Research article

On Ulam stability of a second order linear difference equation

Delia-Maria Kerekes*, Bianca Moșneguțu and Dorian Popa
Department of Mathematics, Technical University of Cluj-Napoca, 28 Memorandumului St., 400114, Cluj-Napoca, Romania
* Correspondence: Email: Delia.Kerekes@math.utcluj.ro.

Abstract

In this paper we obtain some Ulam stability results for the second order and the third order linear difference equation with nonconstant coefficients in a Banach space. The main idea of the approach is to decompose the second order linear difference equation in a Riccati difference equation and a first order difference equation. In this way we extend some results for linear difference equations with constant coefficients and for linear difference equations with periodic coefficients.

Keywords: Ulam stability; approximate solution; linear difference equation; Riccati difference equation; nonconstant coefficients
Mathematics Subject Classification: Primary 39A30, Secondary 39B82

1. Introduction

The problem of Ulam stability can be formulated for various functional equations. The starting point of Ulam stability theory was a problem formulated by Ulam in 1940 in a talk at the University of Wisconsin-Madison concerning the approximate solutions of group homomorphisms. Generally, we say that an equation is Ulam stable if for every approximate solution of the equation there exists an exact solution of the equation near it (see the papers $[10,16,18,23,25]$). For more details on the Ulam stability on the functional equations, see the monographs [17,19]. The problem can be also formulated for difference equations. Since a discrete dynamical system is described by a difference equation, this type of stability is related to the notion of perturbation of such a system. The Ulam stability of difference equations was intensively studied in the recent years (see for more details [10]).

Recently many papers on Hyers-Ulam stability of difference equations are devoted to the relation of it with hyperbolicity and the exponential dichotomy. Remark here the papers by D. Dragičević concerning some nonautonomous and nonlinear difference equations [12-14]. D. R. Anderson and M. Onitsuka gave interesting results on the influence of stepsize in Hyers-Ulam stability of the first order difference equations and on the best constant of some second order linear difference equations
with constant coefficients [1, 20]. Recall also the results given by A. R. Baias, J. Brzdek, D. Popa et al. in the characterization of Ulam stability and on the best constant for various linear and nonlinear difference equations [2-5, 7, 11, 15].

Let \mathbb{K} be either the field \mathbb{R} of real numbers or the field \mathbb{C} of complex numbers and X be a Banach space over \mathbb{K}. Consider the difference equation

$$
\begin{equation*}
x_{n+p}=f_{n}\left(x_{n}, x_{n+1}, \ldots, x_{n+p-1}\right), n \in \mathbb{N}, p \in \mathbb{N}^{*} \tag{1.1}
\end{equation*}
$$

where $f_{n}: X^{p} \rightarrow X$ and $x_{0}, x_{1}, \ldots, x_{p-1} \in X$.
Definition 1.1. The Eq (1.1) is called Ulam stable if there exists a constant $L \geq 0$ such that for every $\varepsilon>0$ and every sequence $\left(x_{n}\right)_{n \geq 0}$ in X satisfying

$$
\begin{equation*}
\left\|x_{n+p}-f_{n}\left(x_{n}, x_{n+1}, \ldots, x_{n+p-1}\right)\right\| \leq \varepsilon, n \in \mathbb{N} \tag{1.2}
\end{equation*}
$$

there exists a sequence $\left(y_{n}\right)_{n \geq 0}$ in X such that

$$
\begin{equation*}
y_{n+p}=f_{n}\left(y_{n}, y_{n+1}, \ldots, y_{n+p-1}\right), n \in \mathbb{N} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|x_{n}-y_{n}\right\| \leq L \varepsilon, n \in \mathbb{N} \tag{1.4}
\end{equation*}
$$

Remark 1.2. If in Definition 1.1, ε is replaced by a sequence of positive numbers $\left(\varepsilon_{n}\right)_{n \geq 0}$ and $L \varepsilon$ by a sequence $\left(\delta_{n}\right)_{n \geq 0}$ depending on $\left(\varepsilon_{n}\right)_{n \geq 0}$, then we get the notion of generalized Ulam stability. The number L is called an Ulam constant of the Eq (1.1). Denote by L_{R} the infimum of all Ulam constants of the Eq (1.1).

In particular, for $p=1$, we consider the linear difference equation

$$
\begin{equation*}
x_{n+1}=a_{n} x_{n}+b_{n}, n \geq 0, \tag{1.5}
\end{equation*}
$$

with $\left(a_{n}\right)_{n \geq 0}$ a sequence in \mathbb{K} and $\left(b_{n}\right)_{n \geq 0}$ a sequence in X.
The following result concerning the generalized Ulam stability of (1.5) can be found in [21].
Theorem 1.3. Let $\left(\varepsilon_{n}\right)_{n \geq 0}$ be a sequence of positive numbers such that

$$
\begin{equation*}
\lim \sup \frac{\varepsilon_{n}}{\varepsilon_{n-1}\left|a_{n}\right|}<1 \text { or } \liminf \frac{\varepsilon_{n}}{\varepsilon_{n-1}\left|a_{n}\right|}>1 \tag{1.6}
\end{equation*}
$$

Then there exists $L \geq 0$ such that for every sequence $\left(x_{n}\right)_{n \geq 0}$ in X satisfying

$$
\begin{equation*}
\left\|x_{n+1}-a_{n} x_{n}-b_{n}\right\| \leq \varepsilon_{n}, n \geq 0 \tag{1.7}
\end{equation*}
$$

there exists a sequence $\left(y_{n}\right)_{n \geq 0}$ in X such that

$$
\begin{equation*}
y_{n+1}=a_{n} y_{n}+b_{n}, n \geq 0 \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|x_{n}-y_{n}\right\| \leq L \varepsilon_{n-1}, n \geq 1 \tag{1.9}
\end{equation*}
$$

Remark 1.4. If in Theorem 1.3, we take $\varepsilon_{n}=\varepsilon, n \geq 0$, then the condition (1.6) becomes

$$
\begin{equation*}
\lim \sup \frac{1}{\left|a_{n}\right|}<1 \text { or } \lim \inf \frac{1}{\left|a_{n}\right|}>1 . \tag{1.10}
\end{equation*}
$$

On the other hand it was proved that if $\lim _{n \rightarrow \infty}\left|a_{n}\right|=1$, then (1.5) is not stable (see [8]).
So, we obtain the following result.
Theorem 1.5. Suppose that $\lim _{n \rightarrow \infty}\left|a_{n}\right|$ exists. Then the $E q$ (1.5) is Ulam stable if and only if $\lim _{n \rightarrow \infty}\left|a_{n}\right| \neq 1$.

2. Second order equations

Let $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ be sequences in \mathbb{K} and $\left(c_{n}\right)_{n \geq 0}$ a sequence in X. In what follows we deal with Ulam stability of the second order linear difference equation

$$
\begin{equation*}
x_{n+2}=a_{n} x_{n+1}+b_{n} x_{n}+c_{n}, n \geq 0, \tag{2.1}
\end{equation*}
$$

where $x_{0}, x_{1} \in X$.
The following results will be useful in the sequel.
Lemma 2.1. Suppose that $\left(x_{n}\right)_{n \geq 0}$ satisfies (2.1) and let $\left(u_{n}\right)_{n \geq 0}$ be a sequence in \mathbb{K} defined by the Riccati difference equation

$$
\begin{equation*}
u_{n+1}=a_{n}+\frac{b_{n}}{u_{n}}, n \geq 0, u_{0} \in \mathbb{K} \tag{2.2}
\end{equation*}
$$

If $\left(z_{n}\right)_{n \geq 0}$ is given by the relation

$$
\begin{equation*}
z_{n}=x_{n+1}-u_{n} x_{n}, n \geq 0, \tag{2.3}
\end{equation*}
$$

then

$$
\begin{equation*}
z_{n+1}=\left(a_{n}-u_{n+1}\right) z_{n}+c_{n}, n \geq 0 . \tag{2.4}
\end{equation*}
$$

Proof. From (2.1) it follows that

$$
\begin{aligned}
x_{n+2}-u_{n+1} x_{n+1} & =a_{n} x_{n+1}-u_{n+1} x_{n+1}+b_{n} x_{n}+c_{n} \\
& =\left(a_{n}-u_{n+1}\right) x_{n+1}+b_{n} x_{n}+c_{n} \\
& =\left(a_{n}-u_{n+1}\right)\left(x_{n+1}+\frac{b_{n}}{a_{n}-u_{n+1}} x_{n}\right)+c_{n} \\
& =\left(a_{n}-u_{n+1}\right)\left(x_{n+1}-\frac{u_{n}}{b_{n}} b_{n} x_{n}\right)+c_{n} \\
& =\left(a_{n}-u_{n+1}\right)\left(x_{n+1}-u_{n} x_{n}\right)+c_{n} \\
& =\left(a_{n}-u_{n+1}\right) z_{n}+c_{n}, n \geq 0 .
\end{aligned}
$$

Lemma 2.2. Let $\left(A_{n}\right)_{n \geq 0}, A_{n}=\left(\begin{array}{cc}p_{n} & q_{n} \\ r_{n} & s_{n}\end{array}\right)$, be a sequence of matrices with entries in \mathbb{K} and $\left(v_{n}\right)_{n \geq 0}$ be the sequence defined by the difference equation

$$
v_{n+1}=\frac{p_{n} v_{n}+q_{n}}{r_{n} v_{n}+s_{n}}, n \geq 0, x_{0} \in \mathbb{K} .
$$

Then

$$
v_{n}=\frac{\alpha_{n} v_{0}+\beta_{n}}{\gamma_{n} v_{0}+\delta_{n}}, n \geq 1
$$

where

$$
A_{n-1} \cdot \ldots \cdot A_{0}=\left(\begin{array}{cc}
\alpha_{n} & \beta_{n} \\
\gamma_{n} & \delta_{n}
\end{array}\right), n \geq 1 .
$$

Proof. The proof may be established by using mathematical induction on n.

Remark 2.3. In particular, for the sequence $\left(u_{n}\right)_{n \geq 0}$ given by (2.1) we get

$$
u_{n}=\frac{\alpha_{n} u_{0}+\beta_{n}}{\alpha_{n-1} u_{0}+\beta_{n-1}}, n \geq 1,
$$

where $A_{n}=\left(\begin{array}{cc}a_{n} & b_{n} \\ 1 & 0\end{array}\right), n \geq 0$, and

$$
A_{n-1} \cdot \ldots \cdot A_{0}=\left(\begin{array}{cc}
\alpha_{n} & \beta_{n} \\
\alpha_{n-1} & \beta_{n-1}
\end{array}\right), n \geq 1
$$

Lemma 2.4. If the equation $x_{n+1}-u_{n} x_{n}-z_{n}=0$ is Ulam stable with the constant L_{1} and the Eq (2.4) is Ulam stable with the constant L_{2}, then the Eq (2.1) is Ulam stable with the constant $L_{1} L_{2}$.

Proof. Let $\varepsilon>0$ and let $\left(x_{n}\right)_{n \geq 0}$ be a sequence in X such that

$$
\left\|x_{n+2}-a_{n} x_{n+1}-b_{n} x_{n}-c_{n}\right\| \leq \varepsilon, n \geq 0 .
$$

Put $z_{n}=x_{n+1}-u_{n} x_{n}$, where $\left(u_{n}\right)_{n \geq 0}$ satisfies relation (2.2). Then

$$
\left\|z_{n+1}-\left(a_{n}-u_{n+1}\right) z_{n}-c_{n}\right\| \leq \varepsilon, n \geq 0,
$$

so according to the stability of the $\operatorname{Eq}(2.4)$, there exists $\left(w_{n}\right)_{n \geq 0}$,

$$
\begin{equation*}
w_{n+1}=\left(a_{n}-u_{n+1}\right) w_{n}+c_{n}, n \geq 0, \tag{2.5}
\end{equation*}
$$

such that

$$
\left\|z_{n}-w_{n}\right\| \leq L_{2} \varepsilon, n \geq 0
$$

Taking account of (2.3) we get

$$
\left\|x_{n+1}-u_{n} x_{n}-w_{n}\right\| \leq L_{2} \varepsilon, n \geq 0
$$

Now, since the Eq (2.3) is Ulam stable, it follows that there exists a sequence $\left(y_{n}\right)_{n \geq 0}$, satisfying the relation

$$
\begin{equation*}
y_{n+1}=u_{n} y_{n}+w_{n}, n \geq 0, \tag{2.6}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left\|x_{n}-y_{n}\right\| \leq L_{1} L_{2} \varepsilon, n \geq 0 . \tag{2.7}
\end{equation*}
$$

To complete the proof it remains to show that $\left(w_{n}\right)_{n \geq 0}$ satisfies the Eq (2.1). For this we replace $\left(y_{n}\right)_{n \geq 0}$ from (2.6) to (2.5) and we obtain

$$
y_{n+2}-u_{n+1} y_{n+1}=\left(a_{n}-u_{n+1}\right)\left(y_{n+1}-u_{n} y_{n}\right)+c_{n} .
$$

Finally, taking account of the relation (2.2), we get

$$
y_{n+2}=a_{n} y_{n+1}+b_{n} y_{n}+c_{n}, n \geq 0 .
$$

The theorem is proved.

The main result on the stability of the $\mathrm{Eq}(2.1)$ is given in the next theorem.
Theorem 2.5. Suppose that for the sequence $\left(u_{n}\right)_{n \geq 0}$ given by (2.2), $\lim _{n \rightarrow \infty}\left|u_{n}\right|, \lim _{n \rightarrow \infty}\left|a_{n}-u_{n+1}\right|$ exist and:

1) $\lim _{n \rightarrow \infty}\left|u_{n}\right| \neq 1$;
2) $\lim _{n \rightarrow \infty}\left|a_{n}-u_{n+1}\right| \neq 1$.

Then the Eq (2.1) is Ulam stable.
In the following theorem we present a nonstability result for the Eq (2.1).
Theorem 2.6. If there exists $u_{0} \in \mathbb{K}$ such that $\lim _{n \rightarrow \infty}\left|a_{n}-u_{n+1}\right|=1$ and $\left(u_{n}\right)_{n \geq 0}$ is bounded, then the Eq (2.1) is not Ulam stable.

Proof. Let $\varepsilon>0$. Since $\lim _{n \rightarrow \infty}\left|a_{n}-u_{n+1}\right|=1$, from Theorem 1.5 it follows that the equation

$$
z_{n+1}=\left(a_{n}-u_{n+1}\right) z_{n}+c_{n}
$$

is not Ulam stable, i.e., there exists a sequence $\left(\bar{z}_{n}\right)_{n \geq 0}$ in X, satisfying the inequality

$$
\begin{equation*}
\left\|\bar{z}_{n+1}-\left(a_{n}-u_{n+1}\right) \bar{z}_{n}-c_{n}\right\| \leq \varepsilon, n \geq 0, \tag{2.8}
\end{equation*}
$$

such that for every sequence $\left(\bar{y}_{n}\right)_{n \geq 0}$ with

$$
\begin{equation*}
\bar{y}_{n+1}=\left(a_{n}-u_{n+1}\right) \bar{y}_{n}+c_{n}, n \geq 0, \tag{2.9}
\end{equation*}
$$

we have

$$
\begin{equation*}
\sup _{n \geq 0}\left\|\bar{y}_{n}-\bar{z}_{n}\right\|=\infty . \tag{2.10}
\end{equation*}
$$

Let $\left(x_{n}\right)_{n \geq 0}$ be a sequence in X defined by the relation

$$
\begin{equation*}
x_{n+1}-u_{n} x_{n}=\bar{z}_{n}, n \geq 0 \tag{2.11}
\end{equation*}
$$

(it suffices to take $x_{0}=0$ in order to determine $\left(x_{n}\right)_{n \geq 0}$ step by step).
The inequality (2.8) implies that the sequence $\left(x_{n}\right)_{n \geq 0}$ satisfies

$$
\begin{equation*}
\left\|x_{n+2}-a_{n} x_{n+1}-b_{n} x_{n}-c_{n}\right\| \leq \varepsilon, n \geq 0 . \tag{2.12}
\end{equation*}
$$

Let now $\left(y_{n}\right)_{n \geq 0}$ be an arbitrary sequence defined by

$$
y_{n+2}=a_{n} y_{n+1}+b_{n} y_{n}+c_{n}
$$

and $\left(\bar{y}_{n}\right)_{n \geq 0}$ be the sequence given by

$$
\begin{equation*}
\bar{y}_{n}=y_{n+1}-u_{n} y_{n}, n \geq 0 . \tag{2.13}
\end{equation*}
$$

Then the relations (2.9) and (2.10) hold.
Finally, we have to prove that $\sup _{n \geq 0}\left\|\bar{y}_{n}-\bar{z}_{n}\right\|=\infty$. Suppose the contrary. Then there exists $M>0$ such that

$$
\left\|x_{n}-y_{n}\right\| \leq M, n \geq 0
$$

From (2.11) and (2.13) it follows that

$$
\begin{aligned}
\left\|\bar{y}_{n}-\bar{z}_{n}\right\| & =\left\|y_{n+1}-u_{n} y_{n}-x_{n+1}+u_{n} x_{n}\right\| \\
& \leq\left\|y_{n+1}-x_{n+1}\right\|+\left|u_{n}\right| \cdot\left\|y_{n}-x_{n}\right\| \\
& \leq\left(1+\left|u_{n}\right|\right) \cdot M,
\end{aligned}
$$

for every $n \geq 0$, which contradicts relation (2.10), if we take also into account that $\left(u_{n}\right)_{n \geq 0}$ is bounded.

The following examples illustrate our theoretical results.
Example 2.7. Suppose that X is a Banach space over \mathbb{C}. The linear recurrence

$$
x_{n+2}=-2 e^{i n \frac{\pi}{2}} x_{n+1}+i(-1)^{n} x_{n}, n \geq 0, x_{0} \in X,
$$

is not Ulam stable.
Indeed, in this case $u_{n+1}=-2 e^{i n \frac{\pi}{2}}+\frac{i(-1)^{n}}{u_{n}}$. Further, taking $u_{0}=i$, one can show that $\left(u_{n}\right)_{n \geq 0}$ is bounded and $\lim _{n \rightarrow \infty}\left|a_{n}-u_{n+1}\right|=1$, since $u_{n}=i e^{i n \frac{\pi}{2}}, n \geq 0$ (induction on n).
Example 2.8. Let X be a Banach space over \mathbb{R}. The linear recurrence

$$
x_{n+2}=-2 \frac{2 n^{2}-n-2}{(2 n+1)(2 n+3)} x_{n+1}+\frac{1}{2 n+3} x_{n}, n \geq 0, x_{0}, x_{1} \in X,
$$

is not Ulam stable.
Indeed, if we take $u_{0}=-1$, then $u_{n}=\frac{1}{2 n-1}, n \geq 1$ and hence $\left(u_{n}\right)_{n \geq 0}$ is bounded with $\lim _{n \rightarrow \infty}\left|a_{n}-u_{n+1}\right|=$ 1.

Example 2.9. Suppose that X is a Banach space over \mathbb{C}. The linear recurrence

$$
x_{n+2}=(-1)^{n+1} x_{n}, n \geq 0, x_{0} \in X,
$$

is not Ulam stable.
Indeed, if we take $u_{0}=e^{\frac{\pi i}{4}}$, then $u_{n}=e^{\frac{2 n+1}{4} \pi i}, n \geq 1$ and hence $\left(u_{n}\right)_{n \geq 0}$ is bounded with $\lim _{n \rightarrow \infty}\left|a_{n}-u_{n+1}\right|=$ 1.

We present and discuss finally some particular cases and we give an example of Ulam stability for (2.1). We also mention that the following result contains in particular the case of stability for the linear difference equation with constant coefficients proved in [9, 10].

Corollary 2.10. Let $a, b \in \mathbb{K}$ and $c \in X$. The linear difference equation of the second order with constant coefficients

$$
\begin{equation*}
x_{n+2}=a x_{n+1}+b x_{n}+c, n \geq 0 \tag{2.14}
\end{equation*}
$$

is Ulam stable if and only if none of the roots of the characteristic equation $\lambda^{2}-a \lambda-b=0$ lie on the unit circle.

Proof. If for all $n \geq 0, a_{n}=a$ and $b_{n}=b$ in (2.1), then $u_{n+1}=a+\frac{b}{u_{n}}, n \geq 0$, and by Remark 2.3,

$$
u_{n}=\frac{\alpha_{n} u_{0}+\beta_{n}}{\alpha_{n-1} u_{0}+\beta_{n-1}}, n \geq 1,
$$

where $A=\left(\begin{array}{cc}a & b \\ 1 & 0\end{array}\right)$ and

$$
A^{n}=\left(\begin{array}{cc}
\alpha_{n} & \beta_{n} \\
\alpha_{n-1} & \beta_{n-1}
\end{array}\right), n \geq 1 .
$$

Suppose in what follows that the eigenvalues λ_{1} and λ_{2} of A, i.e. the roots of the characteristic equation $\lambda^{2}-a \lambda-b=0$, are distinct. Then $a-\lambda_{1}=\lambda_{2}$ and

$$
\begin{equation*}
A^{n}=\left(\lambda_{1}\right)^{n} B+\left(\lambda_{2}\right)^{n} C, n \geq 0 \tag{2.15}
\end{equation*}
$$

where $B=\frac{1}{\lambda_{2}-\lambda_{1}}\left(\begin{array}{cc}\lambda_{2}-a & -b \\ -1 & \lambda_{2}\end{array}\right)$ and $C=\frac{1}{\lambda_{2}-\lambda_{1}}\left(\begin{array}{cc}a-\lambda_{1} & b \\ 1 & -\lambda_{1}\end{array}\right)$.
Hence,

$$
\alpha_{n} u_{0}+\beta_{n}=\frac{\left(\lambda_{1}\right)^{n}}{\lambda_{2}-\lambda_{1}}\left(u_{0}\left(\lambda_{2}-a\right)-b\right)+\frac{\left(\lambda_{2}\right)^{n}}{\lambda_{2}-\lambda_{1}}\left(u_{0}\left(a-\lambda_{1}\right)+b\right)
$$

and consequently,

$$
\begin{equation*}
u_{n}=\frac{\left(\lambda_{1}\right)^{n}\left(u_{0}\left(\lambda_{2}-a\right)-b\right)+\left(\lambda_{2}\right)^{n}\left(u_{0}\left(a-\lambda_{1}\right)+b\right)}{\left(\lambda_{1}\right)^{n-1}\left(u_{0}\left(\lambda_{2}-a\right)-b\right)+\left(\lambda_{2}\right)^{n-1}\left(u_{0}\left(a-\lambda_{1}\right)+b\right)}, n \geq 1 . \tag{2.16}
\end{equation*}
$$

Next we show that the Eq (2.14) is Ulam stable if and only if $\left|\lambda_{1}\right| \neq 1$ and $\left|\lambda_{2}\right| \neq 1$. Indeed, to prove the necessity, let us suppose without loss of generality that $\left|\lambda_{1}\right|=1$. Taking $u_{0}=\lambda_{2}$, we get $u_{n}=\lambda_{2}$ and $\lim _{n \rightarrow \infty}\left|a_{n}-u_{n+1}\right|=\left|\lambda_{1}\right|=1$. Hence, according to Theorem 2.6, the Eq (2.14) is not Ulam stable and we get a contradiction. Conversely, if $\left|\lambda_{1}\right| \neq 1$ and $\left|\lambda_{2}\right| \neq 1$, it is sufficient to consider $u_{0}=\lambda_{1}$. Hence $u_{n}=\lambda_{1}, \lim _{n \rightarrow \infty}\left|u_{n}\right| \neq 1$ and $\lim _{n \rightarrow \infty}\left|a_{n}-u_{n+1}\right|=\left|\lambda_{2}\right| \neq 1$. It follows that the Eq (2.14) is Ulam stable and the proof is complete.

Similarly, one can easily remark that the previous assertion remains also true for $\lambda_{1}=\lambda_{2}$. In this case, $\lambda_{1}=\lambda_{2}=\frac{a}{2}, b=-\frac{a^{2}}{4}$ and

$$
\begin{equation*}
A^{n}=\left(\lambda_{1}\right)^{n}(C n+B), n \geq 0, \tag{2.17}
\end{equation*}
$$

where $B=I_{2}$ and $C=\left(\begin{array}{cc}1 & -\frac{a}{2} \\ \frac{2}{a} & -1\end{array}\right)$, for $a \neq 0$.
Hence,

$$
\alpha_{n} u_{0}+\beta_{n}=\left(\frac{a}{2}\right)^{n}\left((n+1) u_{0}-\frac{a}{2} n\right)
$$

and consequently,

$$
u_{n}=\frac{\frac{a}{2}\left((n+1) u_{0}-\frac{a}{2} n\right)}{n u_{0}-\frac{a}{2}(n-1)}, n \geq 1 .
$$

Furthermore, $\lim _{n \rightarrow \infty}\left|u_{n}\right|=\lim _{n \rightarrow \infty}\left|a_{n}-u_{n+1}\right|=\left|\frac{a}{2}\right|$ and the Eq (2.14) is Ulam stable if and only if $|a| \neq$ 2.

Corollary 2.11. Let $\left(b_{n}\right)_{n \geq 0}$ be a sequence in $K \backslash\{0\}$ and $\left(c_{n}\right)_{n \geq 0}$ a sequence in X. The linear difference equation

$$
\begin{equation*}
x_{n+2}=b_{n} x_{n}+c_{n}, n \geq 0 \tag{2.18}
\end{equation*}
$$

is Ulam stable if the following two limits exist and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\frac{\prod_{k=1}^{n} b_{2 k-1} u_{0}}{\prod_{k=0}^{n-1} b_{2 k}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\prod_{k=0}^{n} b_{2 k}}{\prod_{k=1}^{n} b_{2 k-1} u_{0}}\right| \neq 1 . \tag{2.19}
\end{equation*}
$$

Proof. Indeed, for $a_{n}=0$ in (2.1), we get $u_{n+1}=\frac{b_{n}}{u_{n}}$, hence $A_{n}=\left(\begin{array}{cc}0 & b_{n} \\ 1 & 0\end{array}\right), n \geq 0$. Further, applying Remark 2.3, we get

$$
\begin{equation*}
u_{2 n}=\frac{\prod_{k=1}^{n} b_{2 k-1} u_{0}}{\prod_{k=0}^{n-1} b_{2 k}}, u_{2 n+1}=\frac{\prod_{k=0}^{n} b_{2 k}}{\prod_{k=1}^{n} b_{2 k-1} u_{0}} \tag{2.20}
\end{equation*}
$$

for all $n \geq 1$. Finally, taking into account Theorem 2.5, we obtain the desired conclusion.
Corollary 2.12. The linear difference equation

$$
\begin{equation*}
x_{n+2}=a_{n} x_{n+1}+\left(\alpha^{2}-\alpha a_{n}\right) x_{n}+c_{n}, n \geq 0 \tag{2.21}
\end{equation*}
$$

is Ulam stable if for some $\delta_{0} \in \mathbb{K}$, the sequence

$$
\begin{equation*}
\delta_{n}=\alpha^{n} \delta_{0}+\left(\delta_{0}-\alpha\right) \sum_{k=1}^{n} \alpha^{n-k} \prod_{s=0}^{k-1}\left(a_{s}-\alpha\right), n \geq 1 \tag{2.22}
\end{equation*}
$$

satisfies the relations $\lim _{n \rightarrow \infty}\left|\frac{\delta_{n}}{\delta_{n-1}}\right| \neq 1$ and $\lim _{n \rightarrow \infty}\left|a_{n}-\frac{\delta_{n+1}}{\delta_{n}}\right| \neq 1$.
Proof. By Remark 2.3,

$$
\begin{equation*}
u_{n}=\frac{\alpha_{n} u_{0}+\beta_{n}}{\alpha_{n-1} u_{0}+\beta_{n-1}}, n \geq 1, \tag{2.23}
\end{equation*}
$$

where

$$
\begin{cases}\alpha_{n} & =a_{n-1} \alpha_{n-1}+\alpha\left(\alpha-a_{n-1}\right) \alpha_{n-2} \\ \beta_{n} & =a_{n-1} \beta_{n-1}+\alpha\left(\alpha-a_{n-1}\right) \beta_{n-2}, n \geq 2\end{cases}
$$

and $\alpha_{0}=1, \beta_{0}=0, \alpha_{1}=a_{0}, \beta_{1}=\alpha^{2}-\alpha a_{0}$. Observe now that

$$
\alpha_{n}-\alpha \alpha_{n-1}=\left(a_{n-1}-\alpha\right)\left(\alpha_{n-1}-\alpha \alpha_{n-2}\right)
$$

Denoting further $\gamma_{n}=\alpha_{n}-\alpha \alpha_{n-1}(n \geq 1)$, where $\gamma_{1}=a_{0}-\alpha$, one obtains $\gamma_{n}:=\left(a_{n-1}-\alpha\right) \gamma_{n-1}(n \geq 2)$ and consequently,

$$
\gamma_{n}=\prod_{k=0}^{n-1}\left(a_{k}-\alpha\right) .
$$

Thus, $\alpha_{n}=\alpha \alpha_{n-1}+\prod_{k=0}^{n-1}\left(a_{k}-\alpha\right), n \geq 1$. Further, putting $\frac{y_{n-1}}{y_{n}}(n \geq 1)$ with $y_{0}=1$ instead of the first α below, we may deduce that $y_{n}=\frac{1}{a^{n}}$, and finally

$$
\alpha_{n}=a_{0} \alpha^{n-1}+\sum_{k=2}^{n} \alpha^{n-k} \prod_{s=0}^{k-1}\left(a_{s}-\alpha\right), n \geq 2
$$

Similarly, one may show that

$$
\beta_{n}=\left(\alpha-a_{0}\right) \alpha^{n}-\sum_{k=2}^{n} \alpha^{n-k+1} \prod_{s=0}^{k-1}\left(a_{s}-\alpha\right), n \geq 2 .
$$

Hence, if we take $\delta_{0}=u_{0}$ and we substitute the above expressions in (2.23), one obtains an explicit formula for u_{n}, more precisely $u_{n}=\frac{\delta_{n}}{\delta_{n-1}}, n \geq 1$. Finally, applying Theorem 2.5 we finish the proof.

Example 2.13. The linear recurrence

$$
\begin{equation*}
x_{n+2}=2 \frac{2 n+3}{n+1} x_{n+1}-4 \frac{n+2}{n+1} x_{n}, n \geq 0 \tag{2.24}
\end{equation*}
$$

is Ulam stable.
Indeed, since the Eq (2.24) is a particular case of (2.21) with $\alpha=2, a_{n}=2 \frac{2 n+3}{n+1}$ and $c_{n}=0$, we deduce that

$$
\delta_{n}=(n+1)(n+2) 2^{n-1}\left(\delta_{0}-2\right)+2^{n+1}, n \geq 1
$$

and, consequently,

$$
\frac{\delta_{n}}{\delta_{n-1}}=2 \frac{(n+1)(n+2)\left(\delta_{0}-2\right)+4}{n(n+1)\left(\delta_{0}-2\right)+4}, n \geq 1 .
$$

Moreover, $\lim _{n \rightarrow \infty}\left|\frac{\delta_{n}}{\delta_{n-1}}\right|=\lim _{n \rightarrow \infty}\left|a_{n}-\frac{\delta_{n+1}}{\delta_{n}}\right|=2$. Hence, using Corollary 2.12, we conclude that the linear difference equation (2.1) is Ulam stable.

3. Third order equations

Consider in the following the third order linear difference equation

$$
\begin{equation*}
x_{n+3}=a_{n} x_{n+2}+b_{n} x_{n+1}+c_{n} x_{n}+d_{n}, n \geq 0, \tag{3.1}
\end{equation*}
$$

where $\left(a_{n}\right)_{n \geq 0},\left(b_{n}\right)_{n \geq 0},\left(c_{n}\right)_{n \geq 0}$ are sequences in \mathbb{K} and $\left(d_{n}\right)_{n \geq 0}$ is a sequence in X.
Lemma 3.1. Suppose that $\left(x_{n}\right)_{n \geq 0}$ satisfies (3.1). Consider

$$
\begin{equation*}
z_{n}=x_{n+1}-u_{n} x_{n}, n \geq 0 \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
z_{n}^{\prime}=x_{n+1}-u_{n}^{\prime} x_{n}, n \geq 0 \tag{3.3}
\end{equation*}
$$

where $\left(u_{n}\right)_{n \geq 0}$ and $\left(u_{n}^{\prime}\right)_{n \geq 0}$ are sequences in \mathbb{K} defined as follows:

$$
\begin{equation*}
u_{n+2}=a_{n}+\frac{b_{n}}{u_{n+1}}+\frac{c_{n}}{u_{n} u_{n+1}}, n \geq 0, u_{0}, u_{1} \in \mathbb{K} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{n+1}^{\prime}=a_{n}-u_{n+2}+\frac{\left(a_{n}-u_{n+2}\right) u_{n+1}+b_{n}}{u_{n}^{\prime}}, n \geq 0, u_{0}^{\prime} \in \mathbb{K} . \tag{3.5}
\end{equation*}
$$

Then

$$
\begin{equation*}
z_{n+2}=\left(a_{n}-u_{n+2}\right) z_{n+1}+\left(\left(a_{n}-u_{n+2}\right) u_{n+1}+b_{n}\right) z_{n}+d_{n}, n \geq 0 \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
z_{n+1}^{\prime}=\left(a_{n}-u_{n+2}-u_{n+1}^{\prime}\right) z_{n}^{\prime}+d_{n}, n \geq 0 . \tag{3.7}
\end{equation*}
$$

Proof. From (3.4) it follows that

$$
-\frac{c_{n}}{u_{n}}=\left(a_{n}-u_{n+2}\right) u_{n+1}+b_{n}
$$

and hence, using (3.1) and (3.6) one gets

$$
\begin{aligned}
z_{n+2}= & \left(a_{n}-u_{n+2}\right) x_{n+2}+b_{n} x_{n+1}+c_{n} x_{n}+d_{n} \\
= & \left(a_{n}-u_{n+2}\right)\left(x_{n+2}-u_{n+1} x_{n+1}\right)+\left(a_{n}-u_{n+2}\right) u_{n+1} x_{n+1} \\
& +b_{n} x_{n+1}+c_{n} x_{n}+d_{n} \\
= & \left(a_{n}-u_{n+2}\right) z_{n+1}+\left[\left(a_{n}-u_{n+2}\right) u_{n+1}+b_{n}\right]\left(x_{n+1}-u_{n} x_{n}\right) \\
& -\frac{c_{n}}{u_{n}} u_{n} x_{n}+c_{n} x_{n}+d_{n} \\
= & \left(a_{n}-u_{n+2}\right) z_{n+1}+\left[\left(a_{n}-u_{n+2}\right) u_{n+1}+b_{n}\right] z_{n}+d_{n} .
\end{aligned}
$$

Finally, proceeding similarly to the proof of 2.1 one can show that $\left(z_{n}^{\prime}\right)_{n \geq 0}$ satisfies (3.7).
Remark 3.2. Observe that the sequence $\left(u_{n}\right)_{n \geq 0}$ defined above can be written in the following form

$$
u_{n+2}=\frac{a_{n} u_{n} u_{n+1}+b_{n} u_{n}+c_{n}}{u_{n} u_{n+1}}, n \geq 0
$$

and, consequently

$$
u_{n}=\frac{\alpha_{n} u_{0} u_{1}+\beta_{n} u_{0}+\gamma_{n}}{\alpha_{n-1} u_{0} u_{1}+\beta_{n-1} u_{0}+\gamma_{n-1}}, n \geq 1
$$

where $A_{n}=\left(\begin{array}{ccc}a_{n} & b_{n} & c_{n} \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$ with $A_{0}=\left(\begin{array}{ccc}\alpha_{2} & \beta_{2} & \gamma_{2} \\ \alpha_{1} & \beta_{1} & \gamma_{1} \\ \alpha_{0} & \beta_{0} & \gamma_{0}\end{array}\right)$ and

$$
A_{n-2} \cdot \ldots \cdot A_{0}=\left(\begin{array}{ccc}
\alpha_{n} & \beta_{n} & \gamma_{n} \\
\alpha_{n-1} & \beta_{n-1} & \gamma_{n-1} \\
\alpha_{n-2} & \beta_{n-2} & \gamma_{n-2}
\end{array}\right), n \geq 2
$$

Lemma 3.3. If the equation $x_{n+1}-u_{n} x_{n}-z_{n}=0$ is Ulam stable with the constant L_{1} and (3.6) is Ulam stable with the constant L_{2}, then the $E q$ (3.1) is Ulam stable with the constant $L_{1} L_{2}$.

Proof. Let $\varepsilon>0$ and let $\left(x_{n}\right)_{n \geq 0}$ be a sequence in X such that

$$
\left\|x_{n+3}-a_{n} x_{n+2}-b_{n} x_{n+1}-c_{n} x_{n}-d_{n}\right\| \leq \varepsilon, n \geq 0 .
$$

Put $z_{n}=x_{n+1}-u_{n} x_{n}$, where $\left(u_{n}\right)_{n \geq 0}$ satisfies relation (3.4). Then

$$
\left\|z_{n+2}-\left(a_{n}-u_{n+2}\right) z_{n+1}-\left[\left(a_{n}-u_{n+2}\right) u_{n+1}+b_{n}\right] z_{n}-d_{n}\right\| \leq \varepsilon, n \geq 0
$$

and there exists $\left(w_{n}\right)_{n \geq 0}$,

$$
\begin{equation*}
w_{n+2}=\left(a_{n}-u_{n+2}\right) w_{n+1}+\left[\left(a_{n}-u_{n+2}\right) u_{n+1}+b_{n}\right] w_{n}+d_{n}, n \geq 0, \tag{3.8}
\end{equation*}
$$

such that

$$
\left\|z_{n}-w_{n}\right\| \leq L_{2} \varepsilon, n \geq 0 .
$$

Taking account of (3.2) we get

$$
\left\|x_{n+1}-u_{n} x_{n}-w_{n}\right\| \leq L_{2} \varepsilon, n \geq 0
$$

Now, since the Eq (3.2) is Ulam stable and its stability does not depend on z_{n}, it follows that there exists a sequence $\left(y_{n}\right)_{n \geq 0}$,

$$
\begin{equation*}
y_{n+1}=u_{n} y_{n}+w_{n}, n \geq 0, \tag{3.9}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left\|x_{n}-y_{n}\right\| \leq L_{1} L_{2} \varepsilon, n \geq 0 . \tag{3.10}
\end{equation*}
$$

To complete the proof it remains for us to show that $\left(y_{n}\right)_{n \geq 0}$ satisfies the Eq (3.1). For this we replace $\left(w_{n}\right)_{n \geq 0}$ from (3.9) to (3.8) and we obtain

$$
y_{n+3}=a_{n} y_{n+2}+b_{n} y_{n+1}-\left[\left(a_{n}-u_{n+2}\right) u_{n} u_{n+1}+b_{n} u_{n}\right] y_{n}+d_{n} .
$$

Finally, taking account of relation (3.4), we obtain

$$
y_{n+3}=a_{n} y_{n+2}+b_{n} y_{n+1}+c_{n} y_{n}+d_{n} .
$$

The following result holds as a direct consequence of Lemma 2.4 and Lemma 3.3.
Lemma 3.4. If the equation $x_{n+1}-u_{n} x_{n}-z_{n}=0$ is Ulam stable with the constant $L_{1}, z_{n+1}-u_{n}^{\prime} z_{n}-z_{n}^{\prime}=0$ is Ulam stable with the constant L_{2} and (3.7) is Ulam stable with the constant L_{3}, then (3.1) is Ulam stable with the constant $L_{1} L_{2} L_{3}$.

As a consequence of Theorem 1.5 and Lemma 3.4, we get the following result on Ulam stability for the Eq (3.1).

Theorem 3.5. Suppose that for the sequences $\left(u_{n}\right)_{n \geq 0}$ and $\left(u_{n}^{\prime}\right)_{n \geq 0}$ given by (3.4) and (3.5), respectively, $\lim _{n \rightarrow \infty}\left|u_{n}\right|, \lim _{n \rightarrow \infty}\left|u_{n}^{\prime}\right|, \lim _{n \rightarrow \infty}\left|a_{n}-u_{n+2}-u_{n+1}^{\prime}\right|$ exist and:

1) $\lim _{n \rightarrow \infty}\left|u_{n}\right| \neq 1$;
2) $\lim _{n \rightarrow \infty}\left|u_{n}^{\prime}\right| \neq 1$;
3) $\lim _{n \rightarrow \infty}\left|a_{n}-u_{n+2}-u_{n+1}^{\prime}\right| \neq 1$.

Then the Eq (3.1) is Ulam stable.
Example 3.6. The following linear recurrence

$$
x_{n+3}=\frac{4 n+5}{n+1} x_{n+2}-\frac{1+4(n+1)(n+2)^{2}}{(n+2)(n+1)^{2}} x_{n+1}+\frac{2+4(n+1)(n+2)}{(n+2)(n+1)^{2}} x_{n}
$$

is Ulam stable.
Indeed, in this case, if we take $u_{0}=u_{1}=2$ and $u_{0}^{\prime}=1$, one can see that $u_{n}=2$ and $u_{n}^{\prime}=\frac{1}{n+1}$ for all $n \geq 0$. Thus, all the assumptions of Theorem 3.5 are fulfilled, which means that we have stability.

A nonstability result for the Eq (3.1), similar to the one obtained for the second order linear difference equation (2.1), holds.

Theorem 3.7. If the Eq (3.6) is not Ulam stable and there exist $u_{0}, u_{1} \in \mathbb{K}$ such that $\left(u_{n}\right)_{n \geq 0}$ is bounded, then the Eq (3.1) is not Ulam stable.

Proof. Let $\varepsilon>0$. Since (3.6) is not Ulam stable, i.e. there exists a sequence $\left(\bar{z}_{n}\right)_{n \geq 0}$ in X, satisfying the inequality

$$
\begin{equation*}
\left\|\bar{z}_{n+2}-\left(a_{n}-u_{n+2}\right) \bar{z}_{n+1}-\left[\left(a_{n}-u_{n+2}\right) u_{n+1}+b_{n}\right] \bar{z}_{n}-d_{n}\right\| \leq \varepsilon, n \geq 0 \tag{3.11}
\end{equation*}
$$

such that for every sequence $\left(\bar{y}_{n}\right)_{n \geq 0}$ with

$$
\begin{equation*}
\bar{y}_{n+2}=\left(a_{n}-u_{n+2}\right) \bar{y}_{n+1}+\left[\left(a_{n}-u_{n+2}\right) u_{n+1}+b_{n}\right] \bar{y}_{n}+d_{n}, n \geq 0 \tag{3.12}
\end{equation*}
$$

we have

$$
\begin{equation*}
\sup _{n \geq 0}\left\|\bar{y}_{n}-\bar{z}_{n}\right\|=\infty . \tag{3.13}
\end{equation*}
$$

Let $\left(x_{n}\right)_{n \geq 0}$ be such that

$$
\begin{equation*}
x_{n+1}-u_{n} x_{n}=\bar{z}_{n}, n \geq 0 \tag{3.14}
\end{equation*}
$$

(it suffices to take $x_{0}=0$ in order to determine $\left(x_{n}\right)_{n \geq 0}$ step by step). Inequality 3.11 implies that the sequence $\left(x_{n}\right)_{n \geq 0}$ satisfies

$$
\begin{equation*}
\left\|x_{n+3}-a_{n} x_{n+2}-b_{n} x_{n+1}-c_{n} x_{n}-d_{n}\right\| \leq \varepsilon, n \geq 0 \tag{3.15}
\end{equation*}
$$

Let now $\left(y_{n}\right)_{n \geq 0}$ be an arbitrary sequence defined by

$$
y_{n+3}=a_{n} y_{n+2}+b_{n} y_{n+1}+c_{n} y_{n}+d_{n}
$$

and $\left(\bar{y}_{n}\right)_{n \geq 0}$ be the sequence given by

$$
\begin{equation*}
\bar{y}_{n}=y_{n+1}-u_{n} y_{n}, n \geq 0 . \tag{3.16}
\end{equation*}
$$

Then the relations (3.12) and (3.13) hold.
Finally, we have to prove that $\sup _{n \geq 0}\left\|\bar{y}_{n}-\bar{z}_{n}\right\|=\infty$. Suppose the contrary. Then there exists $M>0$ such that

$$
\left\|x_{n}-y_{n}\right\| \leq M, n \geq 0
$$

From (3.14) and (3.16) it follows that

$$
\begin{aligned}
\left\|\bar{y}_{n}-\bar{z}_{n}\right\| & =\left\|y_{n+1}-u_{n} y_{n}-x_{n+1}+u_{n} x_{n}\right\| \\
& \leq\left\|y_{n+1}-x_{n+1}\right\|+\left|u_{n}\right| \cdot\left\|y_{n}-x_{n}\right\| \\
& \leq\left(1+\left|u_{n}\right|\right) \cdot M
\end{aligned}
$$

for every $n \geq 0$, which contradicts relation (3.13), if we take also into account that $\left(u_{n}\right)_{n \geq 0}$ is bounded.

The next corollary gives sufficient conditions for Eq (3.1) to be not Ulam stable. To prove this, just take into account Lemma 3.1, Theorem 2.6 and Theorem 3.7.

Corollary 3.8. If there exist $u_{0}, u_{1}, u_{0}^{\prime} \in \mathbb{K}$ such that $\left(u_{n}\right)_{n \geq 0}$ and $\left(u_{n}^{\prime}\right)_{n \geq 0}$ are bounded and $\lim _{n \rightarrow \infty} \mid a_{n}-$ $u_{n+2}-u_{n+1}^{\prime} \mid=1$, then the $E q(3.1)$ is not Ulam stable.
Example 3.9. The following linear recurrence

$$
x_{n+3}=\frac{1}{n+2} x_{n+2}+\frac{n^{2}+3 n+1}{(n+1)(n+2)} x_{n+1}-\frac{1}{n+1} x_{n}
$$

is not Ulam stable. Indeed, letting $u_{0}=u_{1}=-1$ and $u_{0}^{\prime}=1$, we get $u_{n}=-1$ and $u_{n}^{\prime}=\frac{1}{n+1}$ for all $n \geq 0$ and consequently $\lim _{n \rightarrow \infty}\left|a_{n}-u_{n+2}-u_{n+1}^{\prime}\right|=1$, which means that we do not have stability.

For the case of constant coefficients in the Eq (3.1), we get the result given in [22].
Corollary 3.10. The third order linear difference equation with constant coefficients

$$
\begin{equation*}
x_{n+3}=a x_{n+2}+b x_{n+1}+c x_{n}+d, n \geq 0, \tag{3.17}
\end{equation*}
$$

is Ulam stable if and only if none of the roots of the characteristic equation $\lambda^{3}-a \lambda^{2}-b \lambda-c=0$ lie on the unit circle.

Proof. Indeed, let λ_{1}, λ_{2} and λ_{3} be the roots of the characteristic equation and suppose without loss of generality that $\left|\lambda_{1}\right|=1$ and take $u_{0}=u_{1}=\lambda_{2}, u_{0}^{\prime}=\lambda_{3}$. Then, using Corollary 3.8 and Vieta's formulas, i.e. the relations $\lambda_{1}+\lambda_{2}+\lambda_{3}=a, \lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}=-b$ and $\lambda_{1} \lambda_{2} \lambda_{3}=c$, one can easily check that $u_{n}=\lambda_{2}, n \geq 2$ and $u_{n}^{\prime}=\lambda_{3}, n \geq 1$. Moreover, $\lim _{n \rightarrow \infty}\left|a-u_{n+2}-u_{n+1}^{\prime}\right|=\left|a-\lambda_{2}-\lambda_{3}\right|=\left|\lambda_{1}\right|$, which means that (3.17) is not Ulam stable, a contradiction. Conversely, if $\left|\lambda_{1}\right| \neq 1,\left|\lambda_{2}\right| \neq 1$ and $\left|\lambda_{3}\right| \neq 1$, it is sufficient to consider $u_{0}=u_{1}=\lambda_{1}$ and $u_{0}^{\prime}=\lambda_{2}$. Indeed, due to the choice of the initial values it follows that $\lim _{n \rightarrow \infty}\left|u_{n}\right|=\left|\lambda_{1}\right| \neq 1, \lim _{n \rightarrow \infty}\left|u_{n}^{\prime}\right|=\left|\lambda_{2}\right| \neq 1$ and $\lim _{n \rightarrow \infty}\left|a-u_{n+2}-u_{n+1}^{\prime}\right|=\left|a-\lambda_{1}-\lambda_{2}\right|=\left|\lambda_{3}\right| \neq 1$. Finally, the Eq (3.17) is Ulam stable, by Theorem 3.5.

Finally, it is worth mentioning here that the result on nonstability of (3.1) contains in particular the case of nonstability for constant coefficients proved in [6,9,10, 22,24].

4. Conclusions

In this paper we give some results on Ulam stability for the second order and for the third order linear difference equation with nonconstant coefficients in a Banach space. As far as we know there are few results on Ulam stability for such equations (see, e.g., [11-13]). The novelty of this approach consists in the fact that we decompose the second order linear difference equation in a Riccati difference equation and a linear difference equation. In this way we can use the results on Ulam stability of the first order linear difference equation.

The importance of these results consists in the fact that they are related to the theory of perturbation of a discrete dynamical system (see [15]). Remark that for difference equations with constant coefficients we get the results obtained in the paper [3].

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgements

This research was partially supported by the project 38 PFE in the frame of the programme PDI-PFE-CDI 2021.

Conflict of interest

The authors declare no conflicts of interest.

References

1. D. R. Anderson, M. Onitsuka, Best constant for Hyers-Ulam stability of secondorder h-difference equations with constant coefficients, Results Math., 74 (2019), 151. https://doi.org/10.1007/s00025-019-1077-9
2. A. R. Baias, F. Blaga, D. Popa, Best Ulam constant for a linear difference equation, Carpathian J. Math., 35 (2019) 13-22.
3. A. R. Baias, D. Popa, On Ulam stability of a linear difference equation in Banach spaces, Bull. Malays. Math. Sci. Soc., 43 (2020), 1357-1371. https://doi.org/10.1007/s40840-019-00744-6
4. A. R. Baias, D. Popa, I. Raşa, Ulam stability of a successive approximation equation, J. Fixed Point Theory Appl., 22 (2020), 41. https://doi.org/10.1007/s11784-020-00777-6
5. D. Barbu, C. Buşe, A. Tabassum, Hyers-Ulam stability and discrete dichotomy, J. Math. Anal. Appl., 423 (2015), 1738-1752. https://doi.org/10.1016/j.jmaa.2014.10.082
6. J. Brzdek, D. Popa, B. Xu, Note on nonstability of the linear recurrence, Abh. Math. Semin. Univ. Hambg., 76 (2006), 183-189. https://doi.org/10.1007/BF02960864
7. J. Brzdek, S. M. Jung, Note on stability of a linear functional equation of second order connected with the Fibonacci numbers and Lucas sequences, J. Inequal. Appl., 2010 (2010), 1-10.
8. J. Brzdek, D. Popa, B. Xu, On nonstability of the linear recurrence of order one, J. Math. Anal. Appl., 367 (2010), 146-153. https://doi.org/10.1016/j.jmaa.2009.12.052
9. J. Brzdek, D. Popa, B. Xu, Remarks on stability of linear recurrence of higher order, Appl. Math. Lett., 23 (2010), 1459-1463. https://doi.org/10.1016/j.aml.2010.08.010
10. J. Brzdek, D. Popa, I. Raşa, B. Xu, Ulam stability of operators, Academic Press, 2018.
11. C. Buşe, D. O’Regan, O. Saierli, A. Tabassum, Hyers-Ulam stability and discrete dichotomy for difference periodic systems, Bull. Sci. Math., 140 (2016), 908-934. https://doi.org/10.1016/j.bulsci.2016.03.010
12. D. Dragičević, W. Zhang, W. Zhang, Smooth linearization of nonautonomous difference equations with a nonuniform dichotomy, Math. Z., 292 (2019), 1175-1193. https://doi.org/10.1007/s00209-018-2134-x
13. D. Dragičević, On the Hyers-Ulam stability of certain nonautonomous and nonlinear difference equations, Aequat. Math., 95 (2021), 829-840. https://doi.org/10.1007/s00010-020-00774-7
14. D. Dragičević, M. Pituk, Shadowing for nonautonomous difference equations with infinite delay, Appl. Math. Lett., 120 (2021), 107284. https://doi.org/10.1016/j.aml.2021.107284
15. S. Elaydi, An introduction to difference equations, Springer-Verlag New York, 2005. https://doi.org/10.1007/0-387-27602-5
16. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
17. D. H. Hyers, G. Isac, T. M. Rassias, Stability of functional equations in several variables, Birkhäuser, Boston, 1998.
18. S. M. Jung, Functional equation $f(x)=p f(x-1)-q f(x-2)$ and its Hyers-Ulam stability, J. Inequal. Appl., 2009, 1-10.
19. S. M. Jung, Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Springer, 2011.
20. M. Onitsuka, Influence of the stepsize on Hyers-Ulam stability of first-order homogeneous linear difference equations, Int. J. Differ. Equ., 12 (2017), 281-302.
21. D. Popa, Hyers-Ulam-Rassias stability of a linear recurrence, J. Math. Anal. Appl., 309 (2005), 591-597.
22. D. Popa, Hyers-Ulam stability of the linear recurrence with constant coefficients, Adv. Differ. Equ., 2 (2005), 407076. https://doi.org/10.1155/ADE.2005.101
23. S. M. Ulam, A collection of mathematical problems, Interscience, New York, 1960.
24. B. Xu, J. Brzdek, Hyers-Ulam stability of a system of first order linear recurrences with constant coefficients, Discrete Dyn. Nat. Soc., 2015 (2015), 1-5. https://doi.org/10.1155/2015/269356
25. M. Xu, Hyers-Ulam-Rassias stability of a system of first order linear recurrences, Bull. Korean Math. Soc., 44 (2007), 841-849.

AIMS Press
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

