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Abstract: This paper examines how properties such as shadowing properties, transitivity, and
accessibility in non-autonomous discrete dynamical systems carry over to their product systems. The
paper establishes a proof that the product system exhibits the pseudo-orbit shadowing property (PSP) if,
and only if, both factor systems possess PSP. This relationship, which is both sufficient and necessary,
also holds for the average shadowing property (ASP) and accessibility. Consequently, in practical
problem scenarios, certain chaotic properties of two-dimensional systems can be simplified to those
observed in one-dimensional systems. However, it should be noted that while the point-transitivity,
transitivity, or mixing of the product system can be deduced from the factor systems, the reverse is not
true. In particular, this paper constructs counterexamples to demonstrate that some of the theorems
presented herein do not hold when considering their inverses.

Keywords: non-autonomous discrete dynamical systems; product map; shadowing properties;
transitivity; accessibility
Mathematics Subject Classification: 37B45, 37B55, 54H20

1. Introduction

Non-autonomous discrete dynamical systems (NDDSs), also known as time-varying parametric
dynamical systems, are generated by a sequence of time-varying mapping iterations, which is an
important part of the study of topological dynamical systems.

In 1996, Kolyada [1] first proposed the concept of NDDSs. Let N represent the set of positive
integers, X denotes a compact metric Hausdorff space equipped with metric d. fn : X → X (n ∈
N) is a continuous mapping sequence, and denoted by f1,∞ = ( f1, f2, · · · ) = ( fn)∞n=1. This mapping
sequence defines an NDDS (X, f1,∞). Under this sequence, the orbit of the point x ∈ X is Orb f1,∞(x) =
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{x, f1(x), f2 ◦ f1(x), · · · , f n
1 (x), · · · } (n ∈ N), where f n

1 = fn ◦ · · · ◦ f2 ◦ f1. Likewise, f k
n = fn+k−1 ◦ · · · ◦

fn+1 ◦ fn (n, k ∈ N). Additionally, f 0
1 represents the identity mapping. If fi = f j (i, j ∈ N : i , j),

(X, f1,∞) is referred to as an autonomous discrete dynamical systems (ADDSs).
Compared to the ADDSs, the NDDSs offer greater flexibility and convenience in describing various

dynamic behaviors of a system. ADDSs may struggle to capture the complexity of problems in signal
processing, biology, and physics, whereas NDDSs prove to be effective in their description. Obviously,
the NDDSs are natural extensions of the ADDSs, which can solve more complex practical problems.
However, the dynamic behavior of NDDSs is much more complex than that of ADDSs. In fact, there
has been significant research on the chaotic behavior of mappings in ADDSs, yielding substantial
results. The chaoticity of NDDSs has gradually become a hot research direction of many scholars in
recent years.

In 2006, Tian [2] investigated Devaney chaos in NDDSs. In 2009, Shi [3] introduced the concept
of several types of chaotic properties in NDDSs, such as transitivity, sensitivity, Li-Yorke chaos, etc.
In 2011, Cánovas [4] discussed the dynamic characteristics between topological entropy and Li-Yorke
chaos on NDDSs. In 2012, Balibrea [5] examined the connection between topological entropy and
weak mixing on NDDSs. Song [6] discussed the Ruelle-Takens chaotic properties of non-autonomous
product dynamical systems. In 2013, Wu [7] proved that Li-Yorke sensitivity and sensitivity of
sequences with the form f1,∞ are inherited under iterations. In 2015, Huang [8] extended some results
of sensitivity or strong sensitivity from ADDSs to NDDSs. In 2018, Ma [9] studied the relations
of sensitivity and transitivity between iterative function systems and their product systems. In 2020,
Li [10] studied stronger forms of transitivity and sensitivity for NDDSs by using Furstenberg family.
In 2022, Anwar [11] studied the relations of some sensitivity between iterative function systems and
their product systems. Additionally, we studied the relations of some sensitivity between NDDSs and
their product systems (see [12]). Some other research about chaotic properties of NDDSs are [13–16]
and others.

In [17], we proved that under a specific metric, the product system having the P-property is
equivalent to its factor systems also having the property of P-property, where P-property represents
one of the following five properties: d shadowing property, d shadowing property, F -shadowing
property, and ergodic shadowing property. Naturally, two questions arise: first, whether the conclusion
still holds for other properties, and second, whether the conclusion still holds if other metrics are used.
This paper will explore these two questions.

This paper aims to examine the relationship between accessibility, transitivity, or shadowing
properties of product systems and their corresponding factor systems in NDDSs.

2. Preliminaries

Let f1,∞ = ( fn)∞n=1, g1,∞ = (gn)∞n=1 be two continuous mapping sequences on compact metric spaces
(X, d1) and (Y, d2), respectively. Define f1,∞ × g1,∞ on X × Y as follow

( f n
1 × gn

1)((x, y)) = ( fn × gn) ◦ · · · ◦ ( f1 × g1)(x, y) = ( f n
1 (x), gn

1(y)),

for any (x, y) ∈ X × Y , n ∈ N. For any (x1, y1), (x2, y2) ∈ X × Y , define

D((x1, y1), (x2, y2)) =

√
d2

1(x1, x2) + d2
2(y1, y2)
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is the metric on X×Y. (X×Y,D, f1,∞×g1,∞) is called the product system of (X, d1, f1,∞) and (Y, d2, g1,∞).
Let D1 and D2 be the metric on X × Y . D1 and D2 are equivalent metrics if and only if there exist

b ≥ a > 0 such that

aD1((x1, y1), (x2, y2)) ≤ D2((x1, y1), (x2, y2)) ≤ bD1((x1, y1), (x2, y2))

for any (x1, y1), (x2, y2) ∈ X × Y . [18]

Example 2.1. Let
D1((x1, y1), (x2, y2)) = d1(x1, x2) + d2(y1, y2),

D2((x1, y1), (x2, y2)) = max{d1(x1, x2) + d2(y1, y2)},

for any (x1, y1), (x2, y2) ∈ X × Y. It is easy to get that, D1 and D2 are equivalent metric of D.

Definition 2.1. [3, 19, 20] Let f1,∞ be a continuous mapping sequences on X. f1,∞ or the NDDS
(X, d, f1,∞)) is considered to be

(1) transitive if for any two nonempty open sets U and V in X, there exists an n ∈ N such that

f n
1 (U) ∩ V , ∅;

(2) point-transitive if there is an x ∈ X such that orb f1,∞(x) = X;
(3) accessible if for any ε > 0 and two nonempty open sets U,V ⊂ X, there exists an n ∈ N and points

x ∈ U, y ∈ V such that d( f n
1 (x), f n

1 (y)) < ε;
(4) mixing if for any two nonempty open subsets U,V ⊂ X, there exists an N ∈ N such that the set

N f1,∞(U,V) = {n ∈ N : f n
1 (U) ∩ V , ∅} contains any natural number n ≥ N.

Definition 2.2. [21, 22] Let δ > 0 and {xi}
+∞
i=0 ⊂ X.

(1) The sequence {xi}
+∞
i=0 ⊂ X is a δ pseudo-orbit of f1,∞, if d( fi+1(xi), xi+1) < δ for any i ∈ N0 =

{0, 1, 2, · · · };
(2) The sequence {xi}

+∞
i=0 ⊂ X is a δ average pseudo-orbit of f1,∞, if there exists an N ∈ N such that

1
n

n−1∑
i=0

d( fi+k+1(xi+k), xi+k+1) < δ

for any k ∈ N0, n ≥ N.

Definition 2.3. [20, 21] Let f1,∞ be continuous mapping sequences on X.

(1) The system (X, d, f1,∞) has pseudo-orbit shadowing property (PSP) if for any ε > 0, there is a
δ > 0, for every δ pseudo-orbit {xi}

+∞
i=0 of (X, f1,∞), there exists a z ∈ X such that d

(
f i
1(z), xi

)
< ε

for any i ∈ N0;
(2) The system (X, d, f1,∞) has average shadowing property (ASP) if for any ε > 0, there is a δ > 0,

for each δ average pseudo-orbits {xi}
+∞
i=0 of f1,∞, there exists a z ∈ X such that

lim sup
n→+∞

1
n

n−1∑
i=0

d( f i
1(z), xi) < ε.
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3. Main results

Theorem 3.1. (X×Y, ρ, f1,∞×g1,∞) has PSP if and only if (X, d1, f1,∞) and (Y, d2, g1,∞) have PSP, where
ρ is any equivalent metric of D.

Proof. Since measure ρ be an equivalent measure of measure D, there exist c2 ≥ c1 > 0 such that

c1 · ρ((x1, y1), (x2, y2)) ≤ D((x1, y1), (x2, y2)) ≤ c2 · ρ((x1, y1), (x2, y2))

for any (x1, y1), (x2, y2) ∈ X × Y .
(Necessity) Assume that (X×Y, ρ, f1,∞×g1,∞) has PSP. Then for any ε > 0 such that every δ∗ (δ∗ > 0)

pseudo-orbit {(a∗i , b
∗
i )}+∞i=0 of (X × Y, f1,∞ × g1,∞), there is a (a, b) ∈ X × Y satisfying that

ρ( f i
1 × gi

1(a, b), (a∗i , b
∗
i )) < ε

for any i ∈ N0. �

Claim: There exist {ai}
+∞
i=0 ⊂ X, {bi}

+∞
i=0 ⊂ Y , for any ε > 0 such that {ai}

+∞
i=0 ⊂ X, {bi}

+∞
i=0 ⊂ Y are ε

pseudo-orbit of (X, d1, f1,∞) and (Y, d2, g1,∞), respectively.

Proof of claim. In fact, for any a ∈ X, b ∈ Y , and δ > 0, take a0 = a, a1 = f1(a), a2 = f 2
1 (a), · · · ; b0 =

b, b1 = g1(b), b2 = g2
1(b), · · · . Obviously, d1( fi+1(ai), ai+1) = 0 < ε and d2(gi+1(bi), bi+1) = 0 < ε for any

i ∈ N0. So, {ai}
+∞
i=0 ⊂ X, {bi}

+∞
i=0 ⊂ Y are ε pseudo-orbit of (X, d1, f1,∞) and (Y, d2, g1,∞), respectively.

Take δ =
√

2c1
2 δ∗, let {ai}

+∞
i=0 ⊂ X, {bi}

+∞
i=0 ⊂ Y be the δ pseudo-orbit of (X, d1, f1,∞) and (Y, d2, g1,∞),

respectively. Then,
d1( fi+1(ai), ai+1) < δ and d2(gi+1(bi), bi+1) < δ

for any i ∈ N0. Then,
ρ( fi+1 × gi+1(ai, bi), (ai+1, bi+1))

≤
1
c1

D( fi+1 × gi+1(ai, bi), (ai+1, bi+1))

=
1
c1

√
d2

1( fi+1(ai), ai+1) + d2
2(gi+1(bi), bi+1)

<

√
2

c1
δ = δ∗,

for any i ∈ N0. This means that {(ai, bi)}+∞i=0 ⊂ X × Y is the δ∗ pseudo-orbit of (X × Y, ρ, f1,∞ × g1,∞). So,

1
c2

D( f i
1 × gi

1(a, b), (ai, bi)) ≤ ρ( f i
1 × gi

1(a, b), (ai, bi)) < ε.

It is evident that
d1( f i

1(a), ai) < c2ε and d2(gi
1(b), bi) < c2ε.

Thus, (X, d1, f1,∞) and (Y, d2, g1,∞) have PSP.
(Sufficiency) Assume that f1,∞ and g1,∞ have PSP, then for any ε > 0, there is a δ1 > 0 such that

every δ1 pseudo-orbit {a∗i }
+∞
i=0 of (X, d1, f1,∞), there is a a ∈ X satisfying that d1( f i

1(a), a∗i ) < ε; there
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is a δ2 > 0 such that every δ2 pseudo-orbit {b∗i }
+∞
i=0 of (Y, d2, g1,∞), there is a b ∈ Y conforming that

d2(gi
1(b), b∗i ) < ε.

Let {(ai, bi)}+∞i=0 ⊂ X × Y be the δ pseudo-orbit of (X × Y, ρ, f1,∞ × g1,∞), where δ = 1
c2

min{δ1, δ2}.
Then for any i ∈ N0, it is obvious that

ρ( fi+1 × gi+1(ai, bi), (ai+1, bi+1)) < δ.

Then
D( fi+1 × gi+1(ai, bi), (ai+1, bi+1))
≤ c2ρ( fi+1 × gi+1(ai, bi), (ai+1, bi+1))
< c2δ.

Subsequently,
d1( f n

1 (ai), ai+1) < c2δ and d2(gn
1(bi), bi+1) < c2δ.

So, {ai}
+∞
i=0 ⊂ X, {bi}

+∞
i=0 ⊂ Y are the δ∗ (δ∗ = c2δ) pseudo-orbit of f1,∞ and g1,∞, respectively.

According to the PSP of (X, d1, f1,∞) and (Y, d2, g1,∞), then for any ε > 0 and i ∈ N0 there exists
a ∈ X, B ∈ Y , such that

d1( f i
1(a), ai) < ε and d2(gi

1(b), bi) < ε.

Then,

ρ( f i
1 × gi

1(a, b), (ai, bi))

≤
1
c1

D( f i
1 × gi

1(a, b), (ai, bi))

=
1
c1

√
d2

1( f i
1(a), ai) + d2

2(gi
1(b), bi)

<

√
2

c1
ε,

for any i ∈ N0. Therefore, (X × Y, ρ, f1,∞ × g1,∞) has PSP.
This complete the proof. �

An illustratable example is provided below to demonstrate Theorem 3.1.

Example 3.1. Let X = [0, 1]. The metric d is denoted by d(a, b) = |a − b| (∀a, b ∈ X). Three mappings

g1(x), g2(x), and g3(x) are defined by g1(x) =

√
1 − 4(x − 1

2 )2 for x ∈ X, g2(x) = −4x2 + 4x for x ∈ X,
and g3(x) = 0 for x ∈ X. Let (hn)∞n=1 = {g1, g3, g1, g3, · · · }, (`n)∞n=1 = {g2, g3, g2, g3, · · · }.

For any x ∈ X, ε > 0, take δ = ε
3 . Let

x1 = max{h1(x) −
ε

3
, 0}, x2 = min{h1(x) +

ε

3
, 1};

y1 = max{`1(x) −
ε

3
, 0}, y2 = min{`1(x) +

ε

3
, 1}.

and

a0 = x, a1 ∈ (x1, x2), a2 ∈ [0,
ε

3
), a3 ∈ [0,

ε

3
), · · · ;
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b0 = x, b1 ∈ (y1, y2), b2 ∈ [0,
ε

3
), b3 ∈ [0,

ε

3
), · · · .

Obviously,
d(hi+1(ai), ai+1) < δ =

ε

3
and d(`i+1(bi), bi+1) < δ =

ε

3
for any i ∈ N. So, {ai}

+∞
i=0 ⊂ X, {bi}

+∞
i=0 ⊂ Y are the δ pseudo-orbits of h1,∞ and `1,∞, respectively. Since

d(hi
1(x), ai) < ε and d(`i

1(x), bi) < ε

for any i ∈ N. Thus, (X, d, h1,∞) and (X, d, `1,∞) have PSP.
In view of

D((hi+1 × `i+1)(ai, bi), (ai+1, bi+1)) =
√

d2(hi+1(ai), ai+1) + d2(`i+1(bi), bi+1) <
√

2δ

for any i ∈ N, then {(ai, bi)}+∞i=0 ⊂ X × Y is a δ∗ pseudo-orbit of f1,∞ × g1,∞, where δ∗ =
√

2δ. Due to

D(( f i
1 × gi

1)(a, b), (ai, bi)) =

√
d2( f i

1(a), ai) + d2(gi
1(b), bi) <

√
2ε

for any i ∈ N0. This indicates that (X × X,D, f1,∞ × g1,∞) has PSP.

Theorem 3.2. (X × Y, ρ, f1,∞ × g1,∞) has ASP if and only if (X, d1, f1,∞) and (Y, d2, g1,∞) have ASP.

Proof. (Necessity) Since ρ is an equivalent metric of D, there exist c2 ≥ c1 > 0 such that

c1 · ρ((x1, y1), (x2, y2)) ≤ D((x1, y1), (x2, y2)) ≤ c2 · ρ((x1, y1), (x2, y2))

for any (x1, y1), (x2, y2) ∈ X × Y .
Assume that (X × Y, ρ, f1,∞ × g1,∞) has ASP, then, for any ε > 0 and every δ∗ average pseudo-orbit

{(a∗i , b
∗
i )}+∞i=0 of (X × Y, f1,∞ × g1,∞), there exists a (a, b) ∈ X × Y such that

lim sup
n→+∞

1
n

n−1∑
i=0

ρ( f i
1 × gi

1(a, b), (a∗i , b
∗
i )) < ε.

Take δ = c1
2 δ
∗. Let {ai}

+∞
i=0 ⊂ X, {bi}

+∞
i=0 ⊂ Y be δ average pseudo-orbits of f1,∞ and g1,∞, respectively.

Then there exist m1,m2 ∈ N such that

1
n1

n1−1∑
i=0

d1( fi+k+1(ai+k), ai+k+1) < δ and
1
n2

n2−1∑
i=0

d2(gi+k+1(bi+k), bi+k+1) < δ

for any n1 ≥ m1, n2 ≥ m2, and k ∈ N0. Then,

1
n

n−1∑
i=0

ρ( fi+k+1 × gi+k+1(ai+k, bi+k), (ai+k+1, bi+k+1))

≤
1

c1n

n−1∑
i=0

D( fi+k+1 × gi+k+1(ai+k, bi+k), (ai+k+1, bi+k+1))
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=
1

c1n

n−1∑
i=0

√
d2

1( fi+k+1(ai+k), ai+k+1) + d2
2(gi+k+1(bi+k), bi+k+1)

≤
1

c1n

n−1∑
i=0

(d1( fi+k+1(ai+k), ai+k+1) + d2(gi+k+1(bi+k), bi+k+1))

=
1

c1n

n−1∑
i=0

d1( fi+k+1(ai+k), ai+k+1) +
1

c1n

n−1∑
i=0

d2(gi+k+1(bi+k), bi+k+1)

<
2
c1
δ = δ∗,

for any n > m = max{m1,m2}. Therefore, {(ai, bi)}+∞i=0 ⊂ X × Y is a δ∗ average pseudo-orbit of f1,∞ ×

g1,∞. Since f1,∞ × g1,∞ has ASP, then, for any ε > 0 and the δ∗ average pseudo-orbit {(ai, bi)}+∞i=0 of
(X × Y, f1,∞ × g1,∞), there exists a (a, b) ∈ X × Y such that

1
c2

lim sup
n→+∞

1
n

n−1∑
i=0

D(( f i
1 × gi

1)(a, b), (ai, bi)) ≤ lim sup
n→+∞

1
n

n−1∑
i=0

ρ( f i
1 × gi

1(a, b), (ai, bi)) < ε.

In consequence,

lim sup
n→+∞

1
n

n−1∑
i=0

d1( f i
1(a), ai) < c2ε and lim sup

n→+∞

1
n

n−1∑
i=0

d2(gi
1(b), bi) < c2ε.

Thus, (X, d1, f1,∞) and (Y, d2, g1,∞) have ASP.
(Sufficiency) Since (X, d1, f1,∞) and (Y, d2, g1,∞) have ASP, then for any ε > 0, there exist δ1 > 0 and

δ2 > 0 such that, for every δ1 average pseudo-orbit {a∗i }
+∞
i=0 of (X, f1,∞) and every δ2 average pseudo-orbit

{b∗i }
+∞
i=0 of (Y, g1,∞), one can select a ∈ X, b ∈ Y satisfying

lim sup
n→+∞

1
n

n−1∑
i=0

d1( f i
1(a), a∗i ) < ε and lim sup

n→+∞

1
n

n−1∑
i=0

d2(gi
1(b), b∗i ) < ε.

Take δ = 1
c2

min{δ1, δ2}. Let {(ai, bi)}+∞i=0 ⊂ X × Y be a δ average pseudo-orbit of f1,∞ × g1,∞. Then
there exists an m ∈ N such that

1
c2n

n−1∑
i=0

D(( fi+k+1 × gi+k+1)(ai+k, bi+k), (ai+k+1, bi+k+1))

≤
1
n

n−1∑
i=0

ρ(( fi+k+1 × gi+k+1)(ai+k, bi+k), (ai+k+1, bi+k+1))

<δ,

for any n ≥ m and any k ∈ N0. This means that

1
n

n−1∑
i=0

d1( fi+k+1(ai+k), ai+k+1) < c2δ and
1
n

n−1∑
i=0

d2(gi+k+1(bi+k), bi+k+1) < c2δ.

AIMS Mathematics Volume 8, Issue 9, 20048–20062.



20055

So, {ai}
+∞
i=0 ⊂ X, {bi}

+∞
i=0 ⊂ Y are the δ∗ average pseudo-orbits of f1,∞ and g1,∞, respectively, where

δ∗ = c2δ.
By the ASP of (X, d1, f1,∞) and (Y, d2, g1,∞), for any ε > 0 and i ∈ N0, there exist a ∈ X, b ∈ Y such

that

lim sup
n→+∞

1
n

n−1∑
i=0

d1( f i
1(a), ai) < ε and lim sup

n→+∞

1
n

n−1∑
i=0

d2(gi
1(b), bi) < ε.

Then,

lim sup
n→+∞

1
n

n−1∑
i=0

ρ(( f i
1 × gi

1)(a, b), (ai, bi))

≤
1
c1

lim sup
n→+∞

1
n

n−1∑
i=0

D(( f i
1 × gi

1)(a, b), (ai, bi))

=
1
c1

lim sup
n→+∞

1
n

n−1∑
i=0

√
d2

1( f i
1(a), ai) + d2

2(gi
1(b), bi)

=
1
c1

lim sup
n→+∞

1
n

n−1∑
i=0

(d1( f i
1(a), ai) + d2(gi

1(b), bi))

<
2
c1
ε.

Therefore, (X × Y, ρ, f1,∞ × g1,∞) has ASP.
This complete the proof. �

In 2022, [15] proved that some shadowing properties are sufficient conditions for being transitive or
point-transitive for a NDDSs. Next, we will discuss the relations of point-transitivity between product
systems and teir factor systems.

Theorem 3.3. If (X × Y, ρ, f1,∞ × g1,∞) is point-transitive (resp. transitive, mixing), then (X, d1, f1,∞)
and (Y, d2, g1,∞) are point-transitive (resp. transitive, mixing).

Proof. (1) Assume that (X × Y, ρ, f1,∞ × g1,∞) is point-transitive. Then there is a (a, b) ∈ X × Y such
that orb f1,∞×g1,∞(a, b) = X × Y . That is, {(a, b), ( f1(a), g1(b)), · · · , ( f n

1 (a), gn
1(b)), · · · } = X × Y .

Obviously,
orb f1,∞(a) = X and orbg1,∞(b) = Y.

Thus (X, d1, f1,∞) and (Y, d2, g1,∞) are point-transitive.
(2) Assume that (X ×Y, ρ, f1,∞ × g1,∞) is transitive. Then for any two nonempty open sets U1 ×V1 and

U2 ×V2 in X × Y , there exists an n ∈ N such that ( f n
1 × gn

1)(U1 ×V1)∩ (U2 ×V2) , ∅. To elaborate,
there is a (a1, b1) ∈ U1 × V1 such that ( f n

1 × gn
1)(a1 × b1) = ( f n

1 (a1), gn
1(b1)) ∈ U2 × V2. Then,

f n
1 (a1) ∈ U2 and gn

1(b1) ∈ V2.

So,
f n
1 (U1) ∩ U2 , ∅ and gn

1(V1) ∩ V2 , ∅.

By the arbitrariness of Ui,Vi (i = 1, 2), (X, d1, f1,∞) and (Y, d2, g1,∞) are transitive.
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(3) The proof of mixing is omitted as it follows a similar line of reasoning as that of transitivity.
This complete the proof. �

The inverse of Theorem 3.3 may not hold in all cases. This illustrated through Examples 3.2 and 3.3.

Example 3.2. Let X = [0, 1], the set of all rational numbers in X is denoted by {a1, a2, a3, · · · }. For
any x ∈ [0, 1], let f1(x) = a1, f2(x) = a2, · · · fn(x) = an, · · · . For f1,∞ = ( fn)∞n=1 = { f1, f2, f3, · · · }, it is
obvious that orb f1,∞(a) = X for any a ∈ X. So, (X, d, f1,∞) is point-transitive.

However, for any a, b ∈ X, ( f n
1 × f n

1 )(a, b) = (ai, ai) (i ∈ N). Then, orb f1,∞× f1,∞(a, b) , X × X. So,
(X × X,D, f1,∞ × f1,∞) is not point-transitive.

Example 3.3. Let X = [0, 1]. Two mappings φ(x), ω(x) be defined by φ(x) = x for any x ∈ [0, 1] and

ω(x) =


2x + 1

2 for x ∈
[
0, 1

4

]
;

−2x + 3
2 for x ∈

[
1
4 ,

1
2

]
;

−x + 1 for x ∈
[

1
2 , 1

]
.

Let (gn)∞n=1 = {ω, φ, ω, φ, ω, φ, · · · }.

The function images of g2
1, g3

1, g4
1, and g5

1 are given in Figure 1, and the image of gn
1(n > 5) can be

inferred.

Figure 1. The function images of g2
1, g3

1, g4
1, and g5

1.

Figure 1 shows that, for any nonempty open set U ∈ X, there are large enough m1,m2 ∈ N such that
gm1

1 (U) ⊃ (0, 1
2 ), gm2

1 (U) ⊃ (1
2 , 1). Then, for any nonempty open set V ∈ X, there is an n ∈ N such that

f n
1 (U) ∩ V , ∅. So, (X, d, g1,∞) is transitive.

Take U1 = U2 = (0, 1
2 ),V1 = ( 1

8 ,
1
4 ),V2 = ( 5

8 ,
7
8 ). Then (gn

1×gn
1)(U1×U2) ⊂ [(0, 1

2 )× (0, 1
2 )]∪ [( 1

2 , 1)×
( 1

2 , 1)] for any n ∈ N. However, (gn
1 × gn

1)(U1 ×U2) ∩ (V1 × V2) = ∅. Thus (X × X,D, g1,∞ × g1,∞) is not
transitive.

Now, accessibility will be discussed by us.
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Theorem 3.4. If (X, d, f1,∞) is mixing, then (X, d, f1,∞) is accessible.

Proof. Let any two nonempty open sets U1 and U2 be in X. For any ε > 0, there is a V ⊂ X such that
diam(V) < ε. Due to (X, d, f1,∞) is mixing, then there is an N1 > 0 such that f n

1 (U1) ∩ V , ∅ for all
n ≥ N1, and there is an N2 > 0 such that f n

1 (U2) ∩ V , ∅ for all n ≥ N2.
Take N = max{N1,N2}, then, for U1, U2, and V in X, f n

1 (U1) ∩ V , ∅ and f n
1 (U2) ∩ V , ∅ for all

n ≥ N. Then, there exist a ∈ U1, b ∈ U2 such that f n
1 (a) ∈ V and f n

1 (b) ∈ V . Since diam(V) < ε, then,
d( f n

1 (a), f n
1 (b)) < ε. So, (X, d, f1,∞) is accessible.

This complete the proof. �

The inverse of Theorem 3.4 is not necessarily held. This is illustrated through an counterexample.

Example 3.4. Let X = [0, 1],

f1(x) =

 2x for x ∈
[
0, 1

2

]
;

−2x + 2 for x ∈
[

1
2 , 1

]
,

f2(x) =

 x for x ∈
[
0, 1

2

]
;

−x + 1 for x ∈
[

1
2 , 1

]
,

f3(x) =

 1
2 x for x ∈

[
0, 1

2

]
;

−1
2 x + 1

2 for x ∈
[

1
2 , 1

]
,

f4(x) =

 1
4 x for x ∈

[
0, 1

2

]
;

−1
4 x + 1

4 for x ∈
[

1
2 , 1

]
,

· · ·

fn(x) =

 1
2n−2 x for x ∈

[
0, 1

2

]
;

− 1
2n−2 x + 1

2n−2 for x ∈
[

1
2 , 1

]
,

· · ·

Let ( fn)∞n=1 = { f1, f2, · · · , fn, · · · }.
The function images of f 2

1 , f 3
1 , f 4

1 , and f 5
1 are given in Figure 2, and the image of f n

1 (n > 5) can be
inferred.

Figure 2 shows that, f n
1 (U)→ {0}(n→ ∞) for any U ∈ X. For any ε > 0 and any a, b ∈ X, there is

an m1 ∈ N such that d( f n
1 (a), f n

1 (b)) < ε for any n > m1. So, (X, d, f1,∞) is accessible.
Take V = [ 1

2 , 1], for any U ∈ X, there is an m2 ∈ N such that f n
1 (U) ∩ V = ∅ for any n > m2. Thus

(X, d, f1,∞) is not mixing.
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Figure 2. The function images of f 2
1 , f 3

1 , f 4
1 , and f 5

1 .

Theorem 3.5. (X × Y, ρ, f1,∞ × g1,∞) is accessible if and only if (X, d1, f1,∞) and (Y, d2, g1,∞) are
accessible.

Proof. Since metric ρ is an equivalent metric of metric D, there exist b ≥ a > 0 such that

aρ(x1, y1), (x2, y2) ≤ D(x1, y1), (x2, y2) ≤ bρ(x1, y1), (x2, y2)

for any (x1, y1), (x2, y2) ∈ X × Y .
(Necessity) Assume that (X × Y, ρ, f1,∞ × g1,∞) is accessible. Then, for any ε > 0 and two nonempty

open sets U1 × V1,U2 × V2 ∈ X × Y , there exist points (a1, b1) ∈ U1 × V1, (a2, b2) ∈ U2 × V2, and n ∈ N
such that

ρ(( f n
1 × gn

1)(a1, b1), ( f n
1 × gn

1)(a2, b2)) = ρ(( f n
1 (a1), gn

1(b1)), ( f n
1 (a2), gn

1(b2))) <
1
b
ε.

Then, √
d2

1( f n
1 (a1), f n

1 (a2)) + d2
2(gn

1(b1), gn
1(b2))

= D(( f n
1 × gn

1)(a1, b1), ( f n
1 × gn

1)(a2, b2))
≤ bρ(( f n

1 (a1), gn
1(b1)), ( f n

1 (a2), gn
1(b2)))

< ε.

This means that d1( f n
1 (a1), f n

1 (a2)) and d2(gn
1(b1), gn

1(b2)) are less than ε. So, (X, d1, f1,∞) and
(Y, d2, g1,∞) are accessible.

(Sufficiency) By contradiction, if (X×Y, ρ, f1,∞×g1,∞) is not accessible, then there exist a ε0 > 0 and
two nonempty open sets U1×V1,U2×V2 ∈ X×Y , for any n ∈ N and points (a1, b1) ∈ U1×V1, (a2, b2) ∈
U2 × V2, it is obvious that

ρ(( f n
1 × gn

1)(a1, b1), ( f n
1 × gn

1)(a2, b2)) > ε0.

Then,

AIMS Mathematics Volume 8, Issue 9, 20048–20062.
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√
d2

1( f n
1 (a1), f n

1 (a2)) + d2
2(gn

1(b1), gn
1(b2))

= D(( f n
1 × gn

1)(a1, b1), ( f n
1 × gn

1)(a2, b2))
≥ aρ(( f n

1 × gn
1)(a1, b1), ( f n

1 × gn
1)(a2, b2))

> aε0.

This means that at least one of d1( f n
1 (a1), f n

1 (a2)) and d2(gn
1(b1), gn

1(b2)) has to be greater than
√

2
2 aε0.

To be more specific, at least one of (X, d1, f1,∞) and (Y, d2, g1,∞) is not accessible. Contradict to that
(X, d1, f1,∞) and (Y, d2, g1,∞) are accessible. So, (X × Y, ρ, f1,∞ × g1,∞) is accessible.

This complete the proof. �

The following example demonstrates that, if only one of the (X, d1, f1,∞) and (Y, d2, g1,∞) is
accessible, there is not necessarily follow that (X × X, ρ, f1,∞ × g1,∞) is accessible.

Example 3.5. Let X = [0, 1], two mappings h1(x), h2(x) be defined by h1(x) = 1, h2(x) = x for x ∈ X.
Let ( fn)∞n=1 = {h1, h1, h1, · · · }, (gn)∞n=1 = {h2, h2, h2, · · · }.

Obviously, d( f n
1 (x1), f n

1 (x2)) = 0 for any n ∈ N and x1, x2 ∈ X. So, (X, d, f1,∞) is accessible. Let
U = (0, 1

8 ),V = ( 7
8 , 1), then for any x1 ∈ U, y1 ∈ V, d(gn

1(x1), gn
1(y1)) > 3

4 . Thus, (X, d, g1,∞) is not
accessible. For U × U,V × V ∈ X × X, any (x1, x2) ∈ U × U, (y1, y2) ∈ V × V, it is obvious that

D(( f n
1 × gn

1)(x1, x2), ( f n
1 × gn

1)(y1, y2)

=

√
d2( f n

1 (x1), f n
1 (y1)) + d2(gn

1(x2), gn
1(y2)) >

3
4
.

Therefore, (X × X,D, f1,∞ × g1,∞) is not accessible.

Theorem 3.6. Let fn(n ∈ N) be surjections. If the system (X, d, f1,∞) is accessible, then, for any n ∈ N,
the system (X, d, fn,∞ = ( fn, fn+1, · · · )) is accessible.

Proof. To illustrate this point, it is sufficient to consider the case when n = 2.
For any two nonempty open subsets U,V ⊂ X, taking an inverse image of each element in U and V

under f1, one can get two sets U∗ and V∗ in X, separately. Since f1 is continuous surjective, then U∗

and V∗ are also nonempty open subsets of X. Due to f1,∞ is accessible, then for any ε > 0, there exist
points a∗ ∈ U∗, b∗ ∈ V∗ and n ∈ N such that d( f n+1

1 (a∗), f n+1
1 (b∗)) < ε.

Given that there exist a ∈ U, b ∈ V such that f1(a∗) = a, f1(b∗) = b, then d( f n
2 (a), f n

2 (b)) =

d( f n+1
1 (a∗), f n+1

1 (b∗)) < ε. So, (X, d, f2,∞) is accessible.
This complete the proof. �

Theorem 3.7. Let fn(n ∈ N) and gn(n ∈ N) be surjections. If (X × Y, ρ, f1,∞ × g1,∞) is accessible, then
(X, d1, fn,∞) and (Y, d2, gn,∞) is accessible for any n ∈ N.

Proof. The result is evident by applying Theorems 3.5 and 3.6.
This complete the proof. �

An appropriate example that aligns with Theorem 3.7 is presented below.
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Example 3.6. Let X = [0, 1]. Two mappings ϕ(x), ψ(x) be defined by

ϕ(x) =


3x for x ∈

[
0, 1

3

]
;

−3x + 2 for x ∈
[

1
3 ,

2
3

]
;

3x − 2 for x ∈
[

2
3 , 1

] and ψ(x) =



6x for x ∈
[
0, 1

6

]
;

−6x + 2 for x ∈
[

1
6 ,

1
3

]
;

6x − 2 for x ∈
[

1
3 ,

1
2

]
;

−6x + 4 for x ∈
[

1
2 ,

2
3

]
;

6x − 4 for x ∈
[

2
3 ,

5
6

]
;

−6x + 6 for x ∈
[

5
6 , 1

]
.

Let ( fn)∞n=1 = {ϕ, ϕ, ϕ, · · · }, (gn)∞n=1 = {ψ, ψ, ψ, · · · }.
Obviously, ϕ(x) and ψ(x) are triangle-tent map. Then there must exist large enough n1, n2 ∈ N

such that f n1
1 (U) = X and gn2

1 (U) = X for any nonempty open set U ∈ X. Take n = max{n1, n2}, then
f n
1 (U) ∩ f n

1 (V) , ∅ for any nonempty open set V ∈ X. So, there exist points x ∈ U, y ∈ V such that
d( f n

1 (x), f n
1 (y)) = 0. Thus, (X, d, f1,∞) and (X, d, g1,∞) are accessible.

For any two nonempty open sets U1 × V1 and U2 × V2 in X × X, there exists an n ∈ N such that
( f n

1 × gn
1)(U1 × V1) = X × X. Then, ( f n

1 × gn
1)(U1 × V1) ∩ ( f n

1 × gn
1)(U2 × V2) , ∅. So, there exist points

(a1, b1) ∈ U1 × V1, (a2, b2) ∈ U2 × V2 such that D(( f n
1 × gn

1)(a1, b1), ( f n
1 × gn

1)(a2, b2)) = 0 for any metric
ρ of X × X. Therefore, (X × X,D, f1,∞ × g1,∞) is accessible.

Corollary 3.1. If (X × Y, ρ, f1,∞ × g1,∞) is mixing, then (X, d1, f1,∞) and (Y, d2, g1,∞) are accessible.

4. Conclusions

Transitivity, mixing, and accessibility are chaotic properties related to Devaney chaos. They
represent a kind of ergodic state of discrete dynamical systems. While shadowing properties are often
used in computer simulation. The orbit obtained by numerical calculation approximately reflects the
local dynamic behavior of the system. The premise is that the difference between each iteration point
and the real orbit is small enough. This paper discusses the relationship between the above properties
of non-autonomous product systems and that of corresponding factor systems. The results tell us that
in practical problems, the method of decreasing (or increasing) dimension is feasible. The reasons
for the infeasibility are explained by counterexamples. In the future, we can combine more specific
applications in physics, electronic information, or computer technology to study the chaotic properties
of high-dimensional systems or low-dimensional systems.
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