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Abstract: In the value distribution theory of complex analysis, Petrenko’s deviation is to describe
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variable |z| = r is sufficiently large. In this paper we introduce Petrenko’s deviations to the coefficients
of three types of complex equations, which include difference equations, differential equations and
differential-difference equations. Under different assumptions we study the lower bound of limiting
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some known results.
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1. Introduction

The content of this paper is related to the value distribution theory and complex dynamic theory in
complex analysis, the relevant literatures are available at [9,10,25,29]. On the complex plane, let g be
an entire function, its order and lower order denote by σ(g) and µ(g) respectively, see reference [25]
for details.

In Nevanlinna theory, for an entire function g, T (r, g) represents its characteristic function and
M(r, g) represents its maximum modulus in the domain |z| < r. For these two quantities, they have
a certain magnitude relationship. It’s well known that, if 0 < r < R < +∞, then M(r, g) and T (r, g)
satisfy the inequalities (see [10])

R + r
R − r

T (R, g) ≥ log M(r, g) ≥ T (r, g). (1.1)
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If one takes R as a multiple of r and r goes to infinity, these two quantities are very similar. In order
to study the exact relationship between these two quantities, Petrenko [18] introduced the deviation of
entire function g at∞ and defined it as follows.

β−(∞, g) = lim inf
r→∞

log M(r, g)
T (r, g)

and β+(∞, g) = lim sup
r→∞

log M(r, g)
T (r, g)

. (1.2)

Later they were called Petrenko’s deviation. Particularly, β−(∞, g) < β+(∞, g) is likely to hold, as
stated in [18, §4]. As described in [6], for any increasing function ϕ(r) which is convex for log r, there
exists an entire function g that satisfies the following similarity relation

T (r, g) ∼ ϕ(r) ∼ log M(r, g). (1.3)

From the above formula (1.3), we know that there should be many entire functions satisfying
β+(∞, g) = β−(∞, g).

In the following we will give some specific examples of functions with Petrenko’s deviations. For
any entire function g with finite lower order µ, let’s define a variable B(µ) with respect to µ,

B(µ) :=


πµ

sin(πµ)
, if 0 ≤ µ < 1/2,

πµ, if µ ≥ 1/2.
(1.4)

It is shown in [18, Theorem 1] that Petrenko’s deviation of g satisfies

B(µ) ≥ β−(∞, g) ≥ 1. (1.5)

Both inequalities in (1.5) can hold strictly, see details in [6, 18]. For example, the well known Airy
integral function Ai(z), which is a solution of g′′(z) − zg(z) = 0, has lower order 3/2. It’s Petrenko’s
deviation satisfies

3π
2
> lim

r→∞

log M(r, Ai)
T (r, Ai)

=
3π
4
> 1.

If the upper deviation β+(∞, g) and the lower deviation β−(∞, g) are equal and finite, then there exists
a constant ν ∈ (0, 1] such that T (r, f ) and log M(r, f ) satisfy

T (r, g) ∼ ν log M(r, g) (1.6)

as r(< E) → ∞, where E ⊂ (0,+∞) is an exceptional set. For the function g(z) = ez that we’re most
familiar with, T (r, ez) = r

π
and log M(r, ez) = r satisfies (1.6) with ν = 1/π. Generally, the exponential

polynomials can also satisfy (1.6) for suitable ν as r(< E) → ∞, where E ⊂ (0,+∞) is a set of zero
density [17].

Another example is entire function with Fabry gaps. For an entire function represented by a power
series, g(z) =

∑∞
n=0 anzλn , if it satisfies the gaps condition λn

n → ∞ as n → ∞, we call it having Fabry
gaps, see [3]. The maximum modulus of such a function is similar to its minimum modulus, that is,

log M(r, g) ∼ log L(r, g), (1.7)
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as r(< E) → ∞, where E ⊂ (0,+∞) is a set of zero density and L(r, g) = min|z|=r |g(z)| is the minimum
modulus, see [8]. The orders of this kinds of functions are positive [11, p.651]. Consequently, entire
functions with Fabry gaps satisfy (1.6) with ν = 1 as r(< E)→ ∞.

In 2021, Heittokangas and Zemirni [12] investigated the zeros of solutions of second order complex
differential equation

f ′′ + A(z) f = 0, (1.8)

in which the coefficient A(z) satisfies (1.6). In fact, they found the lower bound of the zero convergence
exponent of solution to this equation is closely related to Petrenko’s deviation of A(z). In the same
article, they also proved the growth of every nontrivial solution to

f ′′ + A(z) f ′ + B(z) f = 0, (1.9)

is infinite under the hypothesise that A(z) is associated with Petrenko’s deviation and B(z) is non-
transcendental growth in some angular domains.

For the sake of the following statement, we give the condition that an entire function g(z) has an
angular domain in which it is non-transcendental growth. Set

Ξ(g) :=
{
θ ∈ [0, 2π) : lim sup

r→∞

log+ |g(reiθ)|
log r

< ∞

}
(1.10)

and
ξ(g) :=

1
2π
· meas (Ξ(g)) .

More specifically, the authors of paper [12] was under the condition that

β−(∞, B) <
1

1 − ξ(A)
(1.11)

to prove the infinite growth of solutions of (1.9).
The following content is some introduction about Julia set and the results of its limiting directions.

The Julia set is one of two important subjects of the research of complex dynamics of transcendental
meromorphic functions, see more details in [4, 28]. Below we briefly recall the known results on the
limiting direction of Julia set of meromorphic functions. To prevent confusion, we use f ◦n(n ∈ N) to
denote the n-th iteration of meromorphic function f . The sequence of functions { f ◦n}(n ∈ N) forms
a normal family in some domains of the complex plane, and such domains are called the Fatou set,
denoted as F( f ). Its complement on the complex plane is Julia set, denoted as J( f ). The focus of our
research is J( f ), it’s well known that J( f ) a nonempty closed set. For transcendental entire functions,
the distribution of J( f ) in the complex plane is so complicated that it cannot be constrained in a finite
number of straight lines, see Baker [1]. However, this is not true for transcendental meromorphic
functions, such as the Julia set of tan z being the whole real axis.

Therefore, the research direction began to focus on the distribution of J( f ) on rays, and Qiao
introduced this concept in [19]. To explain this concept, let’s first give a notation for an angular
domain,

Ω(α, β) = {z ∈ C : arg z ∈ (α, β) ⊂ [0, 2π)}.
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So, for any θ ∈ [0, 2π) and any small ε > 0, if the set Ω(θ − ε, θ + ε) ∩ J( f ) is unbounded, then the ray
arg z = θ is called a limiting direction of J( f ). To see how many such rays there are, the researchers
introduced a set called ∆( f ), which contains all the limiting direction of J( f ). ∆( f ) has some properties,
such as it is closed and measurable, so one can find a lower bound on the measure of ∆( f ). The research
on this aspect shows that when f has finite lower order µ( f ), the lower bound of meas∆( f ) is closely
related to µ( f ), see [19, 30]. So what happens if µ( f ) is infinite? Later, Huang et al. [13, 14] studied
the limiting directions of J( f ) of nontrivial solutions to some complex differential equations, these
solutions have infinite order or lower order, more results have followed, such as [21–23,26]. Below we
list a few results that are useful for this article.

In [13] the authors obtained the lower bound of limiting directions of J( f ) of nontrivial solutions to
linear complex differential equations

f (n) + A(z) f = 0. (1.12)

Their result showed that the lower bound is related to the order of A(z). In more depth, the authors
of paper [21] investigated the common limiting directions of J( f ) of nontrivial solutions of high order
linear complex differential equation

f (n) + An−1 f (n−1) + · · · + A0 f = 0, (1.13)

where A0 is the dominated coefficient function comparing to other coefficients functions. The common
limiting direction of J( f ) which just mentioned is defined as follows:

L( f ) :=
⋂
n∈Z

∆( f (n)).

In the above definition, when n ≥ 0, f (n) denotes n times of the ordinary derivative of f , when n < 0,
f (n) means |n| times integral operation.

Combining the concept of Petrenko’s deviation with the results of limiting directions of Julia set
of solutions to complex differential equations, the authors of article [27] studied the lower bound
of common limiting directions of Julia set of solutions to some complex differential equations with
coefficient function related to Petrenko’s deviation, the two conclusions are stated below.

Theorem 1.1. [27] Suppose that f is a nontrivial solution to the complex differential equation (1.9),
A(z) is an entire function and has non-transcendental growth angular domain such that ξ(A) > 0 and
B(z) is a transcendental entire function and has a Petrenko’s deviation with β−(∞, B) < 1

1−ξ(A) , then the
common limiting direction of Julia set of f satisfies

meas(L( f )) ≥ min
{

2π, 2π
(

1
β−(∞, B)

+ ξ(A) − 1
)}
.

Theorem 1.2. [27] Suppose that the coefficient A(z) of equation (1.12) is a transcendental entire
function and satisfies (1.6) as r → ∞ outside a set G with log dens(G) < 1, then the common limiting
direction of Julia set of every nontrivial solution f to (1.12) satisfies

meas(L( f )) ≥ 2πν.

Moreover, let f1, f2, · · · , fn be a solution base of equation (1.12) and their product be E := f1 · f2 · · · fn,
then the common limiting direction of Julia set of E satisfies

meas(L(E)) ≥ 2πν.
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While studying the limiting directions of Julia set of solutions to complex differential equations,
the limiting direction of Julia set for the solution of difference equation is also concerned, for
examples [5, 7, 16, 24]. In order to state the following Theorem 1.3 which is proved in [5], we give
some denotations at first. We set

P(z, f ) := P( f (z + c1), f (z + c2), · · · , f (z + cm)),

where f (z + ci) are some different shift forms of the complex function f (z) with ci(i = 1, · · · ,m) being
distinct complex numbers, these shifts are closely related to the difference of f . To be specific, P(z, f )
is a polynomial in m variables with degree less than d,

P(z, f ) :=
∑

λ=(k1,··· ,km)∈Λ

aλ
m∏

i=1

( f (z + ci))ki

where aλ are constant coefficients and are nonzeros, every element of Λ is a multi-indices and has
the form λ = (k1, · · · , km), ki ∈ N, and the degree of P(z, f ) is maxλ∈Λ{

∑m
i=1 ki} < d. In addition, the

common limiting directions of Julia sets of distinct shifts of f is defined by

L( f ) :=
n⋂

i=1

∆( f (z + ηi)),

where n is a finite positive integer, and ηi(i = 1, 2 · · · , n) are distinct complex numbers. Chen et al. [5]
obtained the following result about the limiting directions of Julia set of solutions to some complex
difference equations.

Theorem 1.3. [5] Suppose that Pi(z, f ) (i = 0, 1, · · · , n) are distinct polynomials of degree less than
d, and the coefficients Ai(z) are entire functions. Assume that A0 is transcendental with finite lower
order, and it’s dominant compared to the other coefficients, that is, T (r, A j) = o(T (r, A0)) as r → ∞,
j = 1, 2, · · · , n. For any nontrivial entire solution f of

An(z)Pn(z, f ) + · · · + A1(z)P1(z, f ) = A0(z), (1.14)

we have meas(L( f )) ≥ min{2π, π/µ(A0)}. Furthermore, if σ(A0) > max{σ(A1), · · · , σ(An)}, then L( f )
contains a closed interval [v1, v2] with v2 − v1 ≥ min{2π, π/σ(A0)}.

Motivated by Theorems 1.2 and 1.3, we study the limiting directions of Julia sets of solutions to
complex difference equations with a coefficient related to Petrenko’s deviation and obtain the following
theorem as our first conclusion of this article.

Theorem 1.4. Suppose that P j(z, f )( j = 1, 2, · · · , n) are distinct polynomials with degree less than
d, and A0 is a transcendental entire function with finite lower order µ(A0) and satisfies (1.6) as r(<
G)→ ∞ with log dens(G) < 1. The other coefficients Ai(z)(i = 1, 2, · · · , n) are distinct entire functions
satisfying

λ = max{σ(A1), · · · , σ(An)} < µ(A0).

Then the common limiting direction of Julia set of every nontrivial entire solution f to (1.14) satisfies
meas(L( f )) ≥ 2πν.
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In the paper [16], the authors studied a nonlinear differential-difference equation, it belongs to the
general form of Tumura-Clunie equation. This equation is shown as below.

f n(z) + A(z)P̃(z, f ) = h(z), (1.15)

where the coefficient functions A(z), h(z) are entire, and P̃(z, f ) denotes a polynomial in the derivatives
of the shifts of f ,

P̃(z, f ) :=
s∑

j=1

a j(z)
l∏

i=0

( f (i)(z + ci))ni j , (i, j ∈ N)

where ci are distinct complex numbers and a j(z) are polynomials. degP̃(z, f ) = max1≤ j≤s
∑l

i=0 ni j

denotes the degree of P̃(z, f ) , where ni j are positive integers. For more details, see [16, Theorems 1.4
and 1.6]. This inspired us to consider a more general nonlinear complex difference equation
than (1.15), combined with the coefficient having Petrenko’s deviation. In fact, we obtain the
following theorem as our second conclusion of this article.

Theorem 1.5. Suppose that A0(z) is a transcendental entire function and has Petrenko’s deviation
with (1.6). A1(z) is an entire function and non-transcendental growth in some angulars such that
ξ(A1) > 0. Moreover, β−(∞, A0) < 1

1−ξ(A1) . Then the measure of common limiting direction of Julia set
of every nontrivial solution f of equation

˜P2(z, f ) + A1(z) ˜P1(z, f ) = A0(z) (1.16)

satisfies

meas(L̃( f )) ≥ min
{

2π, 2π
(

1
β−(∞, A0)

+ ξ(A1) − 1
)}
,

where L̃( f ) :=
⋂

n∈Z ∆( f (n)(z + η)) and η is any complex number.

The third conclusion of this article is about the dynamic properties of solutions to nonlinear complex
differential equations. Let’s first recall the definition of a differential polynomial for an entire function
f . This differential polynomial P(z, f ) consists of adding a finite number of differential monomials
together, that is

P(z, f ) :=
l∑

j=1

a j(z) f n0 j( f ′)n1 j · · · ( f (k))nk j , (1.17)

where a j(z) are coefficient functions and all of them are meromorphic, and n0 j, n1 j, . . . , nk j are non-
negative integer powers. The minimum degree of P(z, f ) is denoted by

γP := min
1≤ j≤l

 k∑
i=0

ni j

 .
Wang et al. [23] observed the limiting directions of Julia set of solutions to the following Eq (1.18),

they found when F grows fast in a certain direction, that direction is the limiting direction of Julia set
of solution f .
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Theorem 1.6. [23] Let n, s be integers. Suppose that the coefficient F(z) is a transcendental entire
function with finite lower order, P(z, f ) is a differential polynomial with respect to f , its minimum
degree satisfies γP ≥ s and its coefficients a j( j = 1, 2, · · · , l) are entire functions with σ(a j) < µ(F).
Then, for every nontrivial transcendental entire solution f of the differential equation

P(z, f ) + F(z) f s = 0, (1.18)

we have meas(L( f )) ≥ min{2π, π/µ(F)}.

We improve the above Theorem 1.6 by introducing Petrenko’s deviation for one coefficient of the
equation and assuming the existence of angular domain of non-transcendental growth for the other
coefficient. We state our result as follow.

Theorem 1.7. Let P1(z, f ), P2(z, f ) be two differential polynomials with respect to f with
min{γP1 , γP2} ≥ s, where the coefficients a1 j, a2 j( j = 1, 2, · · · , l) are entire functions such that
max{σ(a1 j), σ(a2 j)} < µ(A0). Suppose that the coefficient A0(z) is a transcendental entire function
with finite lower order and satisfies (1.6), A1(z) is an entire function such that ξ(A1) > 0 and
β−(∞, A0) < 1

1−ξ(A1) . s is an integer. Let f be a nontrivial transcendental entire solution of differential
equation

P2(z, f ) + A1(z)P1(z, f ) + A0(z) f s = 0. (1.19)

Then the measure of common limiting direction of Julia set of f satisfying

meas(L( f )) ≥ min
{

2π, 2π
(

1
β−(∞, A0)

+ ξ(A1) − 1
)}
.

2. Preliminary lemmas

The following lemma is crucial, which describes that when f maps an angular domain to a
hyperbolic domain with some special property, f grows by no more than a polynomial in a slightly
smaller angular domain. In order to better express this lemma, let us first give some explanations and
notations. Ĉ denotes the extended complex plane and U is a set contained in Ĉ. If Ĉ\U contains at
least three points, then we say U is a hyperbolic domain. For any a ∈ C\U, we define the quantity
CU(a) := inf{λU(z)|z − a| : ∀z ∈ U}, where λU(z) is the hyperbolic density on U. In particular,
CU(a) ≥ 1/2 when every component of U is simply connected, see [30].

Lemma 2.1. ( [30, Lemma 2.2]) Suppose that f (z) is an analytic mapping and f : Ω(r0, θ1, θ2) → U,
where Ω(r0, θ1, θ2) := {reiθ : θ ∈ (θ1, θ2), r ≥ r0}, and U is a hyperbolic domain. If there exists a point
a ∈ ∂U\{∞} such that CU(a) > 0, then there exists a constant d > 0 such that, for sufficiently small
ε > 0, we have

| f (z)| = O(|z|d), z ∈ Ω(r0, θ1 + ε, θ2 − ε), |z| → ∞.

Because in the process of proving our theorems, we need to use the Nevanlinna theory in the
angular domain, so here we list the notations related to it, which are given in accordance with the
literatures [9, 29]. Suppose that in the closed angular domain Ω(α, β), g(z) is meromorphic. Set
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w = π/(β − α), and bn = |bn|eiβn are poles of g(z) on Ω(α, β) considering their multiplicities. The three
main basic notations are

Aα,β(r, g) =
w
π

∫ r

1

(
1
tw −

tw

r2w

)
{log+ |g(teiα)| + log+ |g(teiβ)|}

dt
t

;

Bα,β(r, g) =
2w
πrw

∫ β

α

log+ |g(reiθ)| sin w(θ − α)dθ;

Cα,β(r, g) = 2
∑

1<|bn |<r

(
1
|bn|

w −
|bn|

w

r2w

)
sin w(βn − α).

The sum of these three basic notations is the characteristic function in Ω(α, β), that is,

S α,β(r, g) = Aα,β(r, g) + Bα,β(r, g) +Cα,β(r, g).

Moreover, its growth is defined as

σα,β(g) := lim sup
r→∞

log S α,β(r, g)
log r

. (2.1)

The following result is a lemma for the estimate of the first two basic notations above of the
logarithmic derivative of a meromorphic function f in an angular domain, which is related to the
logarithm of the characteristic function of f in a larger angular domain.

Lemma 2.2. ( [29, Theorem 2.5.1]) Let f (z) be a meromorphic function on Ω(α − ε, β + ε) for ε > 0
and 0 < α < β ≤ 2π. Then

Aα,β

(
r,

f ′

f

)
+ Bα,β

(
r,

f ′

f

)
≤ K(log+ S α−ε,β+ε(r, f ) + log r + 1)

for r > 1 possibly except a set with finite linear measure.

Further, the estimate of the modulus of the logarithmic derivative of the analytic function in the
angular domain is obtained from the following lemma. Let’s start with a definition of R set, see [15].
B(zn, rn) are a list of disks, that is, B(zn, rn) = {z : |z − zn| < rn}. If

∑∞
n=1 rn < ∞ and zn → ∞, then

∪∞n=1B(zn, rn) is called an R-set. Obviously, the linear measure of set {|z| : z ∈ ∪∞n=1B(zn, rn)} is finite.

Lemma 2.3. ( [13, Lemma 7]) Let g(z) be analytic in Ω(r0, α, β) with σα,β(g) < ∞ for some r0 > 0, and
z = reiψ, r > r0 + 1 and α ≤ ψ ≤ β. Suppose that n(≥ 2) is an integer, and that choose α < α1 < β1 < β.
Then, for every ε j ∈ (0, (β j − α j)/2)( j = 1, 2, . . . , n − 1) outside a set of linear measure zero with

α j = α +

j−1∑
s=1

εs, β j = β −

j−1∑
s=1

εs, j = 2, 3, . . . , n − 1.

There exist K > 0 and M > 0 only depending on g, ε1, . . . , εn−1 and Ω(αn−1, βn−1), not depending on z,
such that ∣∣∣∣∣g′(z)

g(z)

∣∣∣∣∣ ≤ KrM(sin k(ψ − α))−2

and ∣∣∣∣∣∣g(n)(z)
g(z)

∣∣∣∣∣∣ ≤ KrM

sin k(ψ − α)
n−1∏
j=1

sin kε j(ψ − α j)


−2

for all z ∈ Ω(αn−1, βn−1) outside an R-set, where k = π/(β−α) and kε j = π/(β j−α j)( j = 1, 2, . . . , n−1).
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3. Proof of Theorem 1.4

By the condition λ = max{σ(A1), · · · , σ(An)} < µ := µ(A0), we define a constant κ := λ+µ

2 , a set

D := {z ∈ C : |A0(z)| > erκ , |z| = r}

and a set of directions of rays

H(r) := {θ ∈ [0, 2π) : z = reiθ ∈ D}.

Noting that A0 is an entire function and recalling the definition of Nevanlinna characteristic function in
the complex plane, for some r1 > 0, if r > r1, we obtain

2πT (r, A0) =
∫

H(r)
log+ |A0(reiθ)|dθ +

∫
[0,2π)\H(r)

log+ |A0(reiθ)|dθ

≤ meas(H(r)) log M(r, A0) + rκ(2π − meas(H(r))). (3.1)

Consequently,

2π ≤ meas(H(r))
log M(r, A0)

T (r, A0)
+

rκ

T (r, A0)
(2π − meas(H(r))). (3.2)

Recall that the definition of lower order, we have

µ(A0) = lim inf
r→∞

log+ T (r, A0)
log r

,

and since A0 has Petrenko’s deviation with (1.6) outside G, we deduce that, for r < G,

lim inf
r→∞

meas(H(r)) ≥ 2πν. (3.3)

Then there exists a sequence {rn}(⊂ (r1,+∞) \G) with {rn} → ∞ as n→ ∞ such that

lim inf
n→∞

meas(H(rn)) ≥ 2πν. (3.4)

We define

Bn :=
∞⋃
j=n

H(r j),

where n = 1, 2, · · · . Obviously, the set Bn is measurable with meas(Bn) ≤ 2π, and monotone decreasing
as n→ ∞. Their intersection is

H̃ :=
∞⋂

n=1

Bn,

so H̃ is independent of the value r. In view of (3.4) and the monotone convergence theorem [20,
Theorem 1.19], it’s easy to get

meas(H̃) = lim
n→∞

meas(Bn) = lim
n→∞

meas(
∞⋃

n= j

H(r j)) ≥ 2πν. (3.5)
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Let’s use proof by contradiction to prove our conclusion and suppose that meas(L( f )) < 2πν.
Compared with (3.5), there exists an interval (α, β) ⊂ [0, 2π) such that

(α, β) ⊂ H̃, (α, β) ∩ L( f ) = ∅.

Therefor, for any θ ∈ (α, β), the ray {z : arg z = θ} is not a limiting direction of Julia set of
f (z + ηθ) for some complex number ηθ ∈ {ηi : i = 1, 2, · · · , n} depending on θ. Immediately, by the
definition of limiting direction of Julia set, for a constant ξθ depending on θ, we have an angular domain
Ω(θ − ξθ, θ + ξθ) such that

(θ − ξθ, θ + ξθ) ⊂ (α, β), Ω(r, θ − ξθ, θ + ξθ) ∩ J( f (z + ηθ) = ∅ (3.6)

as r(< G) sufficiently large. Then, for a larger rθ, the angular domain Ω(rθ, θ− ξθ, θ+ ξθ) is contained in
an unbounded Fatou component, say Uθ, of F( f (z+ ηθ)) (see [2]). Suppose that Γ ⊂ ∂Uθ is unbounded
and connected, then the mapping

f (z + ηθ) : Ω(rθ, θ − ξθ, θ + ξθ)→ C \ Γ

is analytic. Obviously, C \ Γ is a simply connected hyperbolic domain, then by the explanation before
Lemma 2.1, we have CC\Γ ≥ 1/2 for any a ∈ Γ \ {∞}. From Lemma 2.1, the mapping f (z + ηθ) in
Ω(rθ, θ − ξθ, θ + ξθ) satisfies

| f (z + ηθ)| = O(|z|d1) (3.7)

for z ∈ Ω(rθ, θ − ξθ + ε, θ + ξθ − ε), where ε is a small positive number and d1 is a positive number. For
the sake of simplicity, set α := θ − ξθ + ε and β := θ + ξθ − ε.

Choosing suitable r∗θ(> rθ), for z ∈ Ω(r∗θ , α+ε, β−ε) we have z+c j−ηθ ∈ Ω(rθ, α, β) ( j = 1, 2, · · · ,m).
By (3.7), we obtain

| f (z + c j)| = | f ((z + c j − ηθ) + ηθ)| = O(|z + c j − ηθ|
d1) = O(|z|M0)

for z ∈ Ω(r∗θ , α + ε, β − ε) as |z| → ∞, where M0 is a positive constant. Repeating the above argument
some times, we can obtain

|Pi(z, f )| ≤ K|z|M, (i = 1, 2, · · · , n) (3.8)

for z ∈ Ω(r∗θ , α + ε, β − ε) as |z| → ∞, where K and M are positive constants. From (1.14), we have

erκn < |A0(rneiθ)| ≤
n∑

i=1

|Ai(rneiθ)||Pi(rneiθ, f )| ≤ Kerλn rM
n , (3.9)

where zn = rneiθ ∈ Ω(r∗θ , α
∗ + ε, β∗ − ε) as rn(< G) → ∞, K and M are two large enough constants.

This is impossible since κ > λ. Hence, we obtain meas(L( f )) ≥ 2πν.
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4. Proof of Theorem 1.5

By the assumption and the definition of Petrenko’s deviation, for ξ(A1) > 0, we have

1 ≤ β−(∞, A0) <
1

1 − ξ(A1)
.

We choose two constants ε and d satisfying

0 < ε <
1

β−(∞, A0)
− (1 − ξ(A1))

and
1 > d >

2
2 + ε

.

It’s easy to get

2(1 − d)
d

< ε <
1

β−(∞, A0)
− (1 − ξ(A1)). (4.1)

Set

Id(r) := {θ ∈ [0, 2π) : log |A0(reiθ)| ≥ (1 − d) log M(r, A0)}. (4.2)

Since A0 is entire function, we have

2πT (r, A0) =
∫

Id(r)
log+ |A0(reiθ)|dθ +

∫
[0,2π)\Id(r)

log+ |A0(reiθ)|dθ

≤ meas(Id(r)) log M(r, A0) + (2π − meas(Id(r)))(1 − d) log M(r, A0). (4.3)

In view the definition of Petrenko’s deviation, see (1.2), the formula (4.3) can convert into

lim sup
r→∞

meas(Id(r)) ≥ 2π
(

1
dβ−(∞, A0)

−
1 − d

d

)
. (4.4)

Noting that ε and d satisfy (4.1), we can choose an infinite sequence {rn} such that

meas(Id(rn)) ≥
2π

dβ−(∞, A0)
−

2π(1 − d)
d

− πε

≥
2π

dβ−(∞, A0)
− 2πε

≥
2π

dβ−(∞, A0)
− 2π

(
1

β−(∞, A0)
− (1 − ξ(A1))

)
> 2π(1 − ξ(A1)). (4.5)

Then we get a lower bound of the measure of Id(rn). Set Dn :=
⋃∞

n= j Id(r j) and Ĩd :=
⋂∞

n=1 Dn, so Ĩd is
independent of r. By the same arguments in section 3, we deduce that

meas(Ĩd) = lim
n→∞

meas(Dn) = lim
n→∞

meas(
∞⋃

n= j

Id(r j)) > 2π(1 − ξ(A1)).
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Thus, we estimate the difference between meas(Ĩd) and 2π(1 − ξ(A1)) as follows.

meas(Ĩd) − 2π(1 − ξ(A1)) >
2π

dβ−(∞, A0)
−

2π(1 − d)
d

− πε − 2π(1 − ξ(A1))

= 2π
[
ξ(A1) −

1
d

(
1 −

1
β−(∞, A0)

)
−
ε

2

]
> 2π

[
ξ(A1) −

2 + ε
2

(
1 −

1
β−(∞, A0)

)
−
ε

2

]
= 2π

(
1

β−(∞, A0)
+ ξ(A1) − 1

)
− πε

(
2 −

1
β−(∞, A0)

)
. (4.6)

By the arbitrariness of ε and the condition β−(∞, A0) < 1
1−ξ(A1) , we have

meas(Ĩd) − 2π(1 − ξ(A1)) ≥ 2π
(

1
β−(∞, A0)

+ ξ(A1) − 1
)
> 0. (4.7)

Now let’s prove the conclusion of the theorem by contradiction, on the contrary we assume

meas(L̃( f )) < 2π
(

1
β−(∞, A0)

+ ξ(A1) − 1
)
. (4.8)

Noting the definition of Ξ(A1), see (1.10), and (4.7), (4.8), we can find an interval (α, β) ⊂ (0, 2π]
satisfying

(α, β) ⊂ Ĩd ∩ Ξ(A1), (α, β) ∩ L̃( f ) = ∅. (4.9)

Therefore, for any θ ∈ (α, β), the corresponding ray is not a limiting direction of Julia set of f (nθ)(z+η),
where nθ is an integer and depends on θ. By the definition of limiting direction of Julia set, we can take
an angular domain Ω(θ − ξθ, θ + ξθ) with (θ − ξθ, θ + ξθ) ⊂ (α, β) satisfying

Ω(r, θ − ξθ, θ + ξθ) ∩ J( f (nθ)(z + η)) = ∅ (4.10)

when r(< G) is large enough, ξθ is small enough, and η is a complex constant.
For a corresponding rθ, we have Ω(rθ, θ − ξθ, θ + ξθ) ⊂ Uθ, where Uθ is an unbounded Fatou

component of F( f (nθ)(z + η)) (see [2]). Choose Γ ⊂ ∂Uθ such that Γ is unbounded and connected set,
then C \ Γ is a simply connected hyperbolic domain. Applying Lemma 2.1 to the analytic mapping

f (nθ)(z + η) : Ω(rθ, θ − ξθ, θ + ξθ)→ C \ Γ,

we deduce that

| f (nθ)(z + η)| = O(|z|d1) (4.11)

for rθ → ∞ and z ∈ Ω(rθ, θ − ξθ + ε, θ + ξθ − ε), where ε is a sufficiently small positive constant and d1

is a positive constant. Moreover, we can take a smaller angular domain Ω(r′θ, θ − ξθ + 2ε, θ + ξθ − 2ε)
where r′θ > rθ, such that

z + ci − η ∈ Ω(rθ, θ − ξθ + ε, θ + ξθ − ε)
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for all z ∈ Ω(r′θ, θ − ξθ + 2ε, θ + ξθ − 2ε). For simplicity, denote α := θ − ξθ + 2ε and β := θ + ξθ − 2ε.
Therefore, it yields that

| f (nθ)(z + ci)| = O(|z|d1) (4.12)

for all z ∈ Ω(r′θ, α, β) as |z| = r → ∞, where ci(i = 0, 1, · · · , l) are complex numbers. Now, there are
two cases based on the sign of nθ.

If nθ > 0, by integral we get

f (nθ−1)(z + ci) =
∫ z

0
f (nθ)(ζ + ci)dζ + c, (4.13)

this integral is path independent since f (z) is entire. By (4.12) and (4.13), we obtain

| f (nθ−1)(z + ci)| = O(|z|d1+1)

for z ∈ Ω(r′θ, α, β). Repeating the above integral we get

| f (z + ci)| = O(|z|d1+nθ) (4.14)

for z ∈ Ω(r′θ, α, β).
If nθ < 0. From (4.12), we have

S α,β(r, f (nθ)(z + ci)) = O(1) (4.15)

and σα,β(r, f (nθ)(z + ci)) = 0. Noting the fact nθ < 0 and applying Lemma 2.3 to f (nθ)(z + ci), we obtain∣∣∣∣∣ f (z + ci)
f (nθ)(z + ci)

∣∣∣∣∣ ≤ KrM (4.16)

when z ∈ Ω(r′θ, α + ε
′, β − ε′) outside an R set, where K and M are two positive constants and ε′ is a

small positive constant. Then by (4.12) and (4.16), it’s easy to obtain

| f (z + ci)| = O(|z|d1+M) (4.17)

for all z ∈ Ω(r′θ, α + ε
′, β − ε′) outside an R-set.

By (4.14) and (4.17), for any nθ ∈ Z in (4.12), we always can get

S α∗,β∗(r, f (z + ci)) = O(1)

in the corresponding angular domain. When nθ ≥ 0, α∗ = α, β∗ = β; and when nθ < 0, α∗ = α+ ε′, β∗ =
β − ε′. This yields that σα∗,β∗(r, f (z + ci)) = 0, then by Lemma 2.3, for every i = 1, 2, · · · , l and all
z ∈ Ω(r′θ, α

∗ + ε, β∗ − ε) outside an R-set, we can take two constants Ki > 0 and Mi > 0 such that∣∣∣∣∣∣ f (i)(z + ci)
f (z + ci)

∣∣∣∣∣∣ ≤ KirMi . (4.18)
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From (4.17) and (4.18), it’s easy to get that, for all z ∈ Ω(α∗+ε, β∗−ε) outside an R-set, the modulus
of ( f (i)(z + ci))ni j satisfies

|( f (i)(z + ci))ni j | =

∣∣∣∣∣∣
(

f (i)(z + ci)
f (z + ci)

)ni j

f ni j(z + ci)

∣∣∣∣∣∣ = O(|z|M), (4.19)

where M is an appropriate constant. Recall the representations of ˜Pi(z, f ) we can obtain that

| ˜Pi(z, f )| ≤
s∑

j=1

|a j(z)|
l∏

i=0

∣∣∣∣∣∣
(

f (i)(z + ci)
f (z + ci)

)ni j

f ni j(z + ci)

∣∣∣∣∣∣ = O(|z|M), (i = 1, 2) (4.20)

for all z ∈ Ω(α∗ + ε, β∗ − ε) outside an R-set, and an appropriate constant M. From (1.16), we deduce
that, for a suitable sequence {rn} with zn = rneiθ ∈ Ω(r′θ, α

∗ + ε, β∗ − ε),

[M(rn, A0)]1−d < |A0(zn)| ≤ | ˜P2(zn, f )| + |A1(z)|| ˜P1(zn, f )| = O(rM
n ) (4.21)

as rn → ∞. This inequality contradicts the transcendence of A0. So our conclusion is valid.

5. Proof of Theorem 1.7

Since the entire coefficients A0(z), A1(z) of differential equation (1.19) have the same properties as
in Theorem 1.5, then the fact in (4.9) also holds. Then, for some integer nθ which depends on θ,
every θ ∈ (α, β) is not a limiting direction of Julia set of f (nθ). Therefore, we can choose a constant
ξθ which depends on θ, so the interval (θ − ξθ, θ + ξθ) ⊂ (α, β), and the corresponding angular domain
Ω(θ − ξθ, θ + ξθ) satisfies

Ω(r, θ − ξθ, θ + ξθ) ∩ J( f (nθ)) = ∅ (5.1)

for sufficiently large r(< G). Therefore, for a large enough rθ > r, we have Ω(rθ, θ − ξθ, θ + ξθ) ⊂ Uθ,
where Uθ is an unbounded Fatou component of F( f (nθ)) (see [2]). Taking an unbounded and connected
curve Γ ⊂ ∂Uθ and noting that C \ Γ is simply connected hyperbolic domain, then the mapping

f (nθ) : Ω(rθ, θ − ξθ, θ + ξθ)→ C \ Γ

meets the conditions of Lemma 2.1. Consequently, we have

| f (nθ)(z)| = O(|z|d1) (5.2)

for all z ∈ Ω(rθ, θ−ξθ+ε, θ+ξθ−ε), where ε is a sufficiently small positive constant and d1 is a positive
constant. Denote α := θ − ξθ + ε and β := θ + ξθ − ε for simplicity.

If nθ > 0, similar as in section 4, we integrate f (nθ) for nθ times and note the modulus in (5.2), then

| f (z)| = O(|z|d1+nθ) (5.3)

for z ∈ Ω(rθ, α, β). Thus, the Nevanlinna angular characteristic of f is

S α,β(r, f ) = O(1). (5.4)
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If nθ < 0, from [29, p.49] and Lemma 2.2, we get

S α+ε′,β−ε′(r, f (nθ+1))

≤ S α+ε′,β−ε′

(
r,

f (nθ+1)

f (nθ)

)
+ S α+ε′,β−ε′(r, f (nθ))

≤ O(log+ S α,β(r, f (nθ)) + log r) + S α+ε′,β−ε′(r, f (nθ)) (5.5)

for ε′ = ε
|nθ |

. By (5.2) we get S α,β(r, f (nθ)) = O(1). Combining these together, we deduce

S α+ε′,β−ε′(r, f (nθ+1)) = O(log r).

Repeating the above argument |nθ| times, we obtain

S α+ε,β−ε(r, f ) = O(log r). (5.6)

From (5.4), (5.6) and combining the two cases above, we deduce that S α∗,β∗(r, f ) = O(log r), whereα∗ = α, β∗ = β, for nθ ≥ 0;
α∗ = α + ε, β∗ = β − ε, for nθ < 0.

(5.7)

By the definition of order in angular domain, see (2.1), we have σα∗,β∗(r, f ) = 0. Applying
Lemma 2.3 to f in the angular domain Ω(α∗, β∗), we can find two constants K > 0 and M > 0
such that ∣∣∣∣∣∣ f (n)(z)

f (z)

∣∣∣∣∣∣ ≤ KrM (5.8)

for n ∈ N and all z ∈ Ω(α∗ + ε, β∗ − ε) outside an R-set. We rewrite (1.19) as

−A0(z) =
P2(z, f )

f s + A1(z)
P1(z, f )

f s

=

l2∑
j=1

a2 j(z)
(

f ′

f

)n21 j

· · ·

(
f (k)

f

)n2k j

f n20 j+n21 j+···n2k j−s

+A1(z)
l1∑

j=1

a1 j(z)
(

f ′

f

)n11 j

· · ·

(
f (k)

f

)n1k j

f n10 j+n11 j+···n1k j−s. (5.9)

From (1.10), (4.2), (5.3), (5.8) and (5.9), we deduce that, for a suitable sequence zn = rneiθ ∈ Ω(rθ, α∗+
ε, β∗ − ε),

[M(rn, A0)]1−d < |A0(zn)| ≤ O(rM
n )

 l1∑
j=1

|a1 j(zn)| +
l2∑

j=1

|a2 j(zn)|

 (5.10)

as rn → ∞. Noting the assumption that max{σ(a1 j), σ(a2 j)} < µ(A0) and A0 is transcendental, the
above inequality is not valid.
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6. Conclusions

By using the Nevanlinna theory in angular domain, three theorems (Theorems 1.4, 1.5 and 1.7)
about the lower bounds on the measure of sets consisting of Julia limiting directions of solutions to
three corresponding complex equations were proved. The three equations include the differential or
difference of entire functions. The feature of this paper is that the coefficients of these equations
associated with Petrenko’s deviation. The results of this paper show that the lower bounds mentioned
above have close relation with Petrenko’s deviation. Meanwhile, the results also extend some
conclusions in the related literatures referenced by this paper.
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8. W. H. J. Fuchs, Proof of a conjecture of G. Pólya concerning gap series, Illinois J. Math., 7 (1963),
661–667.

9. A. A. Gol’dberg, I. V. Ostrovskii, Value Distribution of Meromorphic Function, Washington:
American Mathematical Society, 2008.

10. W. Hayman, Meromorphic Functions, Oxford: Clarendon Press, 1964.

11. W. K. Hayman, J. Rossi, Characteristic, maximum modulus and value distribution, Trans. Amer.
Math. Soc., 284 (1984), 651–664.

12. J. Heittokangas, M. A. Zemirni, On Petrenko’s deviations and second order differential equations,
Kodai Math. J., 44 (2021), 181–193. https://doi.org/10.2996/kmj44111

13. Z. Huang, J. Wang, On the radial distribution of Julia sets of entire solutions of f (n) + A(z) f = 0, J.
Math. Anal. Appl., 387 (2012), 1106–1113. https://doi.org/10.1016/j.jmaa.2011.10.016

14. Z. Huang, J. Wang, On limit directions of Julia sets of entire solutions of linear differential
equations, J. Math. Anal. Appl., 409 (2014), 478–484. https://doi.org/10.1016/j.jmaa.2013.07.026

15. I. Laine, Nevanlinna Theory and Complex Differential Equations, Berlin: Walter de Gruyter, 1993.

16. Y. Z. Li, H. Q. Sun, A note on the Julia sets of entire solutions to delay differential equations, Acta
Math. Sci., 43 (2023), 143–155. https://doi.org/10.1007/s10473-023-0109-4

17. J. R. Long, J. Heittokangas, Z. Ye, On the relationship between the lower order of coefficients
and the growth of solutions of differential equations, J. Math. Anal. Appl., 444 (2016), 153–166.
https://doi.org/10.1016/j.jmaa.2016.06.030

18. V. P. Petrenko, Growth of meromorphic function of finite order, Math. USSR Izv., 33 (1969), 414–
454. https://doi.org/10.1070/IM1969v003n02ABEH000786

19. J. Qiao, On limiting directions of Julia set, Ann. Acad. Sci. Fenn. Math., 26 (2001), 391–399.

20. W. Rudin, Real and Complex Analysis, New York: McGraw-Hill, 1987.

21. J. Wang, Z. Chen, Limiting directions of Julia sets of entire solutions to complex differential
equations, Acta Math. Sci., 37 (2017), 97–107. https://doi.org/10.1016/S0252-9602(16)30118-7

22. J. Wang, X. Yao, On Julia limiting directions of meromorphic functions, Israel J. Math., 238
(2020), 405–430. https://doi.org/10.1007/s11856-020-2037-5

23. J. Wang, X. Yao, C. Zhang, Julia limiting directions of entire solutions of complex differential
equations, Acta Math. Sci., 41 (2021), 1275–1286. https://doi.org/10.1007/s10473-021-0415-7

24. Z. Wang, Z. G. Huang, Limiting directions of Julia sets of entire solutions of complex difference
equations, Filomat, 36 (2022), 3745–3754.

25. C. C. Yang, H. X. Yi, Uniqueness Theory of Meromorphic Functions, Beijing: Science Press, 2003.

26. G. W. Zhang, J. Ding, L. Z. Yang, Radial dsitribution of Julia sets of derivetives of solutions to
complex linear differential equations, in Chinese, Sci. Sin. Math., 44 (2014), 693–700.

27. G. W. Zhang, L. Z. Yang, On Petrenko’s deviations and the Julia limiting directions of
solutions of complex differential equations, J. Math. Anal. Appl., 519 (2023), 126799.
https://doi.org/10.1016/j.jmaa.2022.126799

AIMS Mathematics Volume 8, Issue 9, 20169–20186.

http://dx.doi.org/https://doi.org/10.2996/kmj44111
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2011.10.016
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2013.07.026
http://dx.doi.org/https://doi.org/10.1007/s10473-023-0109-4
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2016.06.030
http://dx.doi.org/https://doi.org/10.1070/IM1969v003n02ABEH000786
http://dx.doi.org/https://doi.org/10.1016/S0252-9602(16)30118-7
http://dx.doi.org/https://doi.org/10.1007/s11856-020-2037-5
http://dx.doi.org/https://doi.org/10.1007/s10473-021-0415-7
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2022.126799


20186

28. J. H. Zheng, Dynamics of Meromorphic Functions, in Chinese, Beijing: Tsinghua University Press,
2006.

29. J. H. Zheng, Value Distribution of Meromorphic Function, Beijing: Tsinghua University Press,
2010.

30. J. H. Zheng, S. Wang, Z. Huang, Some properties of Fatou and Julia sets of
transcendental meromorphic functions, Bull. Aust. Math. Soc., 66 (2002), 1–8.
https://doi.org/10.1017/S000497270002061X

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 9, 20169–20186.

http://dx.doi.org/https://doi.org/10.1017/S000497270002061X
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminary lemmas
	Proof of Theorem 1.4
	 Proof of Theorem 1.5
	Proof of Theorem 1.7
	Conclusions

