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1. Introduction

The problem of Ulam stability can be formulated for various functional equations. The starting
point of Ulam stability theory was a problem formulated by Ulam in 1940 in a talk at the University of
Wisconsin-Madison concerning the approximate solutions of group homomorphisms. Generally, we
say that an equation is Ulam stable if for every approximate solution of the equation there exists an
exact solution of the equation near it (see the papers [10,16,18,23,25]). For more details on the Ulam
stability on the functional equations, see the monographs [17,19]. The problem can be also formulated
for difference equations. Since a discrete dynamical system is described by a difference equation,
this type of stability is related to the notion of perturbation of such a system. The Ulam stability of
difference equations was intensively studied in the recent years (see for more details [10]).

Recently many papers on Hyers-Ulam stability of difference equations are devoted to the relation
of it with hyperbolicity and the exponential dichotomy. Remark here the papers by D. Dragičević
concerning some nonautonomous and nonlinear difference equations [12–14]. D. R. Anderson and
M. Onitsuka gave interesting results on the influence of stepsize in Hyers-Ulam stability of the first
order difference equations and on the best constant of some second order linear difference equations
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with constant coefficients [1, 20]. Recall also the results given by A. R. Baias, J. Brzdek, D. Popa
et al. in the characterization of Ulam stability and on the best constant for various linear and nonlinear
difference equations [2–5, 7, 11, 15].

Let K be either the field R of real numbers or the field C of complex numbers and X be a Banach
space over K. Consider the difference equation

xn+p = fn(xn, xn+1, . . . , xn+p−1), n ∈ N, p ∈ N∗, (1.1)

where fn : Xp → X and x0, x1, . . . , xp−1 ∈ X.

Definition 1.1. The Eq (1.1) is called Ulam stable if there exists a constant L ≥ 0 such that for every
ε > 0 and every sequence (xn)n≥0 in X satisfying

∥xn+p − fn(xn, xn+1, . . . , xn+p−1)∥ ≤ ε, n ∈ N, (1.2)

there exists a sequence (yn)n≥0 in X such that

yn+p = fn(yn, yn+1, . . . , yn+p−1), n ∈ N (1.3)

and
∥xn − yn∥ ≤ Lε, n ∈ N. (1.4)

Remark 1.2. If in Definition 1.1, ε is replaced by a sequence of positive numbers (εn)n≥0 and Lε by
a sequence (δn)n≥0 depending on (εn)n≥0, then we get the notion of generalized Ulam stability. The
number L is called an Ulam constant of the Eq (1.1). Denote by LR the infimum of all Ulam constants
of the Eq (1.1).

In particular, for p = 1, we consider the linear difference equation

xn+1 = anxn + bn, n ≥ 0, (1.5)

with (an)n≥0 a sequence in K and (bn)n≥0 a sequence in X.
The following result concerning the generalized Ulam stability of (1.5) can be found in [21].

Theorem 1.3. Let (εn)n≥0 be a sequence of positive numbers such that

lim sup
εn

εn−1|an|
< 1 or lim inf

εn

εn−1|an|
> 1. (1.6)

Then there exists L ≥ 0 such that for every sequence (xn)n≥0 in X satisfying

∥xn+1 − anxn − bn∥ ≤ εn, n ≥ 0, (1.7)

there exists a sequence (yn)n≥0 in X such that

yn+1 = anyn + bn, n ≥ 0 (1.8)

and
∥xn − yn∥ ≤ Lεn−1, n ≥ 1. (1.9)

Remark 1.4. If in Theorem 1.3, we take εn = ε, n ≥ 0, then the condition (1.6) becomes

lim sup
1
|an|
< 1 or lim inf

1
|an|
> 1. (1.10)

On the other hand it was proved that if lim
n→∞
|an| = 1, then (1.5) is not stable (see [8]).

So, we obtain the following result.

Theorem 1.5. Suppose that lim
n→∞
|an| exists. Then the Eq (1.5) is Ulam stable if and only if lim

n→∞
|an| , 1.
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2. Second order equations

Let (an)n≥0 and (bn)n≥0 be sequences in K and (cn)n≥0 a sequence in X. In what follows we deal with
Ulam stability of the second order linear difference equation

xn+2 = anxn+1 + bnxn + cn, n ≥ 0, (2.1)

where x0, x1 ∈ X.
The following results will be useful in the sequel.

Lemma 2.1. Suppose that (xn)n≥0 satisfies (2.1) and let (un)n≥0 be a sequence in K defined by the
Riccati difference equation

un+1 = an +
bn

un
, n ≥ 0, u0 ∈ K. (2.2)

If (zn)n≥0 is given by the relation
zn = xn+1 − unxn, n ≥ 0, (2.3)

then
zn+1 = (an − un+1)zn + cn, n ≥ 0. (2.4)

Proof. From (2.1) it follows that

xn+2 − un+1xn+1 = anxn+1 − un+1xn+1 + bnxn + cn

= (an − un+1)xn+1 + bnxn + cn

= (an − un+1)(xn+1 +
bn

an − un+1
xn) + cn

= (an − un+1)(xn+1 −
un

bn
bnxn) + cn

= (an − un+1)(xn+1 − unxn) + cn

= (an − un+1)zn + cn, n ≥ 0.

□

Lemma 2.2. Let (An)n≥0, An =

(
pn qn

rn sn

)
, be a sequence of matrices with entries in K and (vn)n≥0 be

the sequence defined by the difference equation

vn+1 =
pnvn + qn

rnvn + sn
, n ≥ 0, x0 ∈ K.

Then
vn =

αnv0 + βn

γnv0 + δn
, n ≥ 1,

where

An−1 · . . . · A0 =

(
αn βn

γn δn

)
, n ≥ 1.

Proof. The proof may be established by using mathematical induction on n. □
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Remark 2.3. In particular, for the sequence (un)n≥0 given by (2.1) we get

un =
αnu0 + βn

αn−1u0 + βn−1
, n ≥ 1,

where An =

(
an bn

1 0

)
, n ≥ 0, and

An−1 · . . . · A0 =

(
αn βn

αn−1 βn−1

)
, n ≥ 1.

Lemma 2.4. If the equation xn+1 − unxn − zn = 0 is Ulam stable with the constant L1 and the Eq (2.4)
is Ulam stable with the constant L2, then the Eq (2.1) is Ulam stable with the constant L1L2.

Proof. Let ε > 0 and let (xn)n≥0 be a sequence in X such that

∥xn+2 − anxn+1 − bnxn − cn∥ ≤ ε, n ≥ 0.

Put zn = xn+1 − unxn, where (un)n≥0 satisfies relation (2.2). Then

∥zn+1 − (an − un+1)zn − cn∥ ≤ ε, n ≥ 0,

so according to the stability of the Eq (2.4), there exists (wn)n≥0,

wn+1 = (an − un+1)wn + cn, n ≥ 0, (2.5)

such that
∥zn − wn∥ ≤ L2ε, n ≥ 0.

Taking account of (2.3) we get

∥xn+1 − unxn − wn∥ ≤ L2ε, n ≥ 0.

Now, since the Eq (2.3) is Ulam stable, it follows that there exists a sequence (yn)n≥0, satisfying the
relation

yn+1 = unyn + wn, n ≥ 0, (2.6)

such that
∥xn − yn∥ ≤ L1L2ε, n ≥ 0. (2.7)

To complete the proof it remains to show that (wn)n≥0 satisfies the Eq (2.1). For this we replace (yn)n≥0

from (2.6) to (2.5) and we obtain

yn+2 − un+1yn+1 = (an − un+1)(yn+1 − unyn) + cn.

Finally, taking account of the relation (2.2), we get

yn+2 = anyn+1 + bnyn + cn, n ≥ 0.

The theorem is proved. □
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The main result on the stability of the Eq (2.1) is given in the next theorem.

Theorem 2.5. Suppose that for the sequence (un)n≥0 given by (2.2), lim
n→∞
|un|, lim

n→∞
|an − un+1| exist and:

1) lim
n→∞
|un| , 1;

2) lim
n→∞
|an − un+1| , 1.

Then the Eq (2.1) is Ulam stable.

In the following theorem we present a nonstability result for the Eq (2.1).

Theorem 2.6. If there exists u0 ∈ K such that lim
n→∞
|an − un+1| = 1 and (un)n≥0 is bounded, then the

Eq (2.1) is not Ulam stable.

Proof. Let ε > 0. Since lim
n→∞
|an − un+1| = 1, from Theorem 1.5 it follows that the equation

zn+1 = (an − un+1)zn + cn

is not Ulam stable, i.e., there exists a sequence (z̄n)n≥0 in X, satisfying the inequality

∥z̄n+1 − (an − un+1)z̄n − cn∥ ≤ ε, n ≥ 0, (2.8)

such that for every sequence (ȳn)n≥0 with

ȳn+1 = (an − un+1)ȳn + cn, n ≥ 0, (2.9)

we have
sup
n≥0
∥ȳn − z̄n∥ = ∞. (2.10)

Let (xn)n≥0 be a sequence in X defined by the relation

xn+1 − unxn = z̄n, n ≥ 0 (2.11)

(it suffices to take x0 = 0 in order to determine (xn)n≥0 step by step).
The inequality (2.8) implies that the sequence (xn)n≥0 satisfies

∥xn+2 − anxn+1 − bnxn − cn∥ ≤ ε, n ≥ 0. (2.12)

Let now (yn)n≥0 be an arbitrary sequence defined by

yn+2 = anyn+1 + bnyn + cn

and (ȳn)n≥0 be the sequence given by

ȳn = yn+1 − unyn, n ≥ 0. (2.13)

Then the relations (2.9) and (2.10) hold.
Finally, we have to prove that supn≥0 ∥ȳn − z̄n∥ = ∞. Suppose the contrary. Then there exists M > 0

such that
∥xn − yn∥ ≤ M, n ≥ 0.
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From (2.11) and (2.13) it follows that

∥ȳn − z̄n∥ = ∥yn+1 − unyn − xn+1 + unxn∥

≤ ∥yn+1 − xn+1∥ + |un| · ∥yn − xn∥

≤ (1 + |un|) · M,

for every n ≥ 0, which contradicts relation (2.10), if we take also into account that (un)n≥0 is bounded.
□

The following examples illustrate our theoretical results.

Example 2.7. Suppose that X is a Banach space over C. The linear recurrence

xn+2 = −2ein π2 xn+1 + i(−1)nxn, n ≥ 0, x0 ∈ X,

is not Ulam stable.
Indeed, in this case un+1 = −2ein π2 +

i(−1)n

un
. Further, taking u0 = i, one can show that (un)n≥0 is

bounded and lim
n→∞
|an − un+1| = 1, since un = iein π2 , n ≥ 0 (induction on n).

Example 2.8. Let X be a Banach space over R. The linear recurrence

xn+2 = −2
2n2 − n − 2

(2n + 1)(2n + 3)
xn+1 +

1
2n + 3

xn, n ≥ 0, x0, x1 ∈ X,

is not Ulam stable.
Indeed, if we take u0 = −1, then un =

1
2n−1 , n ≥ 1 and hence (un)n≥0 is bounded with lim

n→∞
|an−un+1| =

1.

Example 2.9. Suppose that X is a Banach space over C. The linear recurrence

xn+2 = (−1)n+1xn, n ≥ 0, x0 ∈ X,

is not Ulam stable.
Indeed, if we take u0 = e

πi
4 , then un = e

2n+1
4 πi, n ≥ 1 and hence (un)n≥0 is bounded with lim

n→∞
|an−un+1| =

1.

We present and discuss finally some particular cases and we give an example of Ulam stability
for (2.1). We also mention that the following result contains in particular the case of stability for the
linear difference equation with constant coefficients proved in [9, 10].

Corollary 2.10. Let a, b ∈ K and c ∈ X. The linear difference equation of the second order with
constant coefficients

xn+2 = axn+1 + bxn + c, n ≥ 0 (2.14)

is Ulam stable if and only if none of the roots of the characteristic equation λ2 − aλ − b = 0 lie on the
unit circle.

Proof. If for all n ≥ 0, an = a and bn = b in (2.1), then un+1 = a + b
un

, n ≥ 0, and by Remark 2.3,

un =
αnu0 + βn

αn−1u0 + βn−1
, n ≥ 1,
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where A =
(

a b
1 0

)
and

An =

(
αn βn

αn−1 βn−1

)
, n ≥ 1.

Suppose in what follows that the eigenvalues λ1 and λ2 of A, i.e. the roots of the characteristic
equation λ2 − aλ − b = 0, are distinct. Then a − λ1 = λ2 and

An = (λ1)nB + (λ2)nC, n ≥ 0, (2.15)

where B = 1
λ2−λ1

(
λ2 − a −b
−1 λ2

)
and C = 1

λ2−λ1

(
a − λ1 b

1 −λ1

)
.

Hence,

αnu0 + βn =
(λ1)n

λ2 − λ1
(u0(λ2 − a) − b) +

(λ2)n

λ2 − λ1
(u0(a − λ1) + b)

and consequently,

un =
(λ1)n (u0(λ2 − a) − b) + (λ2)n (u0(a − λ1) + b)

(λ1)n−1 (u0(λ2 − a) − b) + (λ2)n−1 (u0(a − λ1) + b)
, n ≥ 1. (2.16)

Next we show that the Eq (2.14) is Ulam stable if and only if |λ1| , 1 and |λ2| , 1. Indeed, to prove
the necessity, let us suppose without loss of generality that |λ1| = 1. Taking u0 = λ2, we get un = λ2

and limn→∞ |an − un+1| = |λ1| = 1. Hence, according to Theorem 2.6, the Eq (2.14) is not Ulam stable
and we get a contradiction. Conversely, if |λ1| , 1 and |λ2| , 1, it is sufficient to consider u0 = λ1.
Hence un = λ1, limn→∞ |un| , 1 and limn→∞ |an − un+1| = |λ2| , 1. It follows that the Eq (2.14) is Ulam
stable and the proof is complete.

Similarly, one can easily remark that the previous assertion remains also true for λ1 = λ2. In this
case, λ1 = λ2 =

a
2 , b = −a2

4 and
An = (λ1)n(Cn + B), n ≥ 0, (2.17)

where B = I2 and C =
(

1 −a
2

2
a −1

)
, for a , 0.

Hence,
αnu0 + βn =

(a
2

)n (
(n + 1)u0 −

a
2

n
)

and consequently,

un =

a
2

(
(n + 1)u0 −

a
2n

)
nu0 −

a
2 (n − 1)

, n ≥ 1.

Furthermore, lim
n→∞
|un| = lim

n→∞
|an − un+1| = |

a
2 | and the Eq (2.14) is Ulam stable if and only if |a| ,

2. □

Corollary 2.11. Let (bn)n≥0 be a sequence in K \ {0} and (cn)n≥0 a sequence in X. The linear difference
equation

xn+2 = bnxn + cn, n ≥ 0 (2.18)

is Ulam stable if the following two limits exist and

lim
n→∞

∣∣∣∣∣∣
∏n

k=1 b2k−1u0∏n−1
k=0 b2k

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣
∏n

k=0 b2k∏n
k=1 b2k−1u0

∣∣∣∣∣∣ , 1. (2.19)
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Proof. Indeed, for an = 0 in (2.1), we get un+1 =
bn
un

, hence An =

(
0 bn

1 0

)
, n ≥ 0. Further, applying

Remark 2.3, we get

u2n =

∏n
k=1 b2k−1u0∏n−1

k=0 b2k
, u2n+1 =

∏n
k=0 b2k∏n

k=1 b2k−1u0
(2.20)

for all n ≥ 1. Finally, taking into account Theorem 2.5, we obtain the desired conclusion. □

Corollary 2.12. The linear difference equation

xn+2 = anxn+1 + (α2 − αan)xn + cn, n ≥ 0 (2.21)

is Ulam stable if for some δ0 ∈ K, the sequence

δn = α
nδ0 + (δ0 − α)

n∑
k=1

αn−k
k−1∏
s=0

(as − α), n ≥ 1 (2.22)

satisfies the relations lim
n→∞
|
δn
δn−1
| , 1 and lim

n→∞
|an −

δn+1
δn
| , 1.

Proof. By Remark 2.3,

un =
αnu0 + βn

αn−1u0 + βn−1
, n ≥ 1, (2.23)

where αn = an−1αn−1 + α(α − an−1)αn−2

βn = an−1βn−1 + α(α − an−1)βn−2, n ≥ 2

and α0 = 1, β0 = 0, α1 = a0, β1 = α
2 − αa0. Observe now that

αn − ααn−1 = (an−1 − α)(αn−1 − ααn−2).

Denoting further γn = αn − ααn−1 (n ≥ 1), where γ1 = a0 − α, one obtains γn := (an−1 − α)γn−1 (n ≥ 2)
and consequently,

γn =

n−1∏
k=0

(ak − α).

Thus, αn = ααn−1 +
∏n−1

k=0(ak − α), n ≥ 1. Further, putting yn−1
yn

(n ≥ 1) with y0 = 1 instead of the first α
below, we may deduce that yn =

1
αn , and finally

αn = a0α
n−1 +

n∑
k=2

αn−k
k−1∏
s=0

(as − α), n ≥ 2.

Similarly, one may show that

βn = (α − a0)αn −

n∑
k=2

αn−k+1
k−1∏
s=0

(as − α), n ≥ 2.

Hence, if we take δ0 = u0 and we substitute the above expressions in (2.23), one obtains an explicit
formula for un, more precisely un =

δn
δn−1
, n ≥ 1. Finally, applying Theorem 2.5 we finish the proof. □

AIMS Mathematics Volume 8, Issue 9, 20254–20268.



20262

Example 2.13. The linear recurrence

xn+2 = 2
2n + 3
n + 1

xn+1 − 4
n + 2
n + 1

xn, n ≥ 0 (2.24)

is Ulam stable.
Indeed, since the Eq (2.24) is a particular case of (2.21) with α = 2, an = 22n+3

n+1 and cn = 0, we
deduce that

δn = (n + 1)(n + 2)2n−1(δ0 − 2) + 2n+1, n ≥ 1

and, consequently,

δn

δn−1
= 2

(n + 1)(n + 2)(δ0 − 2) + 4
n(n + 1)(δ0 − 2) + 4

, n ≥ 1.

Moreover, lim
n→∞
|
δn
δn−1
|= lim

n→∞
|an −

δn+1
δn
| = 2. Hence, using Corollary 2.12, we conclude that the linear

difference equation (2.1) is Ulam stable.

3. Third order equations

Consider in the following the third order linear difference equation

xn+3 = anxn+2 + bnxn+1 + cnxn + dn, n ≥ 0, (3.1)

where (an)n≥0, (bn)n≥0, (cn)n≥0 are sequences in K and (dn)n≥0 is a sequence in X.

Lemma 3.1. Suppose that (xn)n≥0 satisfies (3.1). Consider

zn = xn+1 − unxn, n ≥ 0 (3.2)

and
z′n = xn+1 − u′nxn, n ≥ 0 (3.3)

where (un)n≥0 and (u′n)n≥0 are sequences in K defined as follows:

un+2 = an +
bn

un+1
+

cn

unun+1
, n ≥ 0, u0, u1 ∈ K (3.4)

and

u′n+1 = an − un+2 +
(an − un+2)un+1 + bn

u′n
, n ≥ 0, u′0 ∈ K. (3.5)

Then
zn+2 = (an − un+2)zn+1 + ((an − un+2)un+1 + bn) zn + dn, n ≥ 0 (3.6)

and
z′n+1 = (an − un+2 − u′n+1)z′n + dn, n ≥ 0. (3.7)
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Proof. From (3.4) it follows that

−
cn

un
= (an − un+2)un+1 + bn

and hence, using (3.1) and (3.6) one gets

zn+2 = (an − un+2)xn+2 + bnxn+1 + cnxn + dn

= (an − un+2)(xn+2 − un+1xn+1) + (an − un+2)un+1xn+1

+ bnxn+1 + cnxn + dn

= (an − un+2)zn+1 + [(an − un+2)un+1 + bn](xn+1 − unxn)

−
cn

un
unxn + cnxn + dn

= (an − un+2)zn+1 + [(an − un+2)un+1 + bn]zn + dn.

Finally, proceeding similarly to the proof of 2.1 one can show that (z′n)n≥0 satisfies (3.7). □

Remark 3.2. Observe that the sequence (un)n≥0 defined above can be written in the following form

un+2 =
anunun+1 + bnun + cn

unun+1
, n ≥ 0

and, consequently

un =
αnu0u1 + βnu0 + γn

αn−1u0u1 + βn−1u0 + γn−1
, n ≥ 1

where An =


an bn cn

1 0 0
0 1 0

 with A0 =


α2 β2 γ2

α1 β1 γ1

α0 β0 γ0

 and

An−2 · . . . · A0 =


αn βn γn

αn−1 βn−1 γn−1

αn−2 βn−2 γn−2

 , n ≥ 2.

Lemma 3.3. If the equation xn+1 − unxn − zn = 0 is Ulam stable with the constant L1 and (3.6) is Ulam
stable with the constant L2, then the Eq (3.1) is Ulam stable with the constant L1L2.

Proof. Let ε > 0 and let (xn)n≥0 be a sequence in X such that

∥xn+3 − anxn+2 − bnxn+1 − cnxn − dn∥ ≤ ε, n ≥ 0.

Put zn = xn+1 − unxn, where (un)n≥0 satisfies relation (3.4). Then

∥zn+2 − (an − un+2)zn+1 − [(an − un+2)un+1 + bn]zn − dn∥ ≤ ε, n ≥ 0

and there exists (wn)n≥0,

wn+2 = (an − un+2)wn+1 + [(an − un+2)un+1 + bn]wn + dn, n ≥ 0, (3.8)
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such that
∥zn − wn∥ ≤ L2ε, n ≥ 0.

Taking account of (3.2) we get

∥xn+1 − unxn − wn∥ ≤ L2ε, n ≥ 0.

Now, since the Eq (3.2) is Ulam stable and its stability does not depend on zn, it follows that there
exists a sequence (yn)n≥0,

yn+1 = unyn + wn, n ≥ 0, (3.9)

such that
∥xn − yn∥ ≤ L1L2ε, n ≥ 0. (3.10)

To complete the proof it remains for us to show that (yn)n≥0 satisfies the Eq (3.1). For this we replace
(wn)n≥0 from (3.9) to (3.8) and we obtain

yn+3 = anyn+2 + bnyn+1 − [(an − un+2)unun+1 + bnun]yn + dn.

Finally, taking account of relation (3.4), we obtain

yn+3 = anyn+2 + bnyn+1 + cnyn + dn.

□

The following result holds as a direct consequence of Lemma 2.4 and Lemma 3.3.

Lemma 3.4. If the equation xn+1−unxn−zn = 0 is Ulam stable with the constant L1, zn+1−u′nzn−z′n = 0
is Ulam stable with the constant L2 and (3.7) is Ulam stable with the constant L3, then (3.1) is Ulam
stable with the constant L1L2L3.

As a consequence of Theorem 1.5 and Lemma 3.4, we get the following result on Ulam stability for
the Eq (3.1).

Theorem 3.5. Suppose that for the sequences (un)n≥0 and (u′n)n≥0 given by (3.4) and (3.5), respectively,
lim
n→∞
|un|, lim

n→∞
|u′n|, lim

n→∞
|an − un+2 − u′n+1| exist and:

1) lim
n→∞
|un| , 1;

2) lim
n→∞
|u′n| , 1;

3) lim
n→∞
|an − un+2 − u′n+1| , 1.

Then the Eq (3.1) is Ulam stable.

Example 3.6. The following linear recurrence

xn+3 =
4n + 5
n + 1

xn+2 −
1 + 4(n + 1)(n + 2)2

(n + 2)(n + 1)2 xn+1 +
2 + 4(n + 1)(n + 2)

(n + 2)(n + 1)2 xn

is Ulam stable.
Indeed, in this case, if we take u0 = u1 = 2 and u′0 = 1, one can see that un = 2 and u′n =

1
n+1 for all

n ≥ 0. Thus, all the assumptions of Theorem 3.5 are fulfilled, which means that we have stability.
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A nonstability result for the Eq (3.1), similar to the one obtained for the second order linear
difference equation (2.1), holds.

Theorem 3.7. If the Eq (3.6) is not Ulam stable and there exist u0, u1 ∈ K such that (un)n≥0 is bounded,
then the Eq (3.1) is not Ulam stable.

Proof. Let ε > 0. Since (3.6) is not Ulam stable, i.e. there exists a sequence (z̄n)n≥0 in X, satisfying the
inequality

∥z̄n+2 − (an − un+2)z̄n+1 − [(an − un+2)un+1 + bn]z̄n − dn∥ ≤ ε, n ≥ 0 (3.11)

such that for every sequence (ȳn)n≥0 with

ȳn+2 = (an − un+2)ȳn+1 + [(an − un+2)un+1 + bn]ȳn + dn, n ≥ 0 (3.12)

we have
sup
n≥0
∥ȳn − z̄n∥ = ∞. (3.13)

Let (xn)n≥0 be such that
xn+1 − unxn = z̄n, n ≥ 0 (3.14)

(it suffices to take x0 = 0 in order to determine (xn)n≥0 step by step). Inequality 3.11 implies that the
sequence (xn)n≥0 satisfies

∥xn+3 − anxn+2 − bnxn+1 − cnxn − dn∥ ≤ ε, n ≥ 0. (3.15)

Let now (yn)n≥0 be an arbitrary sequence defined by

yn+3 = anyn+2 + bnyn+1 + cnyn + dn

and (ȳn)n≥0 be the sequence given by

ȳn = yn+1 − unyn, n ≥ 0. (3.16)

Then the relations (3.12) and (3.13) hold.
Finally, we have to prove that supn≥0 ∥ȳn − z̄n∥ = ∞. Suppose the contrary. Then there exists M > 0

such that
∥xn − yn∥ ≤ M, n ≥ 0.

From (3.14) and (3.16) it follows that

∥ȳn − z̄n∥ = ∥yn+1 − unyn − xn+1 + unxn∥

≤ ∥yn+1 − xn+1∥ + |un| · ∥yn − xn∥

≤ (1 + |un|) · M,

for every n ≥ 0, which contradicts relation (3.13), if we take also into account that (un)n≥0 is bounded.
□

The next corollary gives sufficient conditions for Eq (3.1) to be not Ulam stable. To prove this, just
take into account Lemma 3.1, Theorem 2.6 and Theorem 3.7.
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Corollary 3.8. If there exist u0, u1, u′0 ∈ K such that (un)n≥0 and (u′n)n≥0 are bounded and lim
n→∞
|an −

un+2 − u′n+1| = 1, then the Eq (3.1) is not Ulam stable.

Example 3.9. The following linear recurrence

xn+3 =
1

n + 2
xn+2 +

n2 + 3n + 1
(n + 1)(n + 2)

xn+1 −
1

n + 1
xn

is not Ulam stable. Indeed, letting u0 = u1 = −1 and u′0 = 1, we get un = −1 and u′n =
1

n+1 for all n ≥ 0
and consequently lim

n→∞
|an − un+2 − u′n+1| = 1, which means that we do not have stability.

For the case of constant coefficients in the Eq (3.1), we get the result given in [22].

Corollary 3.10. The third order linear difference equation with constant coefficients

xn+3 = axn+2 + bxn+1 + cxn + d, n ≥ 0, (3.17)

is Ulam stable if and only if none of the roots of the characteristic equation λ3 − aλ2 − bλ − c = 0 lie
on the unit circle.

Proof. Indeed, let λ1, λ2 and λ3 be the roots of the characteristic equation and suppose without loss of
generality that |λ1| = 1 and take u0 = u1 = λ2, u′0 = λ3. Then, using Corollary 3.8 and Vieta’s formulas,
i.e. the relations λ1 + λ2 + λ3 = a, λ1λ2 + λ1λ3 + λ2λ3 = −b and λ1λ2λ3 = c, one can easily check that
un = λ2, n ≥ 2 and u′n = λ3, n ≥ 1. Moreover, limn→∞ |a − un+2 − u′n+1| = |a − λ2 − λ3| = |λ1|, which
means that (3.17) is not Ulam stable, a contradiction. Conversely, if |λ1| , 1, |λ2| , 1 and |λ3| , 1, it is
sufficient to consider u0 = u1 = λ1 and u′0 = λ2. Indeed, due to the choice of the initial values it follows
that limn→∞ |un| = |λ1| , 1, limn→∞ |u′n| = |λ2| , 1 and limn→∞ |a− un+2 − u′n+1| = |a− λ1 − λ2| = |λ3| , 1.
Finally, the Eq (3.17) is Ulam stable, by Theorem 3.5. □

Finally, it is worth mentioning here that the result on nonstability of (3.1) contains in particular the
case of nonstability for constant coefficients proved in [6, 9, 10, 22, 24].

4. Conclusions

In this paper we give some results on Ulam stability for the second order and for the third order
linear difference equation with nonconstant coefficients in a Banach space. As far as we know there
are few results on Ulam stability for such equations (see, e.g., [11–13]). The novelty of this approach
consists in the fact that we decompose the second order linear difference equation in a Riccati difference
equation and a linear difference equation. In this way we can use the results on Ulam stability of the
first order linear difference equation.

The importance of these results consists in the fact that they are related to the theory of perturbation
of a discrete dynamical system (see [15]). Remark that for difference equations with constant
coefficients we get the results obtained in the paper [3].
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