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1. Introduction

In experiential life testing, it is preferable to stop the trial before all of the elements fail due to
funding and time constraints. The observations that result from that condition are known as censored
samples, and there is a variety of censoring procedures. If the test is conducted at a predefined
censoring time it is called type I (T-I) censoring. The test is accomplished after a specified number
of failures in type II (T-II). The hybrid censoring scheme (HCS) combines T-I and T-II censoring
techniques with the following characteristics: In a life-testing situation, suppose there are n items that
are alike. Suppose that they have independent and identical lifetime distributions. The ordered failure
times of these objects will be X1:n, X2:n, ..., Xn:n. The test is completed when a predetermined number
of elements, 1 ≤ r ≤ n, r fail, or when a predetermined duration T ∈ (0,∞) ends. HCS types I and II
are the two types of hybrid censorship proposed in [1].

The T-I HCS completes the life-testing experiment at a random time T ∗1 = min(xr:n,T ). The T-I
HCS has the drawback of having extremely few failures until the specified time T ∗1 . To overcome
this problem, Childs et al. [2] proposed the T-II HCS, which guarantees an established failure rate
and a completion time of T ∗2 = max(xr:n,T ). Nevertheless, the T-II HCS guarantees a certain number
of failures, but identifying and conducting them may take some time for the life test, which is a
drawback. Chandrasekar et al. [3] extended these techniques by investigating two extensions of this
type, known as generalized type-I HCS (GT-I HCS) and generalized type-II HCS (GT-II HCS). Our
interest here in the GT-I HCS can be described below.

In the GT-I HCS, one specifies k, r ∈ (1, 2, ..., n) and time (0 < T < ∞), where k < r. When the kth
failure is observed after the time T , in this position, T ∗ = xk:n. When the kth failure is observed before
the time T , in this situation, T ∗ = min(xr:n,T ). Consequently, the GT-I HCS improves the T-I HCS by
enabling the experiment to proceed after T if there have been very few failures up to that point (see
Figure 1):

Figure 1. Schematic representation of the GT-I HCS.
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From Figure 1, we summarized the GT-I HCS as follows:
I: If x1:n < x2:n < ... < T < ... < xk:n, in this situation, T ∗ = xk:n.
II: If x1:n < ... < xk:n < ... < xr:n < .. < T , in this situation, T ∗ = xr:n.
III: If x1:n < ... < xk:n < ... < T < ... < xr:n, in this situation, T ∗ = T .

Assume that X is a non-negative random variable with the probability density function (pdf) f (x).
Shannon [4] defined entropy as follows to measure the uncertainty contained in X:

H( f ) = −

∫ ∞

−∞

f(x) log f (x)dx, (1.1)

where f (x) is the pdf of a random variable X. Estimation studies for Shannon entropy with
various censoring and distribution strategies can be found in [5–8]. Ahmadini et al. [9] examined
a Bayesian estimate (BE) of dynamic cumulative residual entropy based on the Pareto II distribution.
Dynamic cumulative residual Renyi entropy estimators for Lomax distribution were considered in [10].
References [11, 12] used the record value data to investigate a Bayesian entropy estimator for Lomax
and generalized inverse exponential distributions, respectively. Almarashi et al. [13] looked at the
Bayesian estimator of dynamic cumulative residual entropy for the Lindley distribution. Hassan et
al. [14] studied the statistical inference of information measures for a power-function model in the
presence of outliers. Helmy et al. [15] proposed Shannon entropy for the Lomax model in the context
of unified hybrid censored samples. In the paper by Hassan et al. [16], estimation of differential entropy
for Pareto distribution in the presence of outliers was considered. The logical entropy was suggested
in [17] as a new information measure. Ellerman [17] also defined logical mutual information and
logical conditional entropy and discussed the relation of logical entropy to Shannon’s entropy. For
more details about logical entropy and its application to quantum states and fuzzy probability spaces
see [17–19].

Despite Shannon’s entropy’s enormous success, it has certain flaws and might not always be
appropriate. Extropy, a different measure of uncertainty that expands on Shannon’s entropy, has been
suggested as a way to fix these flaws. In the paper by Lad et al. [20], extropy was discussed as an
alternate measure of uncertainty and as the complementary dual of entropy. The extropy is provided
via

ψ(x) =
−1
2

∫ ∞

0
f 2(x)dx. (1.2)

The scoring of forecasting distributions is one statistical application of extropy. A forecasting
distribution’s predicted score, for example, is equal to the negative sum of its entropy and extropy
under the total log scoring rule [21]. Extropy has been widely studied in commercial and scientific
fields, such as astronomical studies of heat distributions in galaxies [22]. Qiu [23] investigated some
characterization results, monotone qualities, lower bounds of extropy of order statistics and record
values. Residual extropy was introduced in [24] to assess the residual uncertainty of a non-negative
random variable, as follows:

ψt(x) =
−1

2F2(t)

∫ ∞

t
f 2(x)dx, (1.3)

where F(.) is the survival function. Since 2015, important properties of the extropy measure have been
studied in the literature. References [23, 24], for example, looked at qualities such as residual extropy,
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ordered statistics extropy and record value extropy. Raqab and Qiu [25] recently investigated several
properties of the extropy measure under ranked set sampling. In contrast, some authors have lately
studied the problem of estimating extropy depending on a complete sample [26]. Based on progressive
T-II censoring, Hazeb et al. [27] investigated non-parametric estimation of the extropy and entropy
measures. Hassan et al. [28] discussed estimating the extropy and cumulative residual extropy of the
Pareto distribution in the presence of outliers.

The most often used model for examining skewed data and hydrological processes is the gamma
distribution. The exponentiated gamma distribution (EGD) is one of the crucial families of distributions
in lifetime testing. Both monotonic and nonmonotonic failure rates may be accommodated by this
model thanks to its adaptability. On the other hand, the idea of extropy has found use in a variety of
domains. It should be emphasized that the literature has paid little attention to the parametric estimation
problem of extropy and associated residuals. To the best of the authors’ knowledge, and considering
the significance of the EGD and extropy measures, the Bayesian and non-Bayesian estimators of
these measures are not presented. Additionally, this issue becomes quite significant when the data
are censored. In the current study, we use the GT-I HCS, which is an approach that improves the T-I
HCS. Therefore, the main motivation behind this may be summarized as follows:

• Extropy and residual extropy of the EGD are examined using the maximum likelihood (ML) and
Bayesian estimation methods.
• The Bayesian estimators for the extropy and residual extropy measures are created using some

balanced loss functions (BLOFs).
• Lindley’s approximation is used to calculate the Bayesian estimators of extropy and residual

extropy under a BLOF.
• Both the simulation problem and application to actual data are discussed.

The rest of the paper is organized as follows. The extropy and residual extropy expressions of the
EGD are developed in Section 2. The ML estimators of extropy and residual extropy based on the GT-I
HCS are discussed in Section 3. The Lindley method for calculating Bayesian estimators of extropy
measures under different BLOFs is discussed in Section 4. The simulation issue and its application to
real data are analyzed in Sections 5 and 6 respectively. Eventually, we conclude the paper in Section 7.

2. The EGD

A number of distributions have been proposed for monotonic failure rates, but the Weibull and
gamma distributions are the most commonly employed. The survival function of the gamma
distribution cannot be written in nice closed forms, which makes it difficult to make further
mathematical modifications. For such a distribution, the survival and hazard functions are often
computed numerically. This is one of the main reasons why the gamma distribution is less popular
than the Weibull distribution. Although the Weibull distribution offers a good closed form for the
hazard and survival functions, it does have some disadvantages. The EGD was investigated in [29] as
an alternative to gamma and Weibull distributions, which has a cumulative distribution function (cdf)
F(x) and pdf f (x) of the following respective forms:

F(x; ξ, γ) = (1 − (1 + γx)e−γx)ξ ξ, γ, x > 0, (2.1)
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and
f (x; ξ, γ) = ξγ2xe−γx[1 − (1 + γx)e−γx]ξ−1 ξ, γ, x > 0, (2.2)

where ξ is the shape parameter and γ is the scale parameter. The EGD has received a lot of attention.
Shawky and Bakoban [30] offered Bayesian and non-Bayesian estimators for this distribution’s
parameters and some features for the EGD under record values. Shawky and Bakoban [31] also
reported inference on this model’s order statistics and developed improved goodness-of-fit tests for
the EGD. Feroze and Aslam [32] introduced Bayesian analysis of the EGD for T-II censored samples.
Singh et al. [33] investigated Bayesian estimation of the EGD under progressive T-II censoring by
utilizing various approximation techniques. Mahmoud et al. [34, 35] studied Bayesian estimation and
prediction of the EGD under the unified hyper-censoring scheme.

Substituting Eq (2.2) into Eq (1.2) will give the extropy of the EGD:

ψ(x) =
−1
2

∫ ∞

0

(
ξγ2xe−γx[1 − (1 + γx)e−γx]ξ−1)2dx

=
−ξ2γ4

2

∫ ∞

0
x2e−2γx[1 − (1 + γx)e−γx]2ξ−2dx;

(2.3)

from the binomial theorem,

[1 − (1 + γx)e−γx]2ξ−2 =

∞∑
j=0

(−1) j

(
2ξ − 2

j

)
((1 + γx)e−γx) j;

then, Eq (2.3) becomes

ψ(x) =
−ξ2γ4

2

∞∑
j=0

(−1) j

(
2ξ − 2

j

) ∫ ∞

0
x2e−2γx[(1 + γx)e−γx] jdx

=
−ξ2γ4

2

∞∑
j=0

(−1) j

(
2ξ − 2

j

) ∫ ∞

0
x2e−(2+ j)γx(1 + γx) jdx

=
−ξ2γ4

2

∞∑
j=0

j∑
v=0

(−1) jγv

(
2ξ − 2

j

)(
j
v

) ∫ ∞

0
x2+ve−(2+ j)γxdx;

(2.4)

then,

ψ(x) =
−ξ2γ

2

∞∑
j=0

j∑
v=0

(−1) j

(
2ξ − 2

j

)(
j
v

)
Γ(v + 3)

(2 + j)v+3 . (2.5)

To find the residual extropy of the EGD, substituting Eq (2.2) into Eq (1.3), we get

ψt(x) =
−1

2((1 − (1 + γt)e−γt)ξ)2

∫ ∞

t
(ξγ2xe−γx[1 − (1 + γx)e−γx]ξ−1)2dx, (2.6)

and

I =

∫ ∞

t
(ξγ2xe−γx[1 − (1 + γx)e−γx]ξ−1)2dx. (2.7)
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Employing the binomial theory more than one time, we get

I = ξ2γ4
∞∑
j=0

j∑
v=0

(−1) jγv

(
2ξ − 2

j

)(
j
v

) ∫ ∞

t
x2+ve−(2+ j)γxdx, (2.8)

where
∫ ∞

t
x2+ve−(2+ j)γxdx is the upper incomplete gamma function and is provided via Γ(v+3,tγ(2+ j))

(2γ+ jγ)v+3 ; then,

I = ξ2γ4
∞∑
j=0

j∑
v=0

(−1) jγv

(
2ξ − 2

j

)(
j
v

)
Γ(v + 3, tγ(2 + j))

(2γ + jγ)v+3 , (2.9)

and the residual extropy of the EGD is calculated below:

ψt(x) =
−ξ2γ

2((1 − (1 + γt)e−γt)ξ)2

∞∑
j=0

j∑
v=0

(−1) j

(2 + j)v+3

(
2ξ − 2

j

)(
j
v

)
Γ(v + 3, tγ(2 + j)). (2.10)

It can be noted that Eqs (2.5) and (2.10) are each a function of parameters ξ and γ, which constitute
the needed formulations of ψ(x) and ψt(x) of the EGD.

3. ML estimation

Here, the ML estimators for the GED are provided via the GT-I HCS. Assume that, in a life-testing
study, there are n similar elements; let X1:n, X2:n, ..., Xn:n indicate the sorted failure times for these
elements, with fixed values of r, k ∈ 1, 2, ..., n, k < r < n and time T ∈ (0,∞). The likelihood function
of ξ and γ is given by

L(x|ξ; γ) =
n!

(n − D)!
[

D∏
i=1

f (xi:n)][1 − F(c)]n−D, (3.1)

where D is the experiment’s total number of failures until time c, and its values are represented by

(D, c) =


(k, xk:n) for case I
(d,T ) for case II
(r, xr:n) for case III

, (3.2)

where d denotes the number of failures that occurred until time T . Substituting Eqs (2.1) and (2.2) into
Eq (3.1), we get

L(x|ξ, γ) =
n!

(n − D)!
[

D∏
i=1

ξγ2xie−γxi[1 − (1 + γxi)e−γxi]ξ−1]

× [1 − (1 − (1 + γc)e−γc)ξ]n−D,

(3.3)

where xi is written instead of xi:n for simplified form. Taking the two sides’ logarithms, say, l, we get

l ∝ D ln ξ + 2D ln γ +

D∑
i=1

ln(xi) − γ
D∑

i=1

xi

+ (ξ − 1)
D∑

i=1

ln[1 − (1 + γxi)e−γxi] + (n − D) ln[1 − (1 − (1 + γc)e−γc)ξ].

(3.4)
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If we take derivatives of Eq (3.4) with regard to ξ and γ, we can obtain

∂l
∂ξ

=
D
ξ

+

D∑
i=1

ln[1 − (1 + γxi)e−γxi]

−
(n − D)(1 − (1 + γc)e−γc)ξ ln[1 − (1 + γc)e−γc]

1 − [1 − (1 + γc)e−γc]ξ
,

(3.5)

and
∂l
∂γ

=
2D
γ
−

D∑
i=1

xi + (ξ − 1)
D∑

i=1

γx2
i e−γxi

1 − (1 + γxi)e−γxi

−
γξc2(n − D)e−γc[1 − (1 + γc)e−γc](ξ−1)

1 − [1 − (1 + γc)e−γc]ξ
.

(3.6)

Set Eqs (3.5) and (3.6) equal to zero and solve them to determine the ML estimator of ξ and γ:

D
ξ̂

+

D∑
i=1

ln[1 − (1 + γ̂xi)e−γ̂xi]

−
(n − D) ln[1 − (1 + γ̂c)e−γ̂c][1 − (1 + γ̂c)e−γ̂c]ξ̂

1 − [1 − (1 + γ̂c)e−γ̂c]ξ̂
= 0,

(3.7)

and
2D
γ̂
−

D∑
i=1

xi + (ξ̂ − 1)
D∑

i=1

γ̂x2
i e−γ̂xi

1 − (1 + γ̂xi)e−γ̂xi

−
γ̂ξ̂c2(n − D)e−γ̂c[1 − (1 + γ̂c)e−γ̂c](ξ̂−1)

1 − [1 − (1 + γ̂c)e−γ̂c]ξ̂
= 0.

(3.8)

The explicit forms for these equations seem to be quite difficult to get; thus, we may use an appropriate
numerical approach to obtain these estimators. Then, the ML estimators of ψ(x), ψt(x), say, ψ̂(x), ψ̂t(x),
are respectively as follows:

ψ̂(x) =
−ξ̂2γ̂

2

∞∑
j=0

j∑
v=0

(−1) j

(
2ξ̂ − 2

j

)(
j
v

)
Γ(v + 3)

(2 + j)v+3 , (3.9)

and

ψ̂t(x) =
−ξ2γ̂

2((1 − (1 + γ̂t)e−γ̂t)ξ̂)2

∞∑
j=0

j∑
v=0

(−1) j

(2 + j)v+3

(
2ξ̂ − 2

j

)(
j
v

)
Γ(v + 3, tγ̂(2 + j)). (3.10)

4. Bayesian estimation

Using different types of BLOFs, we can find Bayesian estimators for ξ, γ, ψ(x) and ψt(x). We assume
that ξ and γ are distributed separately as gamma (a1, b1) and gamma (a2, b2) priors, respectively, since
the gamma distribution is utilized as a conjugate prior for some distributions and, at the same time, it
is a conjugate prior for the EGD (see [32]). Then, the prior of ξ and γ is given by
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π1(ξ) ∝
(
ξa1−1e−b1ξ

)
, ξ > 0,

and,
π2(γ) ∝

(
γa2−1e−γb2

)
, γ > 0,

where a1, a2, b1 and b2 > 0 are considered to be constant and known hyperparameters. The joint prior
density of ξ and γ is calculated as follows:

π(ξ, γ) ∝ ξa1−1γa2−1e−(b1ξ+b2γ). (4.1)

The posterior distribution is calculated as follows:

π∗(ξ, γ|x) =
L(x|ξ, γ)π(ξ, γ)∫ ∞

0

∫ ∞
0

L(x|ξ, γ)π(ξ, γ)dξdγ
. (4.2)

The joint posterior density function is calculated from Eqs (3.3) and (4.1) as follows:

π∗(ξ, γ|x) = E1ξ
D+a1−1γa2+2D−1e−γ(b2+

∑D
i=1 xi)

× e−ξb1+(ξ−1)
∑D

i=1 log[1−(1+γxi)e−γxi ][1 − (1 − (1 + γc)e−γc)ξ]n−D;
(4.3)

E1 is the normalizing constant, which is equal to

E1 =
1∫ ∞

0

∫ ∞
0

L(x|ξ, γ)π(ξ, γ)dξdγ
. (4.4)

4.1. BLOF

BLOFs are interesting because they include the proximity of a specified estimator δ to both a target
estimator δo and the unknown parameter θ that has been estimated, as stated by Zellner’s formula
(see [36]):

Lρ,ω,δo(ξ, ρ) = ωρ(δ, δo) + (1 − ω)ρ(θ, δ), (4.5)

where 0 ≤ ω ≤ 1, ρ(θ, δ) is any loss function that can be used, ρ(δ, δo) is an unbalanced loss function
for the likelihood function and δo is a chosen θ prior estimator.

Given the balanced squared error (BSEL) loss function ρ(θ, δ) = (δ − θ)2, then Eq (4.5) becomes

Lρ,ω,δo = ω(δ − δo)2 + (1 − ω)(δ − θ)2.

In this situation, the BE of θ is given by

θ̂BS EL = ωθ̂ + (1 − ω)E(θ|x), (4.6)

where θ = (ξ, γ, ψ(x) and ψt(x)). Hence,

θ̂BS EL = ωθ̂ + (1 − ω)

∫ ∞
0

∫ ∞
0
θL(x|ξ, γ)π(ξ, γ)dξdγ∫ ∞

0

∫ ∞
0

L(x|ξ, γ)π(ξ, γ)dξdγ
. (4.7)

If we choose
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ρ(θ, δ) = eq(δ−δo) − q(δ − θ) − 1,

where q , 0, we get the balanced linear exponential (BLN) loss function, and the BE of θ in this
situation is

θ̂BLN =
−1
q

log
[
ωe−qθ̂ + (1 − ω)

∫ ∞
0

∫ ∞
0

e−qθL(x|ξ, γ)π(ξ, γ)dξdγ∫ ∞
0

∫ ∞
0

L(x|ξ, γ)π(ξ, γ)dξdγ

]
. (4.8)

If we choose

ρ(δ, θ) = ( δo
θ

)−q − q log( δo
θ

) − 1,

when q , 0, we can get the balanced general entropy (BGE) loss function, and the BE of θ in this
situation is

θ̂BGE =
[
ωθ̂−q + (1 − ω)

∫ ∞
0

∫ ∞
0

(θ)−qL(x|ξ, γ)π(ξ, γ)dξdγ∫ ∞
0

∫ ∞
0

L(x|ξ, γ)π(ξ, γ)dξdγ

] −1
q
. (4.9)

From Eqs (4.7)–(4.9), it should be observed that all Bayesian estimators are expressed as a ratio of
two integrals, which cannot be simplified or directly computed. As a result, we compute the estimates
using the Lindley method.

4.2. Lindley method

Lindley [37] proposed this method to approximate the ratio of two integrals, which approaches the
ratio of the integrals as a whole and yields a single numerical value. The approximate BEs of ξ, γ, ψ(x)
and ψt(x) are computed using the Lindley method in this subsection. The Lindley method can be
expressed in general cases as follows:

û = u(ξ̂, γ̂) +
1
2

m∑
i, j=1

[ui j(ξ̂, γ̂) + 2ui(ξ̂, γ̂)ρ j(ξ̂, γ̂)]σ̂i j +
1
2

m∑
i, j,k,l=1

[σ̂i jσ̂kl l̂i jkûk(ξ̂, γ̂)], (4.10)

where (i, j, k, l) = 1, 2, ...,m and ξ̂ and γ̂ are the ML estimators of ξ and γ, respectively.
Also, ui(ξ) = ∂u

∂ξ
; ui j(ξ, γ) = ∂2u

∂ξ∂γ
; li jk(ξ, γ, γ) =

∂3u(ξ,γ)
∂ξ∂γ∂γ

;
ρ = log π(ξ, γ) is the logarithm of the joint prior density function ρ j(ξ, γ) =

∂ρ

∂γ
;

(σi j)N×N = −( ∂2l
∂ξ∂γ

)−1, where l is the likelihood function. Note that σi j = (i, j)th elements of the Fisher

information matrix −( ∂2l
∂ξ∂γ

)−1.

For the two-parameter case, the Lindley method is given by

û =u(ξ̂, γ̂) +
1
2

[
(u11 + 2u1ρ1)σ11 + (u12 + 2u1ρ2)σ12 + (u21 + 2u2ρ1)σ21

+ (u22 + 2u2ρ2)σ22] +
1
2

[(u1σ11 + u2σ12)(l111σ11 + l121σ12 + l211σ21

+ l221σ22) + (u1σ21 + u2σ22)(l211σ11 + l122σ12 + l212σ21 + l222σ22)]
]
,

(4.11)

where, u1 = ∂u
∂ξ

; u12 = ∂2u
∂ξ∂γ

; l122 = ∂3u
∂ξ∂γ∂γ

; ρ2 =
∂ρ

∂γ
; σ12 is the (1, 2)th element of the inverse

of the Fisher information matrix. The details and derivative can be found in Appendix A.
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5. Numerical outcomes

In this part, we look into the efficiency of the ML estimates (MLEs) and BEs of ξ, γ, ψ(x) and ψt(x)
for the EGD in terms of the mean squared error (MSE) under different BLOFs.
• For given hyperparameters a1, b1, a2 and b2, generate random values of ξ and γ.
• Making use of ξ and γ obtained in the previous step, we generate a sample of upper-ordered values
from an EGD of size n.
• The MLE of ξ, γ, ψ(x) and ψt(x) has been computed for different values of r, k and T , according to
Section 3.
• The BE of ξ, γ, ψ(x) and ψt(x), based on the BSEL, BLN, and BGE loss functions using the Lindley
method, has been provided, respectively, for different values of r, k and T , according to Section 4.
• The MSE over N samples is provided by Eq (5.1), if θ̂ is an estimate of θ.

MS E(θ̂) =

N∑
i=1

(θ̂i − θ)2

N
, (5.1)

where θ̂ = (ξ̂, γ̂, ψ̂(x) and ψ̂t(x)).
• The steps that came before are repeated N = 1000 times to generate a sample from the EGD with the
hyperparameters (a1 = 2, b1 = 4, a2 = 1.5 ), ω = 0.5 and t = 0.4.
• The shape parameter q is selected as q = (−0.6, 0.6), and the performance of the BLN and BGE loss
functions varies depending on the value of q.
• The true selected values of the parameters are ξ = 0.7 and γ = 2.3, and the true values of
ψ(x) = −0.283279 and ψt(x) = −0.274054.
• The MLEs and BEs of ξ, γ, ψ(x) and ψt(x) were studied under the following conditions:
1- Values of n, r, k are taken as (n = 250, r = 230, k = 150) and (n = 150, r = 120, k = 80) at different
values of T , where T = (0.8, 1.5, 3) (see Table 1).
2- Values of n, r,T are taken as (n = 150, r = 120,T = 3) at different values of k, where
k = (60, 80, 100) (see Table 2).
3- Values of n, r,T are taken as (n = 250, r = 230,T = 3) at different values of k, where
k = (150, 180, 210) (see Table 2).
4- Values of n, k,T are taken as (n = 150, k = 80,T = 3) for different values of r, where
r = (90, 110, 130) (see Table 3).
5- Values of n, k,T are taken as (n = 250, k = 100,T = 3) for different values of r, where
r = (150, 180, 230) (see Table 3).
6- The simulation results are listed in Tables 1–3 and illustrated in Figures 2–7.
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Table 1. MLE and BE results for ξ, γ, ψ(x) and ψt(x) based on the GT-I HCS with BLOFs
using different values of T , along with the corresponding MSE in each case.

Estimate
n (r, k) T MLE BSEL BLN BGE

q = (−0.6) q = (0.6) q = (−0.6) q = (0.6)
150 (120,80) 0.8 2.83027 2.85351 2.86904 2.86904 2.84977 2.83845

γ 1.5 1.60496 1.62274 1.6297 1.6297 1.6198 1.61089
3 0.7071 0.71762 0.71955 0.71955 0.71579 0.7102

250 (230,150) 0.8 3.65544 3.66824 3.67906 3.67906 3.66625 3.66024
1.5 2.87996 2.89194 2.8999 2.8999 2.89008 2.88447
3 1.77925 1.78916 1.79321 1.79321 1.78763 1.78302

150 (120,80) 0.8 0.5927 0.59829 0.59901 0.59756 0.5975 0.59509
ξ 1.5 0.4158 0.41982 0.42016 0.41948 0.41929 0.41768

3 0.2803 0.28295 0.28308 0.28281 0.28262 0.28164
250 (230,150) 0.8 0.6955 0.69893 0.69948 0.69838 0.69842 0.69687

1.5 0.5842 0.58719 0.58757 0.5868 0.58675 0.58544
3 0.4225 0.42483 0.42503 0.42464 0.4245 0.42361

150 (120,80) 0.8 -0.323 -0.32656 -0.32616 -0.32695 -0.32573 -0.3232
ψ(x) 1.5 -0.1442 -0.14723 -0.14708 -0.14737 -0.14654 -0.1444

3 -0.0414 -0.04279 -0.04278 -0.04281 -0.0425 -0.04158
250 (230,150) 0.8 -0.44481 -0.44599 -0.44574 -0.44624 -0.44561 -0.4444

1.5 -0.3284 -0.3301 -0.32989 -0.33031 -0.32967 -0.32837
3 -0.1621 -0.16383 -0.16374 -0.16393 -0.16345 -0.1622

150 (120,80) 0.8 -0.2546 -0.2876 -0.28743 -0.28777 -0.2872 -0.28602
ψt(x) 1.5 -0.215 -0.37582 -0.37561 -0.37604 -0.37544 -0.3743

3 -0.0996 -0.41214 -0.41185 -0.41242 -0.41168 -0.4102
250 (230,150) 0.8 -0.236488 -0.23691 -0.23683 -0.23699 -0.23669 -0.2360

1.5 -0.2432 -0.27686 -0.27677 -0.27696 -0.27664 -0.27599
3 -0.2096 -0.34693 -0.34682 -0.34705 -0.34671 -0.3460

MSE
150 (120,80) 0.8 0.343 0.369 0.38707 0.35091 0.36488 0.352

γ 1.5 0.4995 0.47527 0.46603 0.48482 0.47927 0.49149
3 0.24189 0.20858 0.20252 0.21473 0.21439 0.23211

250 (230,150) .8 1.888 1.92318 1.95316 1.89299 1.91773 1.9013
1.5 0.36211 0.37627 0.38588 0.36664 0.37407 0.36748
3 0.27955 0.26939 0.26531 0.27355 0.27095 0.2757

150 (120,80) 0.8 0.1766 0.17453 0.17441 0.17464 0.17479 0.17561
ξ 1.5 0.08317 0.081 0.08082 0.08118 0.08129 0.08217

3 0.0197 0.01882 0.01872 0.01892 0.01895 0.01936
250 (230,150) 0.8 0.0783 0.07708 0.07697 0.07718 0.07724 0.0777

1.5 0.0175 0.01694 0.01686 0.01701 0.01703 0.0173
3 0.00801 0.0081 0.00814 0.00808 0.00809 0.0080

150 (120,80) 0.8 0.0585 0.05793 0.05794 0.05792 0.05807 0.05851
ψ(x) 1.5 0.02003 0.01922 0.01926 0.01918 0.01941 0.01998

3 0.00407 0.00428 0.00425 0.00432 0.00422 0.00404
250 (230,150) 0.8 0.0277 0.02808 0.028 0.02816 0.02797 0.02761

1.5 0.0151 0.01469 0.01471 0.01467 0.01478 0.01506
3 0.00328 0.00342 0.0034 0.00344 0.00338 0.00327

150 (120,80) 0.8 0.1182 0.00171 0.00172 0.00169 0.00174 0.00182
ψt(x) 1.5 0.0534 0.00501 0.00503 0.00498 0.00506 0.00521

3 0.0376 0.02457 0.02462 0.02451 0.02469 0.02506
250 (230,150) 0.8 0.04396 0.04284 0.04287 0.04281 0.04293 0.0432

1.5 0.04099 0.02786 0.02789 0.02783 0.02793 0.02815
3 0.02516 0.00949 0.00951 0.00947 0.00953 0.00966
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Table 2. MLE and BE results for ξ, γ, ψ(x) and ψt(x) based on the GT-I HCS with BLOFs
for different values of k at T = 3 and t = 0.4, along with the corresponding MSE in each
case.

Estimate
(n, r) k MLE BSEL BLN BGE

q = (−0.6) q = (0.6) q = (−0.6) q = (0.6)
(150,120) 60 1.80553 1.86432 1.88962 1.88962 1.85457 1.8243

γ 80 2.20961 2.24898 2.27005 2.27005 2.24241 2.22236
100 2.66151 2.69121 2.71024 2.71024 2.68632 2.6714

(250,230) 150 2.40402 2.42421 2.43617 2.43617 2.42083 2.41061
180 2.86144 2.8777 2.88897 2.88897 2.87504 2.867
210 3.3904 3.26401 3.27118 3.27118 3.26276 3.2592

(150,120) 60 0.470143 0.47942 0.48014 0.47869 0.47842 0.47535
ξ 80 0.517534 0.52482 0.52554 0.52409 0.52391 0.52117

100 0.571024 0.57731 0.57807 0.57655 0.57645 0.57385
(250,230) 150 0.535 0.53987 0.54029 0.53945 0.53935 0.5377

180 0.595 0.59921 0.59968 0.59875 0.5987 0.59716
210 0.66122 0.61358 0.6134 0.61377 0.61378 0.61437

(150,120) 60 -0.180905 -0.18981 -0.18928 -0.19032 -0.18791 -0.18198
ψ(x) 80 -0.235081 -0.2411 -0.24061 -0.24158 -0.23971 -0.23548

100 -0.298506 -0.30274 -0.30228 -0.3032 -0.30168 -0.29848
(250,230) 150 -0.2616 -0.26478 -0.26449 -0.26506 -0.26403 -0.26179

180 -0.329 -0.3313 -0.33102 -0.33158 -0.33072 -0.32899
210 -0.4064 -0.38103 -0.38096 -0.38111 -0.38092 -0.3806

(150,120) 60 -0.24894 -0.37997 -0.37956 -0.38039 -0.37924 -0.37711
ψt(x) 80 -0.256614 -0.33925 -0.33896 -0.33954 -0.33869 -0.33703

100 -0.255107 -0.2996 -0.2994 -0.29981 -0.29914 -0.29778
(250,230) 150 -0.254 -0.31951 -0.31936 -0.31966 -0.31921 -0.31829

180 -0.253495 -0.28575 -0.28564 -0.28586 -0.28549 -0.28473
210 -0.2427 -0.2437 -0.24372 -0.24386 -0.24361 -0.2431

MSE
(150,120) 60 0.403425 0.35218 0.33667 0.3703 0.36025 0.38655

γ 80 0.233308 0.25632 0.27314 0.23966 0.25249 0.24117
100 0.136536 0.13227 0.13348 0.13197 0.13285 0.13518

(250,230) 150 0.375 0.33469 0.35833 0.33105 0.34162 0.32243
180 0.07467 0.07956 0.08337 0.07594 0.07871 0.0763

(150,120) 60 0.059 0.05533 0.05506 0.0556 0.05573 0.05699
ξ 80 0.040 0.03831 0.03811 0.03851 0.03859 0.03946

100 0.0255 0.02416 0.02404 0.0242 0.02434 0.02488
(250,230) 150 0.0313 0.03014 0.03002 0.03026 0.03029 0.03076

180 0.0166 0.01596 0.0158 0.01603 0.01605 0.01633
(150,120) 60 0.01410 0.01242 0.0125 0.01235 0.01276 0.01387

ψ(x) 80 0.00595 0.00538 0.0054 0.00535 0.0055 0.00589
100 0.0036 0.00372 0.0037 0.00374 0.00369 0.00361

(250,230) 150 0.00422 0.0044 0.00438 0.00443 0.00435 0.00421
180 0.00253 0.00239 0.0024 0.00238 0.00242 0.00252

(150,120) 60 0.0403 0.02115 0.02121 0.02109 0.02129 0.02169
ψt(x) 80 0.0369 0.01155 0.01161 0.01149 0.01167 0.01203

100 0.0325 0.00558 0.00563 0.00553 0.00568 0.00598
(250,230) 150 0.037 0.02505 0.02508 0.02501 0.02513 0.02537

180 0.0362 0.01558 0.01562 0.01555 0.01566 0.01589
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Table 3. MLE and BE results for ξ, γ, ψ(x) and ψt(x) based on the GT-I HCS with BLOFs
using different values of r at T = 3, along with the corresponding MSE in each case.

Estimate
n (T, k) r MLE BSEL BLN BGE

q = (−0.6) q = (0.6) q = (−0.6) q = (0.6)
150 (3,80) 90 2.2218 2.46768 2.48757 2.48757 2.46207 2.44501

γ 110 2.94203 2.96886 2.98765 2.98765 2.9645 2.95129
130 3.5292 3.55199 3.57051 3.57051 3.54841 3.53762

250 (3,100) 150 2.55432 2.57294 2.58461 2.58461 2.56985 2.56049
200 3.20296 3.21759 3.22876 3.22876 3.21523 3.20812
230 3.764 3.7769 3.78811 3.78811 3.77489 3.76884

150 (3,80) 90 0.5449 0.5517 0.55243 0.55095 0.55082 0.5481
ξ 110 0.6058 0.61191 0.61271 0.6111 0.61105 0.60845

130 0.6864 0.6923 0.69323 0.69136 0.69142 0.68875
250 (3,100) 150 0.5570 0.56083 0.56127 0.56039 0.56032 0.55876

200 0.6356 0.63913 0.63963 0.63863 0.63862 0.63708
230 0.7122 0.71567 0.71624 0.71509 0.71514 0.71355

150 (3,80) 90 -0.2666 -0.27169 -0.2712 -0.27216 -0.27048 -0.2668
ψ(x) 110 -0.3393 -0.34284 -0.34238 -0.3433 -0.34191 -0.33911

130 -0.42504 -0.42729 -0.42686 -0.42772 -0.4266 -0.4245
250 (3,100) 150 -0.2839 -0.28669 -0.28641 -0.28698 -0.28602 -0.28397

200 -0.3786 -0.38038 -0.3801 -0.38065 -0.37989 -0.37841
230 -0.4608 -0.46199 -0.46173 -0.46224 -0.46162, -0.4605

150 (3,80) 90 -0.2579 -0.3195 -0.3192 -0.3197 -0.31903 -0.31754
ψt(x) 110 -0.25143 -0.27931 -0.27913 -0.27949 -0.27889 -0.2776

130 -0.2436 -0.24597 -0.24583 -0.24611 -0.24559 -0.24448
250 (3,100) 150 -0.256085 -0.30852 -0.30839 -0.30865 -0.30824 -0.30738

200 -0.245503 -0.26163 -0.26154 -0.26173 -0.2614 -0.26069
230 -0.235102 -0.23235 -0.23228 -0.23243 -0.23213 -0.23148

MSE
150 (3,80) 90 1.6028 1.65972 1.70734 1.6115 1.65079 1.623

γ 110 0.5128 0.54865 0.57547 0.52169 0.54282 0.52541
130 0.1239 0.13504 0.14408 0.12646 0.13312 0.1277

250 (3,100) 150 1.1948 1.2329 1.26649 1.19921 1.22706 1.20926
200 0.8691 0.89597 0.91694 0.87487 0.89165 0.87871
230 0.1286 0.13868 0.1458 0.13169 0.1369 0.13202

150 (3,80) 90 0.0316 0.02982 0.02965 0.02998 0.03004 0.03074
ξ 110 0.01856 0.01772 0.01764 0.0178 0.01783 0.01819

130 0.01355 0.01374 0.01382 0.01366 0.01371 0.01362
250 (3,100) 150 0.02571 0.02473 0.02462 0.02483 0.02486 0.02526

200 0.01055 0.01021 0.01017 0.01024 0.01026 0.01041
230 0.00839 0.0086 0.00865 0.00855 0.00856 0.00847

150 (3,80) 90 0.0230 0.02358 0.02346 0.0237 0.0234 0.02285
ψ(x) 110 0.00652 0.00686 0.0068 0.00692 0.00676 0.00648

130 0.003543 0.00335 0.00335 0.00335 0.00339 0.0035
250 (3,100) 150 0.0331 0.03354 0.03345 0.03362 0.03341 0.03303

200 0.0110 0.01135 0.0113 0.01141 0.01126 0.011
230 0.00220 0.0022 0.00219 0.002 0.00219 0.0022

150 (3,80) 90 0.04203 0.03941 0.03946 0.03936 0.0395 0.04
ψt(x) 110 0.03870 0.02727 0.02733 0.02721 0.02741 0.02783

130 0.0363 0.01587 0.01593 0.01581 0.016 0.01637
250 (3,100) 150 0.0444 0.0447 0.04473 0.04467 0.04479 0.04507

200 0.0402 0.0331 0.0332 0.03314 0.03326 0.03352
230 0.0363 0.01842 0.0184 0.01838 0.0185 0.01873
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Here are some observations on the MLEs and BEs of the extropy and residual extropy results
displayed in Tables 1–3.
• The MSEs of the MLEs and BEs decrease when n increases.
•MSEs of the MLEs and BEs of extropy and residual extropy decrease as r increases with fixed n, k,T
(Figures 2 and 3).

Figure 2. MSE of MLEs and BEs for the residual extropy for different values of r.

Figure 3. MSE of MLEs and BEs for extropy for various values of r.

• The BE of ψBLN(x) at q = −0.6 and ψ(t)BLN at q = 0.6 is favored over the others in terms of having
the lowest MSE for different values of T , resulting in reduced variability.
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•MSEs of the MLEs and BEs of extropy and residual extropy decrease as k increases with fixed n, r,T
(Figures 4 and 5).

Figure 4. MSE of MLEs and BEs for residual extropy for different values of k.

Figure 5. MSE of the MLEs and BEs for extropy for different values of k.

• The MSE values show that, in most cases, the BEs of extropy are best under the BGE loss function,
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whereas the BEs of residual extropy are best under the BLN loss function.
• The BEs of extropy increase by increasing the number of failures r or k. Additionally, as
demonstrated in Figures 6 and 7, the BEs of residual extropy decrease as the number of failures r
or k increases.
• The BE of extropy and its residual yields a smaller value than the MLE.
• The BEs of ψ(x) and ψt(x), viz., the BLN loss function at q = 0.6, have a lot of information and the
BEs using the BGE loss function at q = −0.6 have a lot of information since they have a low level of
uncertainty.

Figure 6. The BEs of residual extropy with BLOFs.

Figure 7. The BEs of extropy with BLOFs.
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6. Analysis of data

These data were used in [38], and they represented the daily average wind speeds from January
1, 2009 to October 4, 2009 for Cairo city. The National Climatic Data Center in Asheville, NC, United
States of America produced this information and recorded it as follows:

2.7, 3.1, 3.2, 3.2, 3.3, 3.5, 3.5, 3.8, 3.8, 3.8, 4.2, 4.2, 4.3, 4.3, 4.3, 4.4, 4.5, 4.7, 4.7, 4.8, 4.9, 4.9, 4.9,
4.9, 5, 5, 5.1, 5.2, 5.2, 5.3, 5.4, 5.4, 5.4, 5.4, 5.5, 5.5, 5.6, 5.6, 5.6, 5.7, 5.7, 5.7, 5.8, 5.8, 6, 6.1, 6.3,

6.4, 6.6, 6.7, 6.7, 6.8, 6.8, 6.8, 6.8, 6.9, 7.1, 7.3, 7.3, 7.3, 7.4, 7.5, 7.6, 7.6, 7.7, 7.8, 7.9, 8, 8, 8.2, 8.2,
8.6, 8.7, 8.8, 8.9, 9.3, 9.3, 9.4, 9.4, 9.4, 9.5, 9.6, 9.8, 9.8, 9.9, 10, 10.1, 10.3, 10.6, 10.7, 11.1, 11.3,

12, 12.2, 12.4, 12.5, 13.3, 13.8, 14.4, 14.7.

The Kolmogorov-Smirnov (K-S) test was used to determine if the data distribution is an EGD or not.
The calculated value of the K-S distance is 0.0808528, and the P-value is 0.504649. Figure 8 shows
the estimated pdf and cdf.

Figure 8. EGD for real data with the estimated pdf and cdf.

Now, let us examine what occurs if the data set is censored. Using the uncensored data set, we
produce three artificial GT-I HCS sets in the ways described below (see Table 4):
Case I: T = 9, k = 85, r = 95; therefore, D = 85, c = xk = 10.
Case II: T = 13, k = 85, r = 95; therefore, D = 95, c = xr = 12.5.
Case III: T = 11, k = 85, r = 95; therefore, D = 92, c = T = 11.
We employed ML and Bayesian estimation of extropy and residual extropy in these cases. Using
BLOFs (BSEL, BLN, BGE) with ω = 0.5 and q = (−0.6, 0.6), we employed the Lindley method. We
employed a non-informative prior to calculate the BEs because we have no knowledge of the priors;
thus, we chose a1 = 0, b1 = 0, a2 = 0 and b2 = 0.
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Table 4. The MLEs and BEs under the GT-I HCS.
n (r, k) T MLE BSEL BLN BGE

q = (−0.6) q = (0.6) q = (−0.6) q = (0.6)
γ 100 (95,85) 9 0.5341 0.5376 0.538 0.5373 0.5372 0.536

Case I ξ 4.9941 4.968 5.1480 4.793 4.943 4.8705
ψ(x) -0.0564 -0.05813 -0.05812 -0.05814 -0.05809 -0.05794
ψt(x) -0.4012 -0.4093 -0.4093 -0.4093 -0.4093 -0.4094
γ 100 (95,85) 13 0.5333 0.5366 0.5369 0.5363 0.5362 0.5351

Case II ξ 4.9769 4.9560 5.1205 4.7954 4.9332 4.8665
ψ(x) -0.0563 -0.05793 -0.05792 -0.0579 -0.0578 -0.0577
ψt(x) -0.4011 -0.4087 -0.4087 -0.4087 -0.4088 -0.4088
γ 100 (95,85) 11 0.5427 0.5461 0.5464 0.5458 0.5457 0.5446

Case III ξ 5.1743 5.1518 5.3343 4.9739 5.1273 5.0558
ψ(x) -0.0573 -0.0574 -0.0574 -0.0574 -0.0574 -0.0572
ψt(x) -0.3025 -0.3998 -0.3998 -0.3998 -0.3998 -0.3997

We note from the study of this application that the BE of extropy and its residual yields a smaller
value than the MLE. The BE of extropy and its residual via BLN and BGE loss functions at q = 0.6
takes a large value compared to their values at q = −0.6. Finally, we reach the conclusion that the
simulated research is supported by real data.

7. Conclusions

We have investigated extropy as a supplementary dual of entropy and an alternative measure of
uncertainty in this paper, as well as investigating residual extropy as a measure of residual uncertainty
of a non-negative random variable for the EGD. The maximum likelihood and Bayesian estimation of
the parameters, extropy and residual extropy for the EGD under the GT-I HCS are discussed in this
paper. The BE of extropy and residual extropy for the EGD is derived based on BLOFs (BSEL, BLN,
BGE). In terms of their MSE, the Lindley method is used to determine the BEs of extropy and residual
extropy with BSEL, BLN, and BGE loss functions. Application to real-world data is available.

In general, the MSE values decrease as the number of failures rises, according to the results of
the study. When compared to different estimates, the BE of residual extropy under the BLN loss
function performed well, and the extropy under the BGE loss function performed well in the majority
of situations. By increasing the number of failures r or k, the BEs of extropy are raised. Additionally,
increasing the number of failures r or k decreases the BEs of residual extropy. From the application
result for a positive value of q, the BE values for extropy and its residual using the BLN and BGE loss
functions are larger than the opposite for a negative value of q. Finally, we have highlighted that data
outputs and simulations are significant.
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Appendix A.
The Fisher information matrix is presented here as follows:

(σi j)N×N = −( ∂2l
∂ξ∂γ

)−1 , where l is the likelihood function and this matrix is given by

σi j =

 − ∂2l
∂ξ2 − ∂2l

∂ξ∂γ

− ∂2l
∂γ∂ξ

− ∂2l
∂γ2

−1

(ξ̂,γ̂)

;

using Eqs (3.5) and (3.6), we have

∂2l
∂2ξ

=
−D
ξ2 −

(n − D) log[1 − (1 + γc)e−γc]2[1 − (1 + γc)e−γc]2ξ

(1 − [1 − (1 + γc)e−γc]ξ)2

−
(n − D) log[1 − (1 + γc)e−γc]2[1 − (1 + γc)e−γc]ξ

1 − [1 − (1 + γc)e−γc]ξ
,

∂2l
∂2γ

=
−2D
γ2 −

(n − D)(1 − (1 + γc)e−γc)ξ−1[c2e−γc − c3γe−cγ]ξ

1 − [1 − (1 + γc)e−γc]ξ

−
ξ(ξ − 1)(n − D)(c2γe−cγ)2(1 − (1 + cγ)e−cγ)ξ−2

1 − [1 − (1 + γc)e−γc]ξ

−
(n − D)ξ2(c2γe−cγ)2(1 − (1 + cγ)e−cγ)−2+2ξ)

(1 − [1 − (1 + γc)e−γc]ξ)2

+ (ξ − 1)
D∑

i=1

(
−

(γx2
i e−γxi)2

(1 − (1 + γxi)e−γxi)2 +
e−γxi x2

i − γx3
i e−γxi

1 − (1 + γxi)e−γxi

)
,

and
∂2l
∂ξ∂γ

= −
(n − D)c2γe(−cγ)(1 − (1 + cγ)e(−cγ))(−1+ξ)

1 − [1 − (1 + γc)e−γc]ξ

−
(n − D)ξ(c2γe−cγ)(1 − (1 + cγ)e−cγ)(−1+2ξ)) log(1 − (1 + cγ)e−cγ

(1 − [1 − (1 + γc)e−γc]ξ)2

−
(n − D)ξc2γe−cγ[1 − (1 + cγ)e−cγ](−1+ξ) log[1 − (1 + cγ)e−cγ]

1 − [1 − (1 + γc)e−γc]ξ

+

D∑
i=1

γx2
i e−γxi

1 − (1 + γxi)e−γxi
=

∂2l
∂γ∂ξ

.
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