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1. Introduction

This paper considers a discrete-time, single-item, infinite-stock inventory system in which excess
demand is not backlogged. The dynamics of the system is determined by a random walk with a
lower barrier; in particular, the state zero is considered as a barrier. Also, it is assumed that the
control variable is affected by a random noise in the dynamic of the system; see (2.1). Furthermore,
the following costs are considered: ordering/production, holding, and shortage. Then, the objective
function is the infinite-horizon expected total discounted cost. The goal of the paper is to guarantee
the existence of stationary policies and characterize the optimal stationary policies as (s, S ) policies
(see [5, 18, 23, 28]). The (s, S )-policies operate in the following manner: If the inventory level falls
below a minimum s ≥ 0, the controller will request a replenishment demand to restore the inventory
stock to a maximum number S ≥ s.

As mentioned earlier, a crucial component of the inventory model is the dynamics of the system;
in this paper is considered a controlled version of a Lindley random walk. This random walk has
been used to model waiting times in a queuing system with a server (see [20]). A controlled version
of this dynamic was introduced in [14] to illustrate the convergence of the value iteration algorithm

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2023997


19547

for Markov control processes with average costs. Furthermore, this dynamic has been used in several
contexts of Markov control processes; see, e.g., [16, 27]. Despite this, in these works, the optimal
policy is not characterized, except by [11], where it is considered as a compact action set and bounded
cost. The characterization of (s, S ) policies is an interesting problem in inventory theory, this problem
can be traced back to the papers of [13, 22, 28]. One advantage of guaranteeing the existence of (s, S )
policies is their ease of implementation. However, it is not always possible to guarantee the existence
of a (s, S ) inventory policy; see, for instance, [2]. Therefore, it is necessary to establish conditions in
the stochastic control model that guarantee the existence of (s, S ) inventory policies. In addition, there
is recent work in applied areas where strategies (s, S) are implemented in the real world, such as in
healthcare [1, 29] and in machine learning [8], to name a few. A survey work presenting applications
of inventory theory in the real world can be found in [22]. On the other hand, recent research from
the theoretical point of view of the model is presented in [6], where the optimality of strategies (s, S)
is proved as a particular case of their setup concave linear piecewise ordering costs. The perishable
inventory with backlogging demand was studied in [30]. In contrast to the work described in this
manuscript, there is an extensive literature on continuous-time inventories, e.g., the recent work of [4],
which studies perishable inventories.

Based on the review conducted, the main objectives of this work can be described as follows:

• To provide conditions that guarantee the optimality of inventory strategies for a system with lost
sales (see Theorem 4.10).
• To propose approximation procedures for the strategies described in the previous point (see

Theorem 5.3).

It is important to note that the goal of the first point is a more complex challenge, as opposed to a
backlog inventory system as described in [22].

The methodology of the paper is as follows. First, the dynamic programming approach is validated,
and the existence of optimal stationary policies is verified. Second, results of convex analysis are
applied to guarantee that the minimizers of the value iteration functions and the optimal policies of the
inventory system are (s, S )-policies. This characterization is achieved under assumptions of continuity
and monotonicity in the components of the inventory control model; these conditions guarantee that
the cost function is convex. The convexity property has been used previously in the inventory systems
literature, see for example [9, 10, 13, 18, 23, 25, 26, 28, 31].

The paper is organized as follows. Section 2 introduces the inventory control model and the
assumptions about the components of the inventory control model. Section 3 introduces the dynamic
programming approach. Section 4 presents the characterization of (s, S ) policies. Section 5 contains
an analysis of the convergence of minimizers of value iteration. Finally, a numerical example is given
in Section 6.

2. An inventory control model with a Lindley dynamic system

Consider a discrete-time inventory control system. If Xt denotes the inventory at time t = 0, 1, . . .,
the evolution of the system is modeled by the following Lindley-type dynamical system:

Xt+1 = (Xt + ηtat − Dt+1)+, (2.1)

with X0 = x ∈ X := [0,∞) known, where
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i) {ηt} is a sequence of independent and identically distributed (i.i.d.) Bernoulli random variables
with parameter p, 0 < p < 1, in this case the event {ηt = 1} means that an order placed at instant t
has been supplied.

ii) at denotes the control or decision applied at time t and represents the quantity ordered by the
inventory manager (or decision maker).

iii) The sequence {Dt} is conformed by i.i.d. non-negative random variables with a common
distribution F. Dt denotes the demand within period t. It is assumed that sequence {Dt} is
independent of the sequence {ηt}.

Note that the difference equation given in (2.1) induces a stochastic kernel that can be expressed on X
by

K := {(x, a) : x ∈ X, a ∈ [0,∞)} ,

is defined as follows

Q(Xt+1 ∈ (−∞, y]|Xt = x, at = a)
= p(F(x + a) − F(x + a − y)) + p(1 − F(x + a)) + (1 − p)(F(x) − F(x − y)) + (1 − p)(1 − F(x)))

(2.2)

with y, x, a ∈ [0,∞) and
Q(Xt+1 ∈ (−∞, y]|Xt = x, at = a) = 0,

if x, a ∈ [0,∞) and y < 0.
Suppose further that it is associated with a one-step cost function C : K −→ [0,∞), defined as follows:

C(x, a) = KI{a:a>0}(a) + ca + E[h((x + ηa − D)+)] + E[l((D − (x + ηa))+)], (2.3)

where K ≥ 0 is a fixed order price, c > 0 is the order price per unit, h : [0,∞) −→ [0,∞) denotes
the holding cost per period, l : [0,∞) −→ [0,∞) indicates the shortage cost for unfilled demand and
E denotes the expectation with respect to the joint distribution of the random vector (η,D), where
(η,D) is a generic element of the sequence {(ηt,Dt)}. In all the following sections, the cost function is
determined by the sum of two cost functions:

C(x, a) = g(a) + H(x, a),

where g(a) = KI{a:a>0}(a) + ca and

H(x, a) = E[h((x + ηa − D)+)] + E[l((D − (x + ηa))+)], (2.4)

with (x, a) ∈ K.

Then, the inventory control model is identified with a Markov control process [17], in short, MCP.
The components of the associate Markov control model are as follows: X := [0,∞) is the state space,
A := [0,∞) is the action space, the dynamic and the cost function are given by (2.2) and (2.3),
respectively. Consequently, the inventory system evolves as follows: If the stock of the inventory
systems occupies state Xt = x at time t and a controller (inventory manager) requests the quantity of
product at = a. Then, a cost C(x, a) is incurred and the system jumps into a state Xt+1 according to
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the transition law Q(·|x, a). Once the transition into the new state has occurred, a new order (control)
is requested and the process is repeated. Thus, for each t ≥ 1 an admissible history ht of the inventory
system up to the transition t given by, ht = (X0, a0, . . . , Xt−1, at−1, Xt). Let Ht, t ≥ 1, be the set of
all admissible histories of the system up to the transition t. The following definition will be used to
characterize optimal strategies in the inventory control model.
Definition: A policy π = {πt} is a sequence of stochastic kernels πt on A given Ht, satisfying the
constraint: πt(A|ht) = 1, for each ht ∈ Ht, t ≥ 1. The collection of all policies is denoted by Π. Define
F as the set of all measurable functions f : X −→ A. Thus, a Markov policy is a sequence ft such that
ft ∈ F, for t ≥ 1. In particular, a Markov policy π = { ft} is said to be stationary if ft is independent
of t, i.e., ft = f ∈ F, for all t ≥ 1, in this case, ft is denoted by f and refers to F as the set of stationary
policies.

In the subsequent, for each x ∈ X and π ∈ Π will be denoted by Pπx the measure defined on the
measurable space Ω := ((X × A)∞,F ), where F is the corresponding product σ-algebra. The measure
Pπx is induced by the theorem of Ionescu Tulcea [3]. The expectation operator with respect to Pπx is
denoted by Eπx.

Inventory control problem

The goal of this subsection is to introduce the inventory control problem, then consider π ∈ Π, x ∈ X
and define the following objective function:

v(π, x) := Eπx

 ∞∑
t=0

αtC(Xt, at)

 , (2.5)

where α ∈ (0, 1) denotes a discount factor. The performance criterion defined in (2.5) is called expected
total discounted cost (see [17]). Hence, the optimal inventory control problem consists in determining
a policy π∗ ∈ Π such that,

v(π∗, x) = inf
π∈Π

v(π, x), (2.6)

for each x ∈ X, in this case π∗ is denominated optimal policy. The function V defined by

V(x) := inf
π∈Π

v(π, x), (2.7)

for each x ∈ X, it will be called the optimal value function.
In subsequent sections, the following assumption will be considered.

Basic Assumption (BA):

i) h is a non-decreasing convex function such that h(0+) = h(0), where h(0+) := inf{h(y) : y > 0}.
ii) l is a convex function such that l(0) = 0 and l′(u) exists and is non-negative for each u ≥ 0.

iii) E[h((u − D)+)] < ∞ and E[l((D − u)+)] < ∞, for each u ≥ 0 and D is a generic element of the
sequence {Dt}.

iv) If D is a generic element of the sequence {Dt}, it is assumed that D has a continuous density
denoted by ∆.

BA will not be mentioned in each lemma or theorem throughout the paper, and we will assume that
it holds.
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Remark 2.1. i) Observe that the cost function (2.4) is convex, due to the convexity and monotonicity
of functions h and l (see BA i) and ii)). Therefore, the cost function (2.3) is a convex function, this
property will be used in the proof of Lemma 4.3.

ii) Moreover, under BA i) and ii), h and l are continuous functions. This characterization will help
us apply to demonstrate the validity of Lemma 3.1.

3. Dynamic programming approach

Assuming BA, the inventory control model in the MCP literature is identified as a semi-continuous
model [17]. Moreover, the following lemmas guarantee the existence of optimal stationary policies
and the dynamic programming approach; see Theorem 3.7 below.

Lemma 3.1. The cost function C, is a lower semi-continuous (l.s.c.) function, i.e., the set
{(x, a) ∈ K : C(x, a) ≤ λ} is closed for all λ ∈ R.

Proof. First, we can see directly that the cost g is a continuous function for a > 0 and l.s.c. at a = 0.
We now want to prove that the function H is continuous for any (x, a) ∈ K. For this purpose, we
fix x ∈ X and a ∈ A. Take xn ∈ X, an ∈ A, n ≥ 1, such that xn −→ x, an −→ a, when n goes to
infinity. Consequently, Eq (2.4) gives H(xn, an) −→ H(x, a) as n −→ ∞, by applying the dominated
convergence theorem [3] and continuity of the functions h and l; the latter by Remark 2.1. Therefore,
the cost function C is a l.s.c.. �

Corollary 3.2. The cost C is an inf-compact function, namely the set {a ∈ A : C(x, a) ≤ λ} is compact
for each x ∈ X and λ ∈ R.

Proof. Note that {a ∈ A : ca ≤ λ} = [0, λ/c], for any λ ∈ R. On the other hand, by Lemma 3.1,
for all λ ∈ R and x ∈ X the set defined as M := {a ∈ A : C(x, a) ≤ λ} is closed set. Consequently,
since M is contained in the compact set {a ∈ A : ca ≤ λ}, it is concluded that the cost function C is
inf-compact. �

Lemma 3.3. Transition law Q (2.2) induced by the difference equation (2.1) is strongly continuous, i.e.,
w(x, a) :=

∫
X

u(y)Q(dy|x, a) is continuous and bounded on K for every measurable bounded function u
on X.

Proof. Let u be a measurable and bounded function defined on X and let {(xn, an)} be a sequence on K
convergent to (x, a) ∈ K . Then, from (2.2), we have that

w(xn, an) =

∫
X

u(y)Q(dy|xn, an)

= p
∫ ∞

0
u((xn + an − s)+)∆(s)ds + (1 − p)

∫ ∞

0
u((xn − s)+)∆(s)ds

= p
∫ xn+an

0
u(xn + an − s)∆(s)ds + (1 − p)

∫ xn

0
u(xn − s)∆(s)d(s)

+ (1 − p)u(0)
∫ ∞

xn

∆(s)ds

+ pu(0)
∫ ∞

xn+an

∆(s)ds.
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Observe by applying an adequate change of variable, the following identity holds:∫ xn+an

0
u(xn + an − s)∆(s)ds =

∫
I(−∞,xn+an](s)u(s)∆(xn + an − s)ds.

On the other hand, it is easy to prove that {I(−∞,xn+an]} converges to {I(−∞,x+a]} almost everywhere (a.e.)
with respect to the Lebesgue measure m on R. Moreover, let θ ∈ (0,∞) such that |u(x)| ≤ θ, for all
x ∈ X and consider the following functions:

rn(s) = I(−∞,xn+an](s)u(s)∆(xn + an − s),
r(s) = I(−∞,x+a](s)u(s)∆(x + a − s),

gn(s) = θI(−∞,xn+an](s)∆(xn + an − s),
g(s) = θI(−∞,x+a](s)∆(x + a − s),

with s ∈ [0,∞). Then, notice that the following statements hold:

i) {rn} converges to r a.e. with respect to m.
ii) {gn} converges to g a.e. with respect to m.

iii) For each n = 1, 2, ..., |rn(·)| ≤ gn(·).
iv)

∫
gn(s)ds =

∫
g(s) = θ.

Statements i)–iv) guarantee the hypothesis of the Dominated Convergence Theorem (see [3]), in
consequence, it is obtained that limn→+∞

∫
rn(s)ds =

∫
r(s)ds, i.e.,∫ xn+an

0
u(xn + an − s)∆(s)ds −→

∫ x+a

0
u(x + a − s)∆(s)ds. (3.1)

Similarly, it is possible to prove that:∫ xn

0
u(xn − s)∆(s)d(s) =

∫
I(−∞,xn](s)u(s)∆(xn − s)ds

−→

∫
I(−∞,x](s)u(s)∆(x − s).

(3.2)

Besides, due to the continuity of the distribution function F, it yields that∫ ∞

xn

∆(s)ds

= 1 − F(xn)

−→ 1 − F(x) =

∫ ∞

x
∆(s)ds,∫ ∞

xn+an

∆(s)ds = 1 − F(xn + an)

−→ 1 − F(x + a) =

∫ ∞

x+a
∆(s)ds.

(3.3)
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In consequence, from (3.1)–(3.3), it is obtained that

lim
n→+∞

w(xn, an) = p
∫ x+a

0
u(s)∆(x + a − s)ds

+ (1 − p)
∫ x

0
u(s)∆(x − s)ds

+ (1 − p)u(0)
∫ ∞

x
∆(s)ds

+ pu(0)
∫ ∞

x+a
∆(s)ds

= w(x, a).

Therefore, w is a continuous function on K. �

The demonstration of Lemma 3.4 is based on a result of renewal processes used in classical theory
of inventories (see, e.g., [4, 12]). For this purpose, define for each x ∈ X, the renewal process

N(x) := sup{t ≥ 0|Wt ≤ x}, (3.4)

where W0 := 0 and Wt :=
∑t

j=1 D j. Observe that E[N(x)] < ∞ for each x ≥ 0, a proof of this fact can
be consulted in [15]. Furthermore, consider the residual lifetime defined as

R(x) := WN(x)+1 − x, x ∈ X. (3.5)

Lemma 3.4. For all x ∈ X, E[l(R(x))] < ∞.

Proof. Let x ∈ X be fixed. Observe that the tail of the distribution of the residual lifetime is given for
z ≥ 0 as follows

P(R(x) > z) =

∞∑
n=1

P(Wn−1 ≤ x,Wn > x + z)

= 1 − F(x + z) +

∫ x

0
(1 − F(x + z − s))dU(s),

where U := E[N(x)] is the renewal function. On the other hand, from assumption BA i), it is obtained
that

E[l(R(x))] =

∫ l(∞)

0
P(l(R(x) > z))dz

=

∫ ∞

0
P(l(R(x)) > l(z)))dl(z)

=

∫ ∞

0
P(R(x) > z)l′(z)dz,

where l(∞) := limu→∞l(u). In consequence, by substituting the tail distribution of function R in the last
equation, it yields that

E[l(R(x))] =

∫ ∞

0
l′(z)(1 − F(x + z))dz +

∫ ∞

0

(∫ x

0
l′(z)(1 − F(x + z − s))dU(s)

)
dz.
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Now, observe that ∫ ∞

0
l′(z)(1 − F(x + z))dz ≤

∫ ∞

0
l′(z)P(D > z)dz = E[l(D)],

and from Fubini’s theorem [3], it is obtained that∫ ∞

0

∫ x

0
l′(z)(1 − F(x + z − s))dU(s)dz

≤

∫ x

0

(∫ ∞

0
P(D > z)l′(z)dz

)
dU(s)

=

∫ x

0
E[l(D)]dU(s)

= E[l(D)]E[N(x)].

Therefore,
E[l(R(x))] ≤ E[l(D)](1 + E[N(x)]) < ∞.

Since state x is arbitrary, the result follows. �

Lemma 3.5. There exists π̃ ∈ Π such that v(π̃, x) < ∞, for all x ∈ X.

Proof. Consider x ∈ X fixed and the stationary policy π̃ = {g̃, g̃, . . .} ⊆ F with g̃(y) = 0 for all y ∈ X.
Hence, the stochastic path {Xg̃

t } generated by π̃ is given by

Xg̃
t+1 = (Xg̃

t − Dt+1)+, (3.6)

with Xg̃
0 = x. Consequently, observe that

Xg̃
t =


x −Wt i f t = 0, . . . ,N(x),

0 i f t ≥ N(x) + 1.
(3.7)

Then, due to (2.3) and (2.4), it yields that

v(π̃, x) = Eπ̃x

 ∞∑
t=0

αtH(Xg̃
t , 0)


= Eπ̃x

 ∞∑
t=0

αt
(
E[h((Xg̃

t − Dt+1)+)] + E[l((Dt+1 − Xg̃
t )+)]

) .

Now, from (3.6) and the renewal process (3.4), it may be found that

v(π̃, x) ≤
E[l(D)] + h(0)

1 − α
+ Eπ̃x

N(x)∑
t=0

αt(E[h((Xg̃
t − Dt+1)+)] + E[l((Dt+1 − Xg̃

t )+)])

 .
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On the other hand, observe that

N(x)∑
t=0

αt(E[h((Xg̃
t − Dt+1)+)] + E[l((Dt+1 − Xg̃

t )+)])

=

N(x)∑
t=0

αt(E[h((x −Wt+1)+)] + E[l((Wt+1 − x)+)])

≤
1
α

N(x)∑
t=1

αt(E[h((x −Wt)+)] + E[l((Wt − x)+)]) + h(0) + E[l(WN(x)+1 − x)]

≤
1

1 − α
(h(x) + l(0)) + h(0) + E[l(WN(x)+1 − x)], Pπ̃x − a.s,

where the second inequality was obtained since h is a non-decreasing function (see BA i)). Finally,
both inequalities follow from (3.4). In consequence, since l(0) = 0, it is obtained that

v(π̃, x) ≤
E[l(D)] + h(x) + h(0)

1 − α
+ E[l(WN(x)+1 − x)].

By applying Lemma 3.4 to the last relation and due to E[l(D)] < ∞ as a consequence of BA iii), it is
obtained that v(π̃, x) < ∞. Since x ∈ X is arbitrary, the result holds. �

Remark 3.6. Note that Lemma 3.5 guarantees that V(x) < ∞, for all x ∈ X, due to V(x) ≤ v(π̃, x), for
all x ∈ X.

As a consequence of the previous results, the following theorem is valid (see Theorem 4.2.3 and
Lemma 4.2.8 in [17]).

Theorem 3.7. The following statements hold:

i) For each x ∈ X, the optimal value function satisfies the dynamic programming equation:

V(x) = min
a∈A

{
C(x, a) + αE[V((x + ηa − D)+)]

}
.

ii) There exists an optimal stationary policy f ∈ F such that for each x ∈ X the following equation
holds

V(x) = C(x, f (x)) + αE[V((x + η f (x) − D)+)].

iii) The value iteration functions, defined as V0(x) := 0 and

Vn(x) := min
a∈A

{
C(x, a) + αE[Vn−1((x + ηa − D)+)]

}
,

n ≥ 1, x ∈ X, converge monotonically increasing to the optimal value function V.

Remark 3.8. Minimizers of the value iteration functions will be denoted by fn, n ≥ 0. These minimizers
satisfy the following, f0(x) = 0 and for each n ≥ 1: Vn(x) = C(x, fn(x)) + αE[Vn−1((x + η fn(x) − D)+)],
for all x ∈ X.
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4. Characterization of (s, S ) policies

This section deals with the characterization of the minimizers of the value iteration functions and
the optimal policies by (s, S ) policies.

Definition 4.1. Let f ∈ F be a stationary policy, if there exists (s, S ) ∈ R2 such that 0 ≤ s ≤ S and

f (x) =


S − x i f x ≤ s,

0 i f x > s,
(4.1)

f is called a (s, S ) stationary policy.

Define the following functions

V̂n(u) := E[Vn((u − D)+)], n = 0, 1, . . . , (4.2)

and
Gn(u) := cu + pĤ(u) + αpV̂n−1(u), n = 1, 2, . . . , (4.3)

for u ∈ X, where Ĥ(u) = H(u, 0). In consequence, value iteration functions {Vn} can be expressed for
each n ≥ 1 and x ∈ X as follows,

Vn(x) = min{cx + pĤ(x) + αpV̂n−1(x), in fa>0{K + c(x + a) + pĤ(x + a) + αpV̂n−1(x + a)}}
− cx + (1 − p)Ĥ(x) + α(1 − p)V̂n−1(x)
= min{Gn(x), inf

a>0
{K + Gn(x + a)}} − cx + (1 − p)Ĥ(x) + α(1 − p)V̂n−1(x).

Making the change of variable y := x + a, the previous equation is equivalent to

Vn(x) = min{Gn(x), inf
y≥x
{K + Gn(y)}} − cx + (1 − p)Ĥ(x) + α(1 − p)V̂n−1(x), (4.4)

for n ≥ 1 and V0(x) = 0, x ∈ X.
The following definition will be applied to characterize the optimal policy [21].

Definition 4.2. A function ϑ : [0,∞) −→ [0,∞) is called norm-like if ϑ(x)→ ∞ as x→ ∞; this means
that the sub-level sets {x : ϑ(x) ≤ r} are precompact for each r > 0.

Lemma 4.3. For each n = 1, 2, . . ., the following statements hold

i) Vn is a non-decreasing convex function,
ii) Gn is a convex function on X,

iii) Gn is norm-like.

Proof. i) The proof is by induction. It will be proved that V1 is a non-decreasing function,

min
a∈[0,∞)

C(x, a) ≤ min
a∈[0,∞)

C(y, a),

if x, y ∈ X and x ≤ y, due to C(·, a) is a non-decreasing function for each a ∈ [0,∞)] (see (2.3) and
AIM). Then, V1 is a non-decreasing function. On the other hand, using Lemma 1 in [19] together with
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the fact that C is a convex function, it is obtained that V1 is a convex function. Now, suppose that Vn is
a non-decreasing convex function. To prove that Vn+1 is a non-decreasing function, observe that, as a
consequence of Vn is non-decreasing, the following inequality holds

Vn((x + ηa − s)+) ≤ Vn((y + ηa − s)+),

for all x, y ∈ X, with x ≤ y and a, s ∈ [0,∞). In consequence,

C(x, a) + αE[Vn((x + ηa − D)+)] ≤ C(y, a) + αE[Vn((y + ηa − D)+)], (4.5)

for all x, y ∈ X, with x ≤ y and a, s ∈ [0,∞). Consequently, taking the minimum with respect to a,
in each side of inequality (4.5), it results that Vn+1(x) ≤ Vn+1(y), x, y ∈ X with x ≤ y. Now, it will
be proved that Vn+1 is a convex function. To this end, note that C(x, a) + αE[Vn((x + ηa − D)+)] is a
convex function for each (x, a) ∈ K, this statement is a consequence of the induction hypothesis and
the convexity of the cost function. Then, from Lemma 1 of [19], it may be concluded that Vn+1 is a
convex function.
ii) The previous statement implies that V̂n is a convex function for each n ≥ 1, as the following relations
evidence it:

V̂n(λu1 + (1 − λ)u2) = E
[
Vn((λu1 + (1 − λ)u2 − D)+)

]
≤ E

[
λVn((u1 − D)+) + (1 − λ)Vn((u2 − D)+)

]
= λV̂n(u1) + (1 − λ)V̂n(u2),

for each u1, u2 ∈ X, λ ∈ [0, 1]. Consequently, since Ĥ is convex, (4.3) implies that Gn is a convex
function for each n ≥ 1.
iii) Observe that Gn(u) ≥ cu, for n ≥ 1 with c > 0. Hence, for each n ≥ 0, Gn(u) → ∞, when u → ∞.
This implies that Gn is a norm-like function for each n ≥ 1. �

Remark 4.4. Observe that for each n ≥ 1, we have that
i) Gn (4.3) is a continuous function on (0,∞), as a consequence of convexity of function Gn.
ii) Given that Gn is a norm-like function it follows that

arg min
y∈X

Gn(y) := {z ≥ 0 : Gn(z) = min
y∈X

Gn(y)},

is a non-empty set.

Lemma 4.5 is a modified version of Lemma 2.1 of [7], the proof of this lemma is presented here for
the completeness of the paper.

Lemma 4.5. For each n ≥ 1, let S n ∈ arg min
y≥0

Gn(y) and sn := inf{0 ≤ x ≤ S n : Gn(x) ≤ K + Gn(S n)}

then the following statements hold:
i) Gn(sn) = K + G(S n), if sn > 0.
ii) Gn(x) ≤ K + Gn(S n), 0 ≤ sn ≤ x ≤ S n.
iii) K + Gn(S n) ≤ Gn(x), 0 ≤ x < sn.
iv) Gn(x) is a decreasing function on [0, sn).
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Proof. Let n ≥ 1. i) Suppose that sn > 0 then Gn(0) > K + Gn(S n) ≥ Gn(sn). Hence, there exists
u ∈ (0, sn) such that Gn(u) = Gn(S n) + K, because of the continuity of function Gn (see Remark 4.4).
Now, observe that sn ≤ u, due to the definition of sn, then sn = u and the result holds.
ii) This statement follows directly from the definition of sn.
iii) Consider 0 ≤ x < sn, by Lemma 4.3 ii), it follows that

Gn(sn) ≤
sn − x
S n − x

Gn(S n) +
S n − sn

S n − x
Gn(x),

then

Gn(sn) +
S n − sn

sn − x
(Gn(sn) −Gn(x))

=
S n − sn + sn − x

sn − x
Gn(sn) −

S n − sn

sn − x
Gn(x)

≤ Gn(S n)
≤ K + Gn(S n).

Thus,

Gn(sn) +
S n − sn

sn − x
(Gn(sn) −Gn(x)) ≤ K + Gn(S n). (4.6)

Now, due to K + Gn(S n) − Gn(sn) = 0 given that and x ≤ sn ≤ S n, (4.6) implies that Gn(sn) ≤ Gn(x).
Therefore, K + Gn(S n) = Gn(sn) ≤ Gn(x) with 0 ≤ x < sn.
iv) Let x1, x2 ∈ [0, sn) with x1 ≤ x2. Hence, by Lemma 4.3 ii),

K + Gn(S n) ≥ Gn(x2) +
S n − x2

x2 − x1
(Gn(x2) −Gn(x1)). (4.7)

Now, from statement iii), it is obtained that Gn(x2) ≥ K + Gn(S n), this relation and (4.7) together lead
to 0 ≥ Gn(x2) −Gn(x1) and the result follows. �

A consequence of Lemma 4.5 is the following result.

Theorem 4.6. Consider {(sn, S n) : n = 1, 2, . . .} in Lemma 4.5. Then, the minimizers of the value
iteration functions are given by

fn(x) =


S n − x i f x ≤ sn

0 i f x > sn,

(4.8)

with 0 < sn ≤ S n and n = 1, 2, ...

Proof. Let n ≥ 1 and x ∈ X. The proof will proceed by considering three cases depending on the order
relation between state x, sn, and S n. The following simple but important claim is established.

Claim 1: u ∈ arg min
y≥x

{K + Gn(y)} if and only if u − x ∈ arg min
a≥0

{K + Gn(x + a)}.

Case 1. Suppose that x < sn, Lemma 4.5 iii) yields that K + Gn(S n) ≤ Gn(x). Consequently, by (4.4)
and Claim, it follows that fn(x) = S n − x.
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Case 2. Consider sn ≤ x ≤ S n, then by Lemma 4.5 ii), it is obtained that Gn(x) ≤ K + Gn(S n). In
consequence, (4.4) implies that fn(x) = 0.
Case 3. Finally, assume that S n < x, since Gn is a convex function, we have that Gn is a non-decreasing
function on (S n,∞), this fact implies that x ∈ arg min

y≥x
{K + Gn(y)}. Now, from Claim 1, it follows that

0 ∈ arg min
a≥0

{K + Gn(x + a)}. Therefore, fn(x) = 0.

The previous cases guarantee the truth of Theorem 4.6. �

Remark 4.7. Observe that Theorem 3.7 and (4.4) imply that the optimal value function satisfies the
following equation

V(x) = min{G(x), inf
y≥x

G(y)} − cx + (1 − p)Ĥ(x) + α(1 − p)V∗(x), (4.9)

with
G(u) := cu + pĤ(u) + αpV∗(u), u ≥ 0, (4.10)

and
V∗(u) := E[V((u − ξ)+)].

Since Vn ↑ V because of Theorem 3.7 and by the Dominated Convergence Theorem, it yields that

Gn ↑ G. (4.11)

Lemma 4.8. G is a norm-like and convex function.

Proof. Observe that G(x) ≥ cx for each x ≥ 0. Hence, G(x) → ∞ as x goes to infinity. Thus, by
Definition 4.2, G is a norm-like function. Furthermore, (4.11) implies that G is a convex function since
Gn is a convex function for each n ≥ 1 (see Lemma 4.3). �

The proofs of Lemma 4.9 and Theorem 4.10 are in similar lines with the proofs of Lemma 4.5 and
Theorem 4.6, respectively. Thus, the proofs will be omitted.

Lemma 4.9. Let S ∈ arg min
y≥0

G(y) and s := inf{0 ≤ x ≤ S : G(x) ≤ K + G(S )} then the following

statements are valid.
i) G(s) = G(S ) + K, if s > 0.
ii) G(x) ≤ K + G(S ), 0 ≤ s ≤ x ≤ S .
iii) G(S ) + K ≤ G(x), 0 ≤ x < s.
iv) G(x) is a decreasing function on [0, s).

Theorem 4.10. Consider (s, S ) as in Lemma 4.9. Hence, the optimal policy for the inventory system is
an (s, S ) policy given by

f (x) =


S − x si x ≤ s,

0 si x > s,

with 0 < s ≤ S .

Remark 4.11. Observe that in Theorem 4.10, if s = 0 then G(x) ≤ G(S ) + K, for all x ≥ 0, which
implies that f (x) = 0, for all x ≥ 0. A similar argumentation guarantees the following assertion:
fn(x) = 0, x ∈ X, if sn = 0 for n ≥ 1.
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5. Convergence of minimizers of the value iteration functions

In this section, the convergence of the minimizers of the value iteration function will be analyzed.
First, the next auxiliary results are exposed.

Lemma 5.1. Let Ĉ ⊂ (0,∞) be a compact set. Then, the following statements hold.
i) {Gn} converges uniformly to G on Ĉ.
ii) For each {un} ⊂ Ĉ such that un → u ∈ Ĉ, limn→∞Gn(un) = G(u).

Proof. i) This statement is a direct consequence of (4.11) and Theorem 7.13 in [24].

ii) Applying i) of Lemma 5.1, it follows that for all ε > 0 there exists N1 ≥ 1 such that for each
x ∈ Ĉ,

|Gn(x) −G(x)| < ε/2, (5.1)

if n ≥ N1. Furthermore, by continuity of function G on Ĉ, there exists δ > 0 such that

|G(y) −G(x)| < ε/2, (5.2)

if |y − x| < δ. Now, since un converges to u when n goes to infinity, there exists N2 ≥ 1 such that

|un − u| < δ, (5.3)

if n ≥ N2. Let N = max{N1,N2}. Thus, (5.2) and (5.3) together leads to

|G(un) −G(u)| < ε/2, (5.4)

if n ≥ N. Then, taking x = un in (5.1), it yields that

|Gn(un) −G(un)| < ε/2. (5.5)

Therefore, by (5.4) and (5.5), |Gn(un) − G(u)| < ε. This last relation implies that Gn(un) converges
to G(u), when n goes to infinity. �

Lemma 5.2. Let B := {x > 0|G1(x) ≤ infy≥0 G(y) + K} and {(sn, S n) : n ≥ 1} as in Lemma 4.5. Then,
the following statements hold
i) B is a compact set in R.
ii) sn, S n ∈ B, for each n = 1, 2, ....
iii) There exists a subsequence {(snk , S nk)} of {(sn, S n)}, which converges to (s∗, S ∗) such that S ∗ ∈
arg min

y≥0
G(y) and G(s∗) = K + G(S ∗) with 0 < s∗ ≤ S ∗.

Proof. i) First, observe that B is a closed set, since G1 is a continuous function on (0,∞). Now suppose
that B is not bounded, then there exists a sequence {bn} ⊂ B such that bn converges to infinity. Thus,

∞ = lim inf
n→∞

G1(bn) ≤ inf
y≥0

G(y) + K.

The previous relation is a contradiction since infy≥0 G(y) + K < ∞. Therefore B is a compact set.
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ii) Observe that for each n = 1, 2, ... the following inequalities are valid

G1(S n) ≤ Gn(S n) = inf
y≥0

Gn(y) ≤ inf
y≥0

G(y) + K,

G1(sn) ≤ Gn(sn) = inf
y≥0

Gn(y) + K ≤ inf
y≥0

G(y) + K,

since {Gn} is a non-decreasing sequence whose limit is G and the equalities are valid due to Lemma 4.5.
Then, for each n = 1, 2, ..., sn, S n ∈ B.

iii) The previous statements i) and ii) imply that there exists a subsequence {(snk , S nk)} convergent
to (s∗, S ∗) ∈ B2, with 0 < s∗ ≤ S ∗. Furthermore, due to Lemma 5.1 ii), it yields that

lim
k→∞

Gnk(S nk) = G(S ∗), (5.6)

lim
k→∞

Gnk(snk) = G(s∗). (5.7)

Now, Lemma 4.5 implies that Gnk(S nk) ≤ Gnk(x), x ≥ 0. Then, when k goes to infinity in the last
inequality, it is obtained that G(S ∗) ≤ G(x), x ≥ 0. In consequence, S ∗ ∈ arg min

y≥0
G(y). On the other

hand, as a consequence of Lemma 4.5 ii), (5.6) and (5.7), it follows that G(s∗) = K + G(S ∗). �

Theorem 5.3. Let { fn} be the sequence of minimizers of value iteration functions. Then, there exists a
subsequence { fnk} such that converges uniformly on X to an (s∗, S ∗) optimal policy.

Proof. First, in view of Theorem 4.6, for each n ≥ 1, fn(x) = (S n − x)I{x:x≤sn}(x) with 0 < sn ≤ S n.
Then, using iii) of Lemma 5.2, it is obtained a subsequence (snn , S nk) such that (snn , S nk) −→ (s∗, S ∗)
when k goes to infinity and (s∗, S ∗) satisfies the statements i) − iv) of Lemma 4.9. Thus, consider

f ∗(x) =


S ∗ − x si x ≤ s∗

0 si x > s∗,

and observe that,
sup
x∈X

∣∣∣ fnk(x) − f ∗(x)
∣∣∣ ≤ ∣∣∣S nk − S ∗

∣∣∣ −→ 0,

when k −→ ∞. Furthermore, f ∗ is an optimal policy due to Theorem 4.10. This concludes the proof
of the theorem. �

6. A numerical example

Consider an inventory control system with an exponential distribution on the demand with
parameter λ = 0.1 and suppose that the parameter of the variable η is p = 0.5. On the other hand,
for each u ≥ 0, suppose that h(u) = γ1u, l(u) = γ2u, where γ1, γ2 are non negative constants. In this
case, γ1 represents the cost per unit shortage and γ2 represents the cost per unit demand not supplied.

Furthermore, observe that for each u ≥ 0,

E[h((u − D)+)] =
γ1

λ

(
λu + e−λu − 1

)
,
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E[l((D − u)+)] = γ2

(
e−λu

λ

)
.

Then by (4.3) for n = 1, it yields that

G1(u) = (pγ1 + c)u + p(γ1 + γ2)
e−λu

λ
−
γ1

λ
, u ≥ 0.

Lemma 6.1. For each n = 1, 2, ..., Gn is a strictly convex function.

Proof. First, observe that the derivative of G1 is given by G′1(u) = pγ1 + c − p(γ1 + γ2)e−λu and the
second derivative G′′1 (u) = λp(γ1 +γ2)e−λu > 0, u ≥ 0. Consequently, the function G1 is strictly convex.
Then, since Gn(u) = G1(u) + αpV̂n−1(u), u ≥ 0 (see 4.3), it is concluded that for each n = 1, 2, ..., Gn is
a strictly convex function, due to V̂n is a convex function for each n ≥ 1 (see proof of Lemma 4.3) and
G1 is a strictly convex function. Then, the result follows. �

Remark 6.2. A consequence of Lemma 6.1 is the uniqueness of minimizers of the value iteration
functions (see (4.4)). Furthermore, observe that (4.10) can be rewritten for each u ≥ 0 as follows
G(u) = G1(u) + αpV∗(u), which is a strictly convex function, as a consequence of Lemma 6.1 and
Remark 4.7. Hence, the optimal policy is unique due to the Eq (4.9).

Lemma 6.3. The unique minimizer of function G1 is y∗ = −λ−1(ln(γ1 + c/p) − ln(γ1 + γ2) > 0, if
c/p < γ2.

Proof. Observe that, due to Lemma 6.1, the minimizer y∗ is characterized by the first order condition:

pγ1 + c − p(γ1 + γ2)e−λy∗ = 0. (6.1)

Thus, y∗ = −λ−1ln((γ1 +c/p)(γ1 +γ2)−1). In particular, since c/p < γ2, it is obtained that (γ1 +c/p)(γ1 +

γ2)−1 < 1, in consequence, y∗ > 0. �

The following algorithm is applied to approximate the optimal value function V and the optimal
policy f , for each state x given as initial condition. The validity of the next algorithm is sustained in
the following results: Lemma 4.9, Theorem 4.10, Lemmas 5.2 and 6.3.

Algorithm 1 Approximation of the optimal policy f and the optimal value function V

Require: K > 0, c > 0, λ > 0, γ1 > 0, γ2 > c/p > 0, x > 0 and ε, α ∈ (0, 1)
1: S 1 ← y∗

2: G1(u)← (pγ1 + c)u + p(γ1 + γ2)e−λu/λ

3: s1 ← x∗ such that G1(x∗) = G1(S 1) + K
4: Repeat
5: for n do
6: V̂n(u)← E[Vn((u − D)+)]
7: if u ≤ sn

8: Vn(u)← Gn(S n) + K − cu + (1 − p)Ĥ(u) + α(1 − p)V̂n−1(u)
9: else
10: Vn(u)← Gn(u) − cu + (1 − p)Ĥ(u) + α(1 − p)V̂n−1(u)
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11: Gn(u)← G1(u) + V̂n(u)
12: S n ← arg min

u≥0
Gn(u)

13: sn ← x∗ such that Gn(x∗) = Gn(S n) + K
14: until |S n−1 − S n| < ε and |sn−1 − sn| < ε

15: S ∗ ← S n and s∗ ← sn

16: f (x)← S ∗ − x if x ≥ s∗ else f (x)← 0
17: V(x)← Vn(x)
18: return f (x) and V(x)

Consider the following parameters: γ1 = γ2 = 30, K = 1.5, c = 2.5, ε = 0.01, α = 0.2 and x = 40,
observe that γ2 > c/p. Table 1 illustrates the numerical results obtained by applying the previous
Algorithm 1.

n sn S n Vn(x) fn(x)
1 49.79 53.89 1200.22 13.89
3 52.75 55.28 1438.65 14.80
5 55.72 55.75 1496.62 15.28
7 53.82 53.89 1497.04 15.75
8 53.82 53.89 1498.92 15.75

Table 1. The table displays convergence of value iteration function and their minimizers.

Observe that the convergence of the optimal value function and (s, S ) policy are illustrated, see
Theorem 4.10 and Lemma 5.2, respectively. Therefore, f (x) = 15.75 and V(x) = 1498.92 for x = 40
with an error ε = 0.01.

7. Conclusions

In this paper, a discrete-time inventory system was presented. In the manuscript, conditions for
convexity and monotonicity in the components of the Markov control model were proposed. In this
inventory system, the existence of stationary policies (s, S) was proved. To achieve this goal, the
methodology of dynamic programming in discrete time was applied. Moreover, the existence of a
subsequence of minimizers of the value iteration functions converging to a (s, S) optimal policy of the
inventory system was proved. Finally, a numerical algorithm for approximating the optimal inventory
cost and policy is presented and applied in a numerical example. Future work in this direction includes
the following:

• Incorporating Markovian demand into the inventory model.
• Investigating the lost-sales inventory system under other performance measures, e.g., considering

the long average or risk-sensitive criteria.
• Implementing the manuscript’s proposal on real-world data by finding a suitable database for the

assumptions presented in this manuscript.
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