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1. Introduction

Let (M, g) be a Kéhler manifold of complex dimension n with Kéhler metric g = 3/ u;;dz; ® dz;.
The Laplace-Beltrami operator with respect to the Kihler metric g is defined by

n ,—, 62
Ag= -4 ul——, 1.1
& Z: “ azl&j ( )
where [17]" = [uz]™". Let
=0h Oh
A(Ay) = A1(Ay, M) = inf {4 f W ——=dV, : h e C(M), f IhPdV, = 1}, (1.2)
v 07,07 M

Here dV, is the volume measure of M with respect to the Kihler metric g.
Spectral theory or eigenvalue estimates for Laplace-Beltrami operators are important subject for
mathematics. When M is compact and A, is uniformly elliptic, 4,(A,) is the first eigenvalue of A,.


http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2023999

19583

Researches on its upper and lower bound estimates have a long history with many results (see [1-5]
and the reference therein).

Unlike compact manifolds, for the case when M is a non-compact manifold, 1;(A,) may not be
an eigenvalue of A, but rather the infimum of the positive spectral of A,. This naturally leads to an
interesting problem: study of estimate for A,(A,) in the complete non-compact case. Quite a bit of
research has been done on this problem. For examples, the results on upper bounds and lower bounds
estimates obtained by Cheng [6], Li and Wang [7-10], Munteanu [11], Li and Tran [12] are all well
known. The rigidity property of manifold may be further obtained when A, achieves its sharp upper or
lower bound estimate. For examples, one may see [7-9, 13, 14] and references therein.

We recall the following estimates for A,(A,), in the Riemannian manifolds, a sharp upper bound
estimate for 4,(A,) is well known from Cheng [6]. For the Kéhler manifolds, Li and Wang gave an
important sharp upper bound estimate in [9]. They proved 4,(A,) > n* with the assumption that the
holomorphic bisectional curvature of M is bounded below by —1. Later on, Munteanu [11] improved
Li and Wang’s result, and derived another sharp estimate in terms of the Ricci curvature is bounded
from below by —2(n + 1).

As a continuation of the work of Li and Wang [9] and the work of Munteanu [11], Li and
Tran [12] provided many examples of bounded strongly pseudoconvex domains, on which 4;(A,) can
be explicitly formulated. However, those domains were exclusive of most of non-smooth domains, like
Cartan classical domains. It would be desirable to proceed the study of 1;(A,) on the Cartan classical
domains.

Suppose Ra(n) be the Cartan classical domains of type A(A = I11,1V). Let D be a bounded
pseudoconvex domain in C" and u(z) € C*(D) be a strictly plurisubharmonic exhaustion function for
D.Letg=3" y—”dzi ® dz; be the Kéhler metric induced by u. We set

i,j=1 9z;0z;

n

- 0u Ou
Aul> = i — 1.3
ou? ,Zlg 75 (1.3)
and
@, = supfa : f(det[gij])”‘dv < o0}, (1.4)
D

This paper aims to provide an estimate for A;(A,) on Ra(n)(A = I11,1V) with g is the Bergman
metric of R4(n). Regarding the estimate for 4,(A,) on the Cartan classical domains of type I and II, it
has been studied by the first author in [15]. We continue to use some ideas in [15], but the calculations
in the current cases are much more delicate. This is due to the special forms of R;;;(n) and R,y (n).

Our study is motivated by Li and Tran [12]. We emphasize that the calculation of |6u|§ and the
construction of test functions play important roles in our argument, but both are difficult to solve. We
use the Bergman metric g on the Cartan classical domains given by Hua [16] and Lu [17].

Let K#(z) := K4(z, z) be the Bergman kernel function of R#(n) and let

1
ug=—IlogKx(z), cypy=n-1 and c;y="2n. (1.5)
Ca

Our goal is to prove the following results.
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Theorem 1.1. Let A, = A, (A = I11,1V) be the Laplace-Beltrami operator associated to the Bergman
metric g on the Cartan classical domains R #(n) of type A. Let u = ug be the strictly plurisubharmonic
exhaustion function for Rz(n) and g = g4 be the Kiihler metric induced by u4. Assuming that |0ul> < 5,
one has

(i) 21(A,) > N%/B with Ny = n(n — 1)/2 and Nyy = n;
(i) Li(A,) < Bey(l — aq)’, where

1 1
Qg = m, Q[\/(l’l) = 5 whenn = 1, a’[\/(n) = Z when n > 1,

and
C[]]:I’l—l, C]V:21’l.

Corollary 1.1. Let the notations and assumptions as in Theorem 1.1. Then

[n(nil)z’ n(2n4—3)2]’ n =2k
/ll(A )E

117 20, _ a2
[n(Z 1)’ (n 1)(571 3) 1, n=2k-1.

and

=1, n=1;
/II(A’V){ e[n*4n-17?%, n>2.

The remainder of the paper is organized as follows. In Section 2, we introduce the notion and
provide some preliminary results concerning R,(n). In Section 3, our main results are stated and
proved. Section 4 contains a brief summary of our study.

2. Cartan classical domains of type III and IV

Let M™ be the set of all n X n matrices with entries in C. For any A = [a;;] € M, let
A=A = [a;].

We denote by I, the n X n identity matrix. The Cartan classical domains of the type III and IV can be
represented as follows:

R, =R, (n)={ZeM™: Z=-71,-77Z" > 0}. 2.1)

Ry =R, () = {z= @, z) € CL1+] Y 2P =20 > 0,1 ) 2l < 1) (22)
j=1 j=1

Suppose A and B are two n X n matrix. Then we define an —”(”2‘ D

consists of the entries (AXB); k) With i < jand k < £ as follows:

x "D matrix [AXB],,, which

(AXB)(,‘j)(kg) = a,»kbjg - Cli[bjk, 1<i< ] <nl<k<{t<n. (23)
In particular,
(A)ZA)(ij)(kg) = Aijke) = Qi je — QieQ ji, 1<i< ] <nl<k<{t<n. (24)

The following result can be found in [17, p317-318].

AIMS Mathematics Volume 8, Issue 8, 19582—-19594.
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Proposition 2.1. [17] Let A and B be two n X n matrices. Then

[AXA]us[BXBlas = [ABXABlas,  ([AXBlas) = [A"XB ] (2.5)
and
[AXA]! = [A7'%XA 4, det[AXA],, = (detA)"™'. (2.6)
A straightforward calculation shows:
Proposition 2.2. Let C = [c,,] be a s X s matrix where c,, is a function of z = (z1,- -+ ,2,) € C" and z.
Then ;
Ologdet € logietc = Z cm% (2.7)
e #logdetC ¢ Cpq \ dcpg dcij
Y = p;l cpqm - Z ¢l A e (2.8)
where \
Z cijckj = 0.
j=1
ForZ e R,,, we set
2=(212, " »Zm»s 223> """ 5 Z2ms " > Zn=1yn) € .
Obviously 2||z||* = tr(ZZ*). We know from Hua’s book [16] or Lu’s book [17, Section 3.3] that
e 2.9)
V(R detI — ZZ*)+!
and :
Kiy(2) = (2.10)

VRW) (1+|3), 2P = 2Py

Here V(R 4) is the volume of R 4.

Consider the Bergman kernel function of Rz, we construct ug as (1.5), hence ug is strictly
plurisubharmonic exhaustion function in R4. Furthermore, we define a complete Kéhler metric g4
which is induced by u 4 as follows:

N
9a = Z uazdz; ® dz;, 2.11)
ij=1
where N = n(n — 1)/2 when A = I1] and N = n when A = IV. Consequently,
770Uz du
0wl = Z g =24 (2.12)

bz 07, j

where [uz"]" = [ua;]".
Let us mention two important consequences about the complex Hessian matrix for u4 on R4.
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Proposition 2.3. The complex Hessian matrix for ug can be stated by

H(u,)Z) = 2[( = ZZ Y 'XUI = ZZ') as. (2.13)
1 — —
H(ui) ' (2) = 5[(1 —ZZ )X = ZZ )]s, (2.14)
H(u,,)(2) = 21 [r(z)ln -2 (Z) (1 - 2 ZZ/) (Z)] (2.15)
r+(z) Z 2z -1)\z
and
H(u,) ' (2) = [r(e)I - 272) + 2(z - 2Z7)Z - ZZ 2], (2.16)

where r(z) = 1 +| 2, z?l2 — 2|z~
Proof. (i) For Z € R,,,, by applying (2.7) and (2.8), a straightforward calculation shows that

PlogKi(2)) _(n— 1)82 log det(l, — ZZ*)

02ju0%kp 120 0200715

=-(n-1) Z (1, +2z7)7) AONSE )

= ht  dz j(vakﬁ Z=0

n 9 ~ _
= (n - 1) ]Z; fkﬁ Z((thésazsh - 6ha5jszsh)

0
=—m-1) > —(OjnZah — OnaZjn)
; Fag :

Z=0

== (n=1) ) [61(61a0ns — Odup) = 0100 S5 — 85000

h=1

=—=2(n—1)(0xad jg — 0 jk00ap)- (2.17)
Hence, we have

0u
0z jaazklg
As the proof of equality (3.3.45) in [17], the transformation property of Bergman kernel function and
Mobius transform of R4, (2.13) follows. By Proposition 2.1, (2.14) obtained.
(1) Forz = (z1,22- - ,z») € R,,, by equality (3.3.57) in [17], we have

H(u,,)(©0) = |

]'Z=O = 201, X1, ].s. (2.18)

0*log K, _ _ _ _
Og—_IV(Z) = S —lr@l, +422°77 - 2z 72+ 2777 - 2(F7 - 2]
07;07; r*(z)
1 _ .
= = {r(z)ln =207 = 2|7 + 727+ 2(Z7T - z*)z]}
r*(z)
1 _ 2z
— 1. =2 r_9 2.1 * ISk %
20 [F(Z) n ( 7 =227 + 7727 77 -z )(Z)}
_ ! ;o\ (1-20P ) (2)
= =5 [F(Z)In -2(7 2z )( o _1) (Z)} (2.19)
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This implies (2.15). We claim (2.16) holds from discussion of equality (6.1.29) in [17]. |
Proposition 2.4. With the notations above, one has
n(n—1) 1
det H Z)y=22 2.20
and
det H(u,,)(z) = . (2.21)
r"(z)
Proof. By Proposition 2.1 and Proposition 2.3, it is easy to deduce that
det H(u,, )(z) =27 det[(I — ZZ )""%(I - ZZ ) s
—2@ det(/ — ZZ )"
2" det(I — 227y~
and
det Hu,)@) = detd—— |ra, —2(° (-2kE (e
Y r(2) )\ = 1)z
1 [(1 0 2 (1-21z7 zz\(z
— d t _ = ’ ’
) ( 01 ) r(z)( z -1z = ?)
Lol 0 2 (1-2zF zZ\( |2 ==
= et / ’ 2
r"(z) 0 1) rp\ z -1)\ zz' [¢]
_ 1da1—%@F2@+w% ‘@gﬂjﬁﬁ)
() ZZ@P-1) 1= S0P - P
1
= ——(1+ 22 — 4zl + 4lel* + 122|* = 41zP1z2'1P)
rn+2(Z)
1
)
This completes the proof. O

3. Estimate for 1,(A,)

In this section, in order to prove the main theorems, we begin to establish an estimate for |8u|§. Let

0 0
82 82 1 ’
Since
Ou du
ou Gu % &,
(—) :
Ou Ou
Iz, 071
one has
n
-0u Ou
oy = D o5
il <i 0
AIMS Mathematics

0

: a—zn)-

u u
611 tﬁn

u ou
0zy 07y

= tr([u ”]( > az>'

3.1

(3.2)
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Proposition 3.1. With the notations in (1.5), (2.11) and (2.12), one has the following estimates:

n
|au’”lgm < 2[5] and |a”lv|g1v <L

Proof. (i) For z € R,,,, according to (3.2), one has

ou,, Ou
tr AXA 111 III
([ o
= i
ik=1 i<jk<t 925 Zij Ok
ou
= Z Z (atkaJ€ tfajk) i sz
ke

i,k=1i<jk<t

3

o~
I

| =
3M=

- Z(
i,j=1 k=1 k<
1 n n
=52 2.2,
ij=1 k=1 k<t
_ 1 n n
2 ik=1 k(=1
where
Let D[/l], cen

ajdje — alfajk)ql] (9

aidjeqijqre—— 6

n

= l [( a;pa '[% + a 'ga'k%) - ( a kd[ + a;ed k

= E ikt j § jt4i § JkAi E itdj
2 8z,-j i>) 6z,~j

k<t i<j
n

i>j

ou,, du,,

Zij azkﬁ

ana 8”1/1 Z and aum ) al’tul
kUje = — kU jl = ij a_
aZk( 0 k

qij
= ke aZij

ou,, du,,

Zij OZkt’

i=j;
T

0,
qij = 1

, 4,] be n X n diagonal matrix with all diagonal entries are A, ...

since ZZ* is the Hermitian matrix, there exists n X n unitary matrix U such that

and 2; € [0,1), 4, > 1, >

It follows that

(Im -

Thus

AIMS Mathematics

D[A,,- -
D[y, -,

” /11’[]’
/ln—h 0]’

n = 2k;

UZZU:{ n=2k+1.

ZZ*:{

0. There is no loss of generality in assuming

D[/lla e 7/1}1],
D[Ay,- -+, 4,-1,0],

n=2k;
n=2k+1.

ZZ*)—I — D[ZZO:O /1]1(9 e Z]ZO /lﬁ]’ n= Zk’
DYoo A, .. Yo A,0], n=2k+1.
aulll - 1 1
=Z + , i<k
8Zik Zk(l—/li 1—/11() !

III III
8Zl j 8zke
s Ap.

(3.3)

(3.4)

ForZ € R,

(3.5)

(3.6)

(3.7)

(3.8)

Volume 8, Issue 8, 19582—-19594.
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Therefore

2 _ ijkt 6Mu/ 8”1/1
u | = 't ——
8111 11 aZ;k 6Z]€

ij=1k>i,t>j
ou,, du,,
=5 0ij — ) ZisZjs)(0 K2 i
U;I( j Z Zjs)(Oke — Z kit [t) S iy 3Zlk 8Z][
=— Z Z(l =~ (1= A + 7= ak) gnzal”
i=1 k=1
=3 Z(l -+ Dlgizal
i,k=1 N

tr(=Z*(I = ZZ)Z( — ZZ*)™") + tr(ZZ*))

=
(tr(—Z*Z(I —Z'Z)I - ZZ')") + 1r(ZZ"))
=5

l\JI>—‘l\JI

tHZZ") + tr(ZZ*)) = tr(ZZ")

<2[3].

(i1) For z € R,,, we have

Ou,  10dlog(r) _ 1 1 or@ _ (Zz-7)

oz 2 0z 2r(@ dn  r(@)

Ou,  1dlog(r(z) _ 1 1 drx) _ (&7 —2)

oz, 2 dz;  2r(») 0z, rx)
Accordingly,

aMIV aulV _ 1

N2 = =/ et =
P rz(z)(lzz |°zizj — 22 zizj — 22225 + 7z;).

Notice that
A@) = 3 (65— 22227 P22 — Ty — 225 + %izy)
i=1
=122 Plzl* = 2|22’ + 1z1*) = 2(1z2'1* = 21z’ Pl + IzI*)
=517 Plzl* = 212 1* = 2lz2'[* = 2lz* + |z

and

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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B(2) := Z(Z,- -2z — 2777 7 - 7227 — z))
ij=1

n n
=Y G-TBW@u-%) ) (- 2T - 2)
i=1 j=1
=QZ 12> - 77 - Z N )Rz |z - 27 — 2212 )
=zz PQlz* = 1 - zZ'])?
=r(2)lzZ . (3.15)

Then (3.14) and (3.15) yield
r(2)A(2) + 2B(z) =r(2)(51zz' Plz* = 222 = 21zZ|* = 2lzl* + |z*) + 27 @)lzZ'1F = P (@)lz>.  (3.16)

Consequently,

n

|Ou |2 — Z ui] du,, Ou,,
Vigy

i v aZi (92]
Y > = = /= 6”1‘/ aulV
= Z[KZ)(% —22Z)) + 2(Z; — @ 2)(z; — 22'7))] _
ij=1 0z; 07 j
1 u - - —_ ) — —_— - ’=
=20 Z [r(2)(6ij — 22:Z)) + 2(Zi — 22 2)(z; — 22 ZNET 7 — 2)(2Z'Z; — 2))
ij=1
1
=——[r(2)A(z) + 2B(2)]
r*(z)
=2
<1, (3.17)
which implies the desired conclusion. The proof of the proposition is complete. O

To prove Theorem 1.1 and for the convenience of the reader, we recall the following proposition
from [16].

Proposition 3.2. With the notations above, one has,

1
f det(I — ZZ)Y'dZ < +00 = 1> —3 (3.18)
Rlll
and
f W) (V(@)Ydz < +0 = a>-1,a+B> -n. (3.19)
R

Where u(z) = (1 — 22/ — (zZ)* = 1zz'1), v(2) = (1 = 22" + (2Z')* = zZ'?).

Now we are ready to prove Theorem 1.1.

AIMS Mathematics Volume 8, Issue 8, 19582—-19594.
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Proof of Theorem 1.1. By Proposition 2.1 in [12], it is evident that statement (i) holds

need to prove statement (ii). Let
F22) = e,

By Proposition 2.4, one has

fR fa2)PdV,(2) = f Ka(Z.Z)2dV, (Z)

Ra

=C f Ka(Z,2)" 77 dv(z),
Ra

where C 4 and c4 are constants which are dependent on R4.

By Faraut and Koranyi [18] and Proposition 3.2, there exists a4 > 0 such that

f Ka(Z,Z)*dv

{:+OO a>aq,
Ra

< +00 a<aqg.

Now we choose T such that

1
1 -2 <ay e > =ca(l —azn).
Ca 2

Applying the argument of the proof of [12, Theorem 2.2] and Proposition 3.1, one has

ik,jt %a 90
f‘Rg( 2 Ua™ G azZje quﬂ
fR;z[ |f ﬂlzdv”ﬂ
o OU Ou
2 ik,j 7*a “Pa
—47-2 jy;ﬂ |f.?(| Z Ug Oz 0zZj¢ quﬂ
Jo aPav,,
2 2
L e VP 10ul; Vi,

fRﬂ fa lzdv”ﬂ
<47%B.

A(A,) <4

Letting 7 — 3ca(l — ) we have

1
A(Ag) < 4,3[5071(1 —an)]’ =Byl — aq).

Which completes the proof.

Remark 3.1. Let
Ki/(Z,2) = Cyyy(det(! = ZZ))™ "V
and
Ki(Z,Z) = Crypu(z) " v(2)™".
We conclude from Proposition 3.2 that

1

ag = m,

and

AIMS Mathematics
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(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)
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(3.29)

a’IV:{

Finally, we prove Corollary 1.1 here.

S ==

Proof of Corollary 1.1. (i) For Z € R
and (3.29) now lead to

with g = 2[%] , by Theorem 1.1, and Proposition 3.1, (3.28)

111

nn—1\21 n*(n-1)7> 1
(A > -
1( 111) —( 2 ) ﬁ 8 [%]
and )
1 n_(2n-3)
LA < B —an)? = 2021 =121 = —— P = o[22
1(Amr) _,BCy(( @) [2](” ) ( 2n - 1)) [2] 4
Therefore, ) ,
nn-17 n2n-3
Ai(Amp) €1 ( ) , ( ) 1, n=2k
4 4

and ) )

nn—-1) (n—1)2n-3)

Ai(Am) €1 1 ) 1 ], n=2k-1.
(i1) For z € R,,, when n = 1, it is evident that
Ai(A,) =1,
Whenn > 2, .
(A=t and  A4(A,) < 2n)*(1 - =) = 4(n - 1)~
n

The proof of Part (ii) follows. mi

4. Conclusions

In this paper, we investigate estimate for 4;(A,) on the Cartan classical domains of the last two
types Ra(A = 111,1V). Based on theories of harmonic analysis in the Cartan classical domains from
Hua [16] and Lu [17]. Firstly, We are dedicated to find the plurisubharmonic exhaustion function u 4
under Bergman kernel function of R4. Next, we define a complete Kéhler metric g# which induced
by uz. Through constructing suitable test function f,(Z) = e ™#©, we obtain upper and lower bound
estimates for 4;(A,) on R4 under the assumption that |6u|§ < . In addition, we provide the value of
[ by establishing an estimate for |(9u|§. This brings us to give an explicit range for 4,(A,). Attributed
to the special forms of R;;; and R;y, the approach examined in this present study requires complicated
but interesting technical work.

As shown in our study, we actually propose an approach which may be adapted to solve the
problem of finding estimates for A;(A,) on other important domains. It is well known that any bounded
symmetric domain may be represented as the topological product of irreducible bounded symmetric
domains: the class of irreducible bounded symmetric domains consists of four types of Cartan classical
domains and two exceptional ones. So we are encouraged to work on the estimates for 4;(A,) on
bounded symmetric domains. This will be the objective of our future study.

AIMS Mathematics Volume 8, Issue 8, 19582—-19594.
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