06 2.21 1.14 2.06 1.03 

2.00 4.18 1.20 1.66 0.78 1.47 0.62 1.51 0.66 1.41 0.59 

2.50 3.31 0.84 1.34 0.55 1.15 0.37 1.18 0.41 1.13 0.34 

3.00 2.75 0.66 1.16 0.39 1.03 0.19 1.04 0.21 1.03 0.18 

4.00 2.13 0.38 1.02 0.15 1 0 1 0 1 0 
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Table 4. The ARL and SDRL values of the Bayesian EWMA control chart for the posterior distribution given the LLF, for 

𝜆 = 0.25, n = 5. 

Shift 

Bayesian-EWMA 

SRS 

Bayesian-AEWMA 

SRS 

Bayesian-EWMA 

PRSS 

Bayesian-EWMA 

EPRSS 

Bayesian-EWMA 

QPRSS 

ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

L = 2.9050 h = 0.242 L = 2.9157 L = 2.9124 L = 2.9098 

0.00 371.05 368.88 370.14 434.88 371.57 368.09 370.73 368.31 369.57 366.39 

0.10 299.03 294.31 245.22 241.12 225.04 212.48 228.76 215.78 215.29 213.67 

0.20 179.81 175.30 86.77 83.25 111.62 106.51 107.79 104.87 101.63 100.35 

0.30 105.54 101.21 55.44 42.26 52.13 48.13 54.15 51.14 48.72 45.33 

0.40 64.00 59.50 36.76 25.98 28.32 24.87 29.65 25.98 26.97 23.60 

0.50 41.56 37.30 25.86 16.88 17.89 14.57 19.00 15.81 16.63 13.68 

0.60 28.54 24.33 19.65 12.16 12.25 9.20 12.77 9.85 11.29 8.54 

0.70 20.96 16.82 15.62 9.17 9.03 6.49 9.33 6.70 8.36 5.83 

0.75 18.11 14.02 14.23 8.29 7.83 5.40 8.25 5.76 7.33 4.90 

0.80 15.89 11.94 12.83 7.30 6.89 4.67 7.24 4.92 6.48 4.23 

0.90 12.61 8.89 10.79 5.90 5.52 3.45 5.84 3.69 5.14 3.20 

1.00 10.27 6.77 9.25 5.00 4.60 2.75 4.76 2.90 4.33 2.58 

1.50 5.18 2.50 4.95 2.80 2.39 1.19 2.47 1.26 2.27 1.11 

2.00 3.46 1.33 2.97 1.81 1.59 0.70 1.63 0.72 1.51 0.65 

2.50 2.64 0.85 1.97 1.13 1.22 0.44 1.25 0.46 1.18 0.40 

3.00 2.19 0.62 1.48 0.73 1.06 0.24 1.07 0.26 1.04 0.21 

4.00 1.66 0.50 1.09 0.30 1 0 1 0 1 0 
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Table 5. The ARL and SDRL values of the Bayesian EWMA control chart for the posterior predictive distribution given the LLF, 

for 𝜆 = 0.10, n = 5. 

Shift 

Bayesian-EWMA 

SRS 

Bayesian-AEWMA 

SRS 

Bayesian-EWMA 

PRSS 

Bayesian-EWMA  

EPRSS 

Bayesian-EWMA 

QPRSS 

ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

L=2.7018 h = 0.0856 L = 2.7137 L = 2.7121 L = 2.7154 

0.00 371.50 368.69 369.58 524.70 371.54 365.58 369.62 366.21 369.82 366.78 

0.10 251.98 249.23 220.12 215.67 167.05 162.99 168.67 165.34 165.67 162.95 

0.20 122.45 113.13 70.53 91.22 69.55 65.21 65.87 59.13 60.56 55.20 

0.30 67.08 57.94 35.71 45.25 31.53 26.09 32.22 27.31 30.58 24.86 

0.40 41.41 32.72 21.24 26.29 18.88 14.31 19.52 14.87 17.97 13.41 

0.50 28.05 19.84 13.66 16.90 12.59 8.91 13.40 9.58 12.20 8.51 

0.60 21.08 13.64 9.46 11.08 9.20 6.12 9.61 6.45 8.82 5.77 

0.70 16.27 9.54 6.94 7.70 7.11 4.54 7.38 4.77 6.79 4.38 

0.75 14.73 8.23 6.22 6.53 6.29 3.90 6.57 4.11 6.09 3.78 

0.80 13.33 7.17 5.50 5.58 5.66 3.44 5.90 3.67 5.45 3.32 

0.90 11.22 5.60 4.52 4.15 4.66 2.77 4.86 2.92 4.45 2.66 

1.00 9.65 4.44 3.77 3.17 3.92 2.29 4.08 2.38 3.81 2.22 

1.50 5.82 2.02 2.26 1.29 2.14 1.07 2.23 1.13 2.06 1.00 

2.00 4.18 1.20 1.66 0.78 1.46 0.63 1.49 0.64 1.41 0.59 

2.50 3.30 0.84 1.35 0.55 1.17 0.39 1.18 0.40 1.13 0.35 

3.00 2.76 0.65 1.16 0.39 1.03 0.19 1.05 0.22 1.03 0.17 

4.00 2.13 0.38 1.02 0.15 1 0 1 0 1 0 
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Table 6. The ARL and SDRL values of the Bayesian EWMA control chart for the posterior productive distribution given the 

LLFs, for 𝜆 = 0.25, n = 5. 

Shift 

Bayesian-EWMA 

SRS 

Bayesian-AEWMA 

SRS 

Bayesian-EWMA 

PRSS 

Bayesian-EWMA 

EPRSS 

Bayesian-EWMA 

QPRSS 

ARL ARL ARL SDRL ARL SDRL ARL SDRL ARL SDRL 

L = 2.8986 h = 0.2414 L = 2.9137 L = 2.9141 L = 2.9074 

0.00 370.23 368.87 368.67 359.45 369.21 367.42 370.50 364.16 370.77 364.78 

0.10 295.14 290.95 266.90 261.23 240.95 236.95 239.12 235.30 235.99 223.47 

0.20 177.79 174.80 98.16 83.24 104.38 102.96 109.89 106.69 100.83 96.66 

0.30 103.68 99.36 54.92 41.45 48.99 45.91 54.62 51.73 47.68 43.74 

0.40 63.21 58.43 36.19 25.48 28.80 25.74 29.99 26.61 26.60 23.77 

0.50 41.26 37.00 25.97 17.13 17.05 13.81 18.36 15.16 16.45 13.32 

0.60 28.35 24.16 19.68 12.21 12.21 9.44 12.62 9.76 11.52 8.87 

0.70 20.68 16.45 15.56 9.19 8.84 6.28 9.41 6.71 8.22 5.77 

0.75 18.04 14.01 14.18 8.26 7.77 5.25 7.08 4.68 7.33 4.99 

0.80 15.79 11.87 12.79 7.24 6.85 4.54 7.16 4.86 6.48 4.25 

0.90 12.52 8.81 10.74 5.93 5.44 3.42 5.74 3.60 5.22 3.23 

1.00 10.23 6.71 9.20 4.98 4.55 2.72 4.78 2.89 4.39 2.57 

1.50 5.18 2.51 4.94 2.79 2.36 1.19 2.45 1.26 2.23 1.12 

2.00 3.46 1.33 2.95 1.81 1.58 0.70 1.63 0.72 1.51 0.66 

2.50 2.65 0.86 1.98 1.14 1.21 0.43 1.26 0.46 1.17 0.39 

3.00 2.19 0.62 1.48 0.72 1.05 0.23 1.07 0.26 1.04 0.20 

4.00 1.66 0.50 1.09 0.30 1 0 1 0 1 0 
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6. Results, discussions and main findings 

In this section, the comparative analysis of the proposed Bayesian EWMA control chart for PRSS 

schemes with different LFs and informative prior distribution is made with the Bayesian EWMA with 

SRS (existing). The detailed computations for the existing and the suggested Bayesian-EWMA control 

chart designs are exclusively mentioned in Tables 1-6 for different shifts and controlling constant 

values as 𝜆 = 0.10  and 0.25 . A smaller value of the 𝐴𝑅𝐿1  depicts the fast detection ability of the 

proposed Bayesian EWMA control chart in comparison with the existing counterpart.  

For instance, Table 1 indicates the 𝐴𝑅𝐿1 (𝑆𝐷𝑅𝐿1) for shift= 0.3 with 𝜆 = 0.10 the existing 

Bayesian EWMA control chart gives 𝐴𝑅𝐿1 (𝑆𝐷𝑅𝐿1) = 66.576(57.92), and for Bayesian AEWMA 

control chart gives 𝐴𝑅𝐿1 (𝑆𝐷𝑅𝐿1) = 35.40(44.53), additionally the proposed Bayesian PRSS gives 

31.81(26.97) , the EPRSS gives 33.11(27.83) , and the QPRSS gives 29.91(24.65) . Similar 

behavior can be seen for 𝜆 = 0.25 , where the existing control chart gives 𝐴𝑅𝐿1  ( 𝑆𝐷𝑅𝐿1) =
104.70(100.95)  and 𝐴𝑅𝐿1  (𝑆𝐷𝑅𝐿1) = 35.40(44.53)  for the Bayesian AEWMA control chart, 

whereas the proposed Bayesian PRSS gives 51.65(48.16), the EPRSS gives 53.52(49.92), and the 

QPRSS gives 48.57(45.13). 

So, it can be seen that for the smaller value of 𝜆 all proposed Bayesian EWMA control charts 

behave much better. Moreover, the proposed Bayesian EWMA control charts give significantly 

improved results in comparison with the existing SRS-based control chart. The main findings about 

the efficiency of the proposed Bayesian EWMA control chart are discussed as follows: 

• The performance of the proposed Bayesian control chart was observed with changes in the 

values of the 𝜆 smoothing constant; for example, Tables 1 and 2 present the ARL and SDRL 

values for posterior and posterior predictive distributions under SELF using normal prior 

distribution. The suggested Bayesian EWMA control chart performs better for smaller values 

of 𝜆, it can be noticed that from Tables 1-2 for 𝜆 = 0.10 and at 𝐴𝑅𝐿0 = 370, 𝛿 = 0.30, 𝐴𝑅𝐿1 =
31.81 and 51.65 for 𝜆 = 0.25 in the case of PRSS; for EPRSS the 𝐴𝑅𝐿1 values are 33.11 

and 53.52, at the same 𝜆 the 𝐴𝑅𝐿1 values for QPRSS are 29.91 and 48.57. 

• The tabular results revealed that the proposed Bayesian EWMA for the posterior predictive 

distribution under the condition of the LLF gives much better results for PRSS, EPRSS, and 

QPRSS at 𝜆 = 0.10  such that: from Table 5 the 𝐴𝑅𝐿1  ( 𝑆𝐷𝑅𝐿1) =
31.53,32.22,30.58 (26.09,27.31,24.86) than the proposed Bayesian EWMA control chart for 

posterior and predictive posterior distribution under SELF: from Table 1 the 𝐴𝑅𝐿1 

(𝑆𝐷𝑅𝐿1) = 31.81,33.11,29.91 (26.97, 27.83, 24.65), and the EWMA control chart based on 

Bayesian theory with posterior distribution applying LLF such that: from Table 3 the 𝐴𝑅𝐿1 

(𝑆𝐷𝑅𝐿1) = 31.60, 32.87, 30.37 (25.87, 27.04, 25.27). 
• From Tables 3 and 4, the 𝐴𝑅𝐿1values based on the LLF for 𝐴𝑅𝐿0 = 370, 𝜆 = 0.10 and for 𝛿 

= 0.30 were 31.60 for PRSS and 32.87 for EPRSS and, the QPRSS the 𝐴𝑅𝐿1 value is 30.37, 

and for 𝜆 = 0.25, the ARL values for PRSS and EPRSS are 52.13 and 54.15. the 𝐴𝑅𝐿1 value 

for QPRSS was 48.72, The results suggest that an increase in the smoothing constant λ 

decreases the effectiveness of the proposed Bayesian EWMA control chart for both the 

posterior and posterior predictive distributions. 

According to the results presented in Tables 1–6, the Bayesian EWMA control chart for both 

posterior and predictive posterior distributions based on SRS, under the condition of both the SELF 

and LLF, was less efficient in detecting shifts compared to the suggested Bayesian control chart based 

on QPRSS. In fact, the suggested Bayesian control chart based on QPRSS was found to outperform 
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the proposed method in term of detecting shifts. The QPRSS-based control chart is recommended as a 

more reliable and effective option for process monitoring and control. These findings are particularly 

relevant for industries that require accurate detection of shifts and timely intervention to maintain 

quality control. 

7. Real life data applications 

Data Set I 

An actual dataset of 30 units from Montgomery [1] was used as an example to demonstrate the 

suggested Bayesian EWMA control chart's practical application. Four control charts were created to 

evaluate and compare the effectiveness of the existing Bayesian EWMA control chart that used the 

posterior and posterior predictive distributions with the SELF for SRS (shown in Figure 1) against the 

proposed EWMA control chart that used posterior and posterior predictive distributions with the SELF for 

PRSS (shown in Figure 2), QPRSS (shown in Figure 3), and EPRSS (shown in Figure 4). This allowed for 

a direct comparison of the performance of each method in terms of detecting shifts in the dataset. 

The in-control and out-of-control situations are discussed by taking the first 20 units in control 

with 𝜇 = 10 and a unit standard deviation and the remaining 10 units were taken as out-of-control 

with 𝜇 = 11  for a shift 𝛿 = 1 , 𝜆 = 0.10  and subgroup size are 𝑛 = 5 . The mean of the Bayes 

estimator using the SELF and standard normal prior distribution is estimated as 9.9819. so, the 

respective control limits for SRS (existing chart) are 𝐿𝐶𝐿 = 9.700  and 𝑈𝐶𝐿 = 10.2635 ; for the 

proposed Bayesian EWMA PRSS are 𝑈𝐶𝐿 = 10.1781  and 𝐿𝐶𝐿 = 9.79831 , for EPRSS 𝑈𝐶𝐿 =
10.18382 and 𝐿𝐶𝐿 = 9.78006 and QPRSS resulted in 𝑈𝐶𝐿 = 10.1958 and 𝐿𝐶𝐿 = 9.7680. 

 

Figure 1. Results obtained under the conditions of the SELF, plots using posterior and 

posterior predictive distributions applying various ranked-based sampling schemes. 
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Figure 2. Results of applying LLF, ARL to obtain the suggested Bayesian EWMA control 

chart for the PRSS, EPRSS, and QPRSS schemes. 

 

Figure 3. Results of using posterior predictive distribution under the conditions of distinct 

PRSS schemes. 
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Figure 4. EWMA control chart obtained under the conditions of posterior and posterior 

predictive distirbutions, SRS and SELF applications. 

 

Figure 5. EWMA control chart obtianed under the conditions of posterior and posterior predictive 

distributions, PRSS and SELF application 
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Figure 6. Bayesian-EWMA control chart obtained under the conditions of QPRSS and SELF 

application. 

 

Figure 7. EWMA control chart obtained under the conditions of posterior and posterior predictive 

distributions, EPRSS and SELF application 

The Bayesian EWMA for SRS with the SELF for posterior and posterior predictive distributions 

is shown in Figure 4, which depicts that all computed points are within the control limits. The proposed 

Bayesian EWMA for PRSS, EPRSS, and QPRSS indicates a shift at the 26th, 25th and 24th sample 

points respectively and showed that the process is out of control. The real-life illustration proves that 

the proposed Bayesian EWMA control charts for different PRSS schemes based on posterior and 

predictive posterior distribution are efficient in detecting out-of-control signals in comparison with the 

counterpart. 
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Data Set II 

We evaluated the effectiveness of the proposed Bayesian EWMA control chart for PRSS designs 

by applying it to data from the hard-bake process in semiconductor manufacturing, as studied by 

Montgomery [1]. Semiconductor manufacturing is closely related to industrial engineering, and the 

hard-bake process is critical in this field. The field of industrial engineering often involves designing 

and optimizing processes used in semiconductor manufacturing to ensure that they are efficient, 

effective, and reliable. This article examines a data set comprising 45 samples, each consisting of five 

wafers and totaling 225 observations. Flow width is measured in microns, and the time interval 

between samples is one hour. The first 30 samples, containing 150 observations, are considered to be 

from the in-control process (referred to as the phase-I data set). The remaining 15 samples, comprising 

75 observations, are categorized as the out-of-control process (referred to as the phase-II data set). 

The use of Bayesian theory in conjunction with the EWMA and AEWMA control charts is shown 

in Figures 8 and 9 for SRS using posterior and posterior predictive distributions and under the condition 

of applying the standard error of the mean (SELF). As demonstrated in these figures, all calculated 

points fell within the control limits for the EWMA chart, while Figure 9 highlights an out-of-control 

signal on the 40th sample. The suggested Bayesian-EWMA control chart using PRSS, EPRS, and 

QPRSS detected a shift at the 36th, 37th, and 38th sample points, as shown in Figures 10, 11, and 12. 

These figures reveals that the process was out of control. Based on the outcomes displayed in Figures 

1–12, it can be inferred that the suggested Bayesian EWMA control chart exhibited superior 

performance in comparison to the traditional EWMA and AEWMA control charts based on Bayesian 

theory. The Bayesian EWMA control chart consistently provided tighter control limits and better 

detection of out-of-control signals. This was particularly evident in the case of small sample sizes, 

where the Bayesian EWMA control chart was able to detect shifts earlier than the other control charts. 

Overall, these findings suggest that the Bayesian EWMA control chart is a promising tool for 

monitoring process performance for PRSS designs. 

 

Figure 8. Bayesian EWMA control chart obtained under the conditions of posterior and 

posterior predictive distributions, SRS and SELF application. 
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Figure 9. The Bayesian AEWMA control chart obtained under the conditions of SRS and 

SELF application. 

 

Figure 10. EWMA control chart obtained under the conditions of posterior and posterior 

predictive distributions, PRSS and SELF. 

 

Figure 11. Bayesian-EWMA control chart obtained under the conditions of QPRSS and 

SELF application. 
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Figure 12. EWMA control chart using obtained under the conditions of posterior and 

posterior predictive distributions, EPRSS and SELF application. 

8. Conclusions 

The EWMA statistic gives more weightage to the current sample information than the previous 

samples. This study, the Bayesian EWMA control chart was constructed by applying the Bayesian-

EWMA for PRSS designs. The suggested design was found to be better than the Bayesian EWMA 

under the SRS scheme. The performance of the proposed control chart was evaluated by computing 

the ARL and SDRL values through extensive Monte Carlo simulation runs. The computational results 

have been provided in tabular format. The simulation study findings have been graphically presented 

to highlight on the efficacy of the proposed Bayesian EWMA control chart foring different PRSS 

sampling designs. The current study has the potential to be extended to different sampling schemes, 

particularly successive sampling, as well as to non-normal distributions. 

Use of AI tools declaration 

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this 

article. 

Acknowledgement 

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University 

for supporting this work by Grant code :23UQU4331371DSR001. 

Conflict of interest 

The authors declare no conflict of interest. 

References 

1. D. C. Montgomery, Introduction to statistical quality control, John Wiley & Sons, (2007). 

2. W. A. Shewhart, The application of statistics as an aid in maintaining quality of a manufactured 

product, J. Am. Stat. Assoc., 20 (1925), 546–548. 



20349 

AIMS Mathematics  Volume 8, Issue 9, 20324–20350. 

3. E. S. Page, Continuous inspection schemes, Biometrika, 41 (1954), 100–115. 

4. S. W. Roberts, Control chart tests based on geometric moving averages, Technometrics, 42 (2000), 

97–101. 

5. A. L. Sweet, Control charts using coupled exponentially weighted moving averages, IIE. Trans., 

18 (1986), 26–33. https://doi.org/10.1080/07408178608975326  

6. C. W. Lu, M. R. R. Jr, EWMA control charts for monitoring the mean of autocorrelated processes, 

J. Qual. Technol., 31 (1990), 166–188. https://doi.org/10.1080/00224065.1999.11979913 

7. P. E. Maravelakis, P. Castagliola, An EWMA chart for monitoring the process standard deviation 

when parameters are estimated, Comput. Stat. Data An., 53 (2009), 2653–2664. 

https://doi.org/10.1016/j.csda.2009.01.004 

8. L. Huwang, Y. H. T. Wang, A. B. Yeh, Z. S. J. Chen, On the exponentially weighted moving 

variance, Nav. Res. Log., 56 (2009), 659–668. https://doi.org/10.1002/nav.20369 

9. S. H. Altoum, H. A. Othman, H. Rguigui, Quantum white noise Gaussian kernel operators, Chaos, 

Soliton. Fract., 104 (2017), 468–476. https://doi.org/10.1016/j.chaos.2017.08.039 

10. S. Noor, M. Noor-ul-Amin, M. Mohsin, A. Ahmed, Hybrid exponentially weighted moving 

average control chart using Bayesian approach, Commun. Stat.-Theor. M., 51 (2020), 1–25. 

https://doi.org/10.1080/03610926.2020.1805765 

11. A. B. Makhlouf, M. Lassaad, H. A. Othman, H. M. S. Rguigui, S. Boulaaras, Proportional Itô–

Doob stochastic fractional order systems, Mathematics, 11 (2023), 2049. 

https://doi.org/10.3390/math11092049 

12. U. Menzefricke, On the evaluation of control chart limits based on predictive distributions, 

Commun. Stat.-Theor. M., 31 (2002), 1423–1440. https://doi.org/10.1081/STA-120006077 

13. U. Menzefricke, Control charts for the generalized variance based on its predictive distribution, 

Commun. Stat.-Theor. M., 36 (2007), 1031–1038. https://doi.org/10.1080/03610920601036176 

14. K. L. Tsui, W. H. Woodall, Multivariate control charts based on loss functions, Sequential Anal., 

12 (1993), 79–92. https://doi.org/10.1080/07474949308836270 

15. Z. Wu, Y. Tian, Weighted-loss-function CUSUM chart for monitoring mean and variance of a 

production process, Int. J. Prod. Res., 43 (2005), 3027–3044. 

https://doi.org/10.1080/00207540500057639 

16. M. Elghribi, H. A. Othman, Al-H. A. Al-Nashri, Homogeneous functions: New characterization 

and applications, T. A. Razmadze Math. In., 171 (2017), 171–181. 

https://doi.org/10.1016/j.trmi.2016.12.006 

17. S. Riaz, M. Riaz, A. Nazeer, Z. Hussain, On Bayesian EWMA control charts under different loss 

functions, Qual. Reliab. Eng. Int., 33 (2017), 2653–2665. https://doi.org/10.1002/qre.2224 

18. S. Noor, M. Noor-ul-Amin, M. Mohsin, A. Ahmed, Hybrid exponentially weighted moving 

average control chart using Bayesian approach, Commu. Stat. Theor. M., 51 (2020), 1–25. 

https://doi.org/10.1080/03610926.2020.1805765 

19. M. Noor‐ul‐Amin, S. Noor, An adaptive EWMA control chart for monitoring the process mean in 

Bayesian theory under different loss functions, Qual. Reli. Eng. Int., 37 (2021), 804–819. 

https://doi.org/10.1002/qre.2764 

20. H. Jeffreys, An invariant form for the prior probability in estimation problems, Proc. Roy. Soc. 

Lond. Seri. A. Math. Phys. Sci., 186 (1946), 453–461. https://doi.org/10.1098/rspa.1946.0056 

21. C. Gauss, Method des Moindres Carres Memoire sur la Combination des Observations, 1810. 

Trans. J. Bertrand. South Carolina: Nabu Press, 1955. 

22. H. R. Varian, A Bayesian approach to real estate assessment, Studies in Bayesian econometric 

and statistics in Honor of Leonard J. Savage, 1975, 195–208. 

https://doi.org/10.1080/07408178608975326
https://doi.org/10.1080/00224065.1999.11979913
https://doi.org/10.1016/j.csda.2009.01.004
https://onlinelibrary.wiley.com/authored-by/Yeh/Arthur+B.
https://doi.org/10.1002/nav.20369
https://doi.org/10.1016/j.chaos.2017.08.039
https://doi.org/10.1080/03610926.2020.1805765
https://doi.org/10.3390/math11092049
https://doi.org/10.1081/STA-120006077
https://doi.org/10.1080/03610920601036176
https://doi.org/10.1080/07474949308836270
https://doi.org/10.1080/00207540500057639
https://doi.org/10.1002/qre.2224
https://doi.org/10.1080/03610926.2020.1805765
https://doi.org/10.1002/qre.2764
https://doi.org/10.1098/rspa.1946.0056


20350 

AIMS Mathematics  Volume 8, Issue 9, 20324–20350. 

23. M. Hu, Median ranked set sampling. J. Appl. Stat. Sci., 6 (1997), 245–255. 

24. S. Balci, A. D. Akkaya, B. E. Ulgen, Modified maximum likelihood estimators using ranked set 

sampling, J. Comput. Appl. Math., 238 (2013), 171–179. https://doi.org/10.1016/j.cam.2012.08.030 

25. M. Tayyab, M. Noor-ul-Amin, M. Hanif, Exponential weighted moving average control charts for 

monitoring the process mean using pair ranked set sampling schemes, Iran. J. Sci. Technol., 43 

(2019), 1941–1950. https://doi.org/10.1007/s40995-018-0668-8 

© 2023 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 

https://doi.org/10.1016/j.cam.2012.08.030

