AIMS Mathematics, 8(8): 19391-19412.
DOI: 10.3934/math.2023989
AIMS Mathematics Received: 03 March 2023

Revised: 16 May 2023

Accepted: 21 May 2023
http://www.aimspress.com/journal/Math Published: 08 June 2023

Research article

New inequalities via Caputo-Fabrizio integral operator with applications

Hong Yang'?, Shahid Qaisar’, Arslan Munir’ and Muhammad Naeem?>*

' School of Computer Science, Chengdu University, Chengdu, 610106, China

2 Key Laboratory of Pattern Recognition and Intelligent Information Processing of Sichuan, Chengdu
University, Chengdu, 610106, China

3 Department of Mathematics, COMSATS University Islamabad, Sahiwal Campus, Pakistan

* Correspondence: Email: naeempkn @ gmail.com; Tel: +923234361991.

Abstract: Fractional integral inequalities have become one of the most useful and expansive tools
for the development of many fields of pure and applied mathematics over the past few years. Many
authors have just recently introduced various generalized inequalities that involved the fractional
integral operators. The main goal of the present study is to incorporate the concept of strongly (s, m)-
convex functions and Hermite-Hadamard inequality with Caputo-Fabrizio integral operator. Also, we
consider a new identity for twice differentiable mapping in the context of Caputo-Fabrizio fractional
integral operator. Then, considering this identity as an auxiliary result, new mid-point version using
well known inequalities like Holder, power-mean, Young are presented. Moreover, some graphs of
obtained inequalities are given for better understanding by the reader. Finally, we discussed some
applications to matrix inequalities and spacial means.
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1. Introduction

Fractional calculus rapidly developed because of its numerous applications, including mathematics
and many other areas such as image processing, physics, machine learning and networking. Fractional
calculus is a new field in applied mathematics that developed from the open problems of how to solve
some differential equations with fractional order derivatives. The solution to these problems have led
many scholars to search for new subjects that many mathematicians have been interested in recent
years. The fractional derivative has received rapid attention among experts from different branches of
science. Most of the applied problems cannot be modeled by classical derivations. Fractional integral
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and derivative operators propose solutions that are extremely appropriate for real world problems and
establish the connections between mathematics and other fields in terms of application areas. We
refer to the readers [1-13] and the references therein. Fractional calculus plays a very significant role
in the development of inequality theory. To study convex functions, Hermite-Hadamard inequality
is particularly important in many areas of mathematics and its applications and its orignal version is
defined as follows [14]:

(1.1)

f(f“’fz)s L [T roar <
2 &—& Jg

Many fractional operators are used to generalized Hermite-Hadamard inequality. Here, we will
restrict ourselves to Caputo-Fabrizio fractional derivative. The features that make the operators
different from each other comprise singularity and locality, while kernel expression of the operator is
presented with functions such as the power law, the exponential function, or a Mittag-Leffler function.
The unique feature of the Caputo-Fabrizio operator is that it has a nonsingular kernel. The main
feature of the Caputo-Fabrizio operator can be described as a real power turned in to the integer by
means of the Laplace transformation, and consequently, the exact solution can be easily found for
several problems. In 1993, V. Mihesan et al. [15] established the class of (s, m)-convex functions.
Hudzik et al. [16] considered the class of s-convex functions in the second sense. N. Eftekhari [17]
discussed the class of (s,m)-convex function in the second sense by involving the concept of
s-convexity in the second sense with m-convexity in 2014. Xiaobin wang et al. [18] discussed the
Hermite-Hadmard type inequality for modified #-convex functions utilizing Caputo-Fabrizio integral
operator. Butt et al. [19] obtained various inequalities for s and (s, m)-convex functions exponentially
utilizing Caputo fractional integrals and derivatives. = Moreover, Kemali et al. [20] obtained
Hermite-Hadamard type inequality for s-convex functions in the second sense utilizing
Caputo-Fabrizio integral operator. Abbasi et al. [21] proved new variants of Hermite-Hadamard type
inequalities for s-convex functions using the Caputo-Fabrizio integral operator. Li et al. [22] gave
analogous inequalities for strongly convex functions.

f&)+ f(&)
—

Motivated by ongoing studies in past years on generalizations of Hermite-Hadamard type
inequalities for different convexities involving certain fractional integral operators, we developed
novel fractional version left-hand side of the Hermite-Hadamard type inequalities for functions whose
absolute value of the second derivative is convex utilizing Caputo-Fabrizio integral operator. The
organization of the paper is as follows: First, in Section 1, we have discussed some well known
definitions and results regarding the Caputo-Fabrizio fractional integral, which are used in the
consequent sections to present our main results. In Section 2, new Hermite-Hadamard type
inequalities are presented regarding the fractional operator. In Section 3, some interesting applications
related to matrix and spacial means are discussed. Furthermore, in Section 4 conclusion and some
future extensions are presented.

Definition 1.1. [16] A function f : I CR — Ry = [0, ) is said to be s-convex if
fs+(-0&) <’ fED)+-0) f(&),
for some s € (0, 1], where &,& € 1,0 € [0, 1].
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Definition 1.2. [23] A function f : |&1,&] — R is said to be strongly convex with modulus u > 0, if

fl&6+(1-0)&)<ofE)+(1—0) f(&)—po(1—0) (& - &),

is valid for all ¢£,,& € 1,0 € [0, 1].

Definition 1.3. [24] A function f : I C R — Ry is said to be strongly s-convex with modulus u > 0,
and some s € (0, 1], if

fas+(1-0&E) <o fE)+(1—0) f(&)—po(l—0) (& - &),
is valid for all ¢£,,& € 1,0 € [0, 1].

Definition 1.4. [25,26] Let H' (£,,&,) be the Sobolev space of order one defined a;

H'(6,6) = {ge L (6.6) : g € I (&,6)],

L*(é1,6) = {g(z) : (f g (Z)dz) < 00}.
&

Let f € H' (£1,8), & < &, a € [0, 1], then the notion of left derivative in the sense of Caputo-Fabrizio
is defined as:

where

B * —a(x—0)%
(oD = 212 f F 0 do, x>a
° 1 -« &

and the associated integral operator is

CFja _1-a a7
W= @' Ot 5@ ), [ ©@de

where B (a) > 0 is the normalization function satisfying B(0) = B(1) = 1. Fora = 0 and a = 1, the
left derivative is defined as follows;

(S"°D°F) () = £ (x) and (E°D'f) () = f () = f &)

For the right derivative operator, we have

-B ) -
(gZFDDfo) (x) = ; _(Z) f f/ (Q) e(lhfar)dg’ x < é‘.‘z’

and the associated integral operator is

CF o _l-a @ (T
( I&f)(x)_B(a)f(xHB(a)f f (o) de.

where B (a) > 0 is a normalization function that satisfies B(0) = B(1) = 1.
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Dragomir [27] demonstrated the following version of Hermite-Hadamard inequality.

Theorem 1.1. Let I be a real interval such that &,,&, € I°, the interior of I, with &, < &,. Let f : 1
C R — R be a differentiable mapping on I°, &1,& € I with &, < &.If [ € L &1, &), then the following
equality holds:

FE+fE& 1 [® )
2 Hoa ), TV gTy

Sarikaya et al. [28] proved the following form of fractional Hermite-Hadamard inequality.

1
f (1=20) f' (&1 + (1 - 0) &) do.
0

Theorem 1.2. Let f : [£1,&] — R be a positive mapping with 0 < & < &, f' € L[&,&] and I;ﬁf
1
and I?, f be a fractional operator. Then, the following inequality for fractional integral holds if f is a
52
convex function:

&+ & Ia+1) f &)+ f(&)
f( )< LA IVA 7y (1.2)

> )2 gy el @ I @) < .

Dragomir [29] demonstrated the following fractional form of Hermite-Hadamard inequality.

Theorem 1.3. [29] Let f : [£1,&] — R be a positive function with &, < & and [ € L&,&). If f is
a convex function on [&1, & ], then the following inequality for fractional integral holds:

a

(6392

Abbasi established the fractional version of the Hermite-Hadamard inequality for differentiable
s-convex functions as follows.

f(fl 42‘52)_’_]?2]((51 ;‘fz)] < f(é:l)‘;f(‘fZ)‘

Theorem 1.4. [21] Let I be a real interval such that &,,&, € I°, the interior of | with &y < &. Let f : 1
C R — R be a differentiable function on I°, £,& € I withé) < & If f € L[é1,&]and 0 < & < 1, the
Jollowing inequality holds:

1
&H—&
féD+f(&) Bl

2 a (& — &)

where k € [£1,&,] and B (@) > 0 is a normalization function.

: 2(1 —a)
1-20)f 1- -
fo (I -20) f" (061 + (1 —0) &) do a & —fl)f(k)

(&1 r W)+ (F12f ),

Theorem 1.5. [21] Let I be a real interval such that &,,&, € 1°, the interior of I, with & < &,. Let
f ISR — Rbe s-convex on [&1,&] for s € (0,1) and [’ € L [&,&]. If 0 < & < 1, then we have the
following double inequality holds:

f&)+ f(&)
—

‘fl"’fl)é B(a) ((
2 (& — &)
Sahoo obtained the generalized midpoint-type Hermite-Hadamard inequality associated with the
Caputo-Fabrizio fractional operator:

2 £ FE ) R + (L) ) <
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Theorem 1.6. [30] Let [ : [£1,&] — R be a differentiable function on I°(the interior of I) such
that (¢1,&) € I, with &) < & and ' € L|&1,&]. Then for a € [0, 1] the following fractional equality

holds:
B(a) CF 7o &+ &
a@z—fl)((fl*‘f 7 (51)) ( fa/ (52))) / ( z‘)

€~ fl)(f()f( 2 4+ Q)fz)dg+fo<g>f’(§fz @ %) )

(I-a
. fl)(f(fl) f(&).

Theorem 1.7. [30] Let f : [£1,&] — R be a differentiable function on I°( the interior of I) such
that (£1,&) € T with &, < & and f € L[&,&]. If |f’] is a convex function then for a € [0, 1], the
following fractional inequality holds:

B(CU) )& CF ja ‘fl +'§:2
m((w f& )) ( I§|+§+f(§2))) f(T)

(fz—&)(If’(§1)|+|f’(§z)|)+ (I-
B 4 2 (& -f)

(f €1) + f(£2)).

2. Main results
The following lemma is the main motivation behind the study, that establishes Hermite-Hadamard
type inequalities for Caputo-Fabrizio integral operator.

Lemma 2.1. Suppose a mapping f : I C R — R is differentiable on [I°(the interior of 1) such
that 1,6 € Iwith &) < &. If f” € L [&1,&] and a € [0, 1], then the following equality holds:

f(§1+§2)+ 4(1 -« f(k)

2 (&2 —&1)

"2 (?z(c_y)fl) (s o +r Lo f (0} + {‘5“52 I 0+ 12, f ()

- 1-p 1- 1
EB [N o] (M - 5 0e)+ (0 + 1| ae

where k € [£),&], and B (@) > 0, is a normalization function.

Proof. Integration by parts

! 1 1 — 1 - 1
f (1 - @)2[f"( e+ — sz) ¥ f”( e+ ;Qgcz)]de
0

~
Il

2
! 1 1 — ! 1 - 1
foa - @>2f”( ;Qa + — sz)d@ + fou - Q)Zf”( . O + ;sz)dg
I + 1.
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1 —
no= [a-orr(Me S te)a
F(5ea + 528), L (s + 5s)
_ 2(l—o) _zf 2(1-0)(=1)d,
(-of == -2 | — 20 -0 (D
_ 2 s+ &y 4 f1,(1+g 1_Q)l—d
- e/ () aog | 5 te + e 0 -0k
_ 2 s+ b 8 &+ &
- fz—s‘:lf( 2 )+(§2—§1) f( 2 )
16 ¢ E
d d 2.1
+(§2_§1)3[L f () du + fk £ @) u) @.1)
Multiplying both sides of equality (2.1) with %f')ﬁ and subtracting % f (k) we get,
& -&) . oy 2(1-a)
S f(l o 1 (5t 5 fe)ae- 200

2 (6 + E\a(E - &) 8 &+ Hya & -&)
(fz—fl)f( 2 ) 16B () +(§2—§1)2f( 2 ) 168 ()

£1+6

16 a@-&) [ 7 2(1 - a)
+(§2_§1)3 168 () {fl f(u)du+fk f(wdu - B @) f(k)}

(fz—fl)f(l_ )f”( +Q§+1 _sz)d _2d _a)f(k)

B(a)
_ %f (51 '; fz)+ G 1_ gl)f(fl ';fz)

—%f‘;)z {(gFI“f) (k) + (CFI?. f) (k)} : (2.2)

! 1 - 1
L = f(l—gff"( O + +sz)dg
0

f'(l 5%+ Hgfz) vy (12—951 if)
2 & - & ’0 2]0‘ &1 —& 2 -o)(=Ddg

-2 4 b= 1
(52 fof( % + +Q§2)<1—@>d@

2(1 -

&H = & 2 & =& 2
At Rl ey
+ﬁ( o T f f(u)du) (2.3)
Multiplying both sides of equality (2.3) with % and subtracting 222 (k)
e [ 0-otr (e e AT
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-2 (& + H\a&E - &) 8 &+ EH\a(E-&)
(fz—fl)f( 2 ) 16B (@) +(§2_§1)2f( 2 ) 16B (@)

16 a& - &) f‘ 201 - @)
G-y 16B@) { s.+szf(”>d” t | Jwdu=—prs f(k)}

&-&) (! > (1 —o 1+Q 2(1 —a)
[ (F e L e - 20w

_ L6+ 1 &1+ &

- sf( 2 )+2(§2—§1)f( 2 )

_% {(f'*fz Iy ) k) + (1) (k)} : (2.4)

We get the result by adding the inequalities (2.2) and (2.4) and then multiplying both sides by (&; — &).
This completes the proof.

Theorem 2.1. Let f : [£,&,] — R be a twice differentiable function on (£, &) such that f € L[&,&)],
for & < &.If |f”| is strongly (s, m)-convex with modulus u > 0, for (s,m) € (0, 1] x (0, 1], then the
following inequality for fractional integral operator holds;

‘f(§1+fz)+ 4(1 - f(k)

2 (& - 51)
2o o [
2 +5
< &8 ( (2:+ 1‘)(1:‘;;)((7 i”;)))(lf EN+1f &) |)+m( )(|f (E ) (2))

-5 o2

Proof. Using the Lemma 1 and the strongly (s, m)-convexity of ||, we have

O N T
- a(flj(f)'g)[{(CFI"f)<k)+(CF’?n+fz )(")} {(Cﬁlea )(k”(CFIfazf )(k)}”
-0

o R L Ak f(1;951+”952)]

&) e
G [T N (e + 52+

(5% -

IA

2

_ 2 1 ” ”
< & _a)f U (1—Q)2((1+Q)S|f € 1+m(1 - If (%)I—#(Hg)(l g)(a—é)) o

- 24+s

2
f (1-0)? ((1+9) F @) +md -0 |f (f‘) ﬂ<1+9)(1‘9)(§2‘%))d9]
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. G-y

- 24+s

24 — 14—5(T + 8) | 0 2 3u £
(S+1)(s+2)(s+3)|f (52)|+m(s )lf( ) ——(gz—z)]

& — & [(27" =14 —5(T + )\, ’ 1 3 . (€
szl ((s P T 3))(|f @]+ If @) +m ( )(|f ()17 (2))

-5 o)

Note that,

24 — 14 —5(7 + ) & 3u &
DG 6 (‘fl)|+m( )'f (m) __(fl_E)

245 _ 14— 5(7T +5)
(s+D(s + 2)(s + 3)
1
s+3

1
fo (1 — 0 + 0)'do

1
f (1-07(1-0)do
0
This completes the proof.

Corollary 2.1. If we choose u = 0 in Theorem 8, then we have the following inequality

'f(§1+§2)+ 4(1 - f(k)

2 (fz—fl)

B e (o] )+ (7))

& -&)[(24 - 14-5(T + ) 3 3
< 2 ((HD(HZS)(;;))(V Enl+if (fz)|)+m( )(If(l) |f(2))]

- 24+s
Corollary 2.2. If we choose u = 0 and m = 1 in Theorem 8, then we have the following inequality

‘f(fl‘l‘fz)_i_ 4(1 - f(k)

2 (é’z—&)
e o (] ) )

< &-&) (24”— 4—s5(7+5)
N 24+s (s+D(s+2)(s+3)

)(|f EN+I @)+ ( )(|f EDl+1f &) |)]

Corollary 2.3. If we choose u = 0 and s = 1 in Theorem 8, then we have the following inequality

§1+52 4(1-a)
k
‘f +0/(§2—§1)f()

B N Tt W A T

_ G-&y [S(If" EN+1f" (§2>|)+m(|f (g )|+|f (52))

B 128 3
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Corollary 2.4. If we choose s = 0 and m = 1 in Theorem 8, then we have the following inequality

§1+§2 4(1

(55) ey ®

A
< @2251)[ (7" @1+15" @) + 5 (" @1 +1f @)+ 5 (& - §2)2+(§2—§1)2)]
SRl ( (F @1+1f @)+ 25 (& - & + @ - &) )

Corollary 2.5. If we choose s = 1 and m = 1 in Theorem 8, then we have the following inequality

&+ &6 4(1 -
(55 e ®
~a € ws (T o) ((Ears)ws (T
< Brfy [ (" @ 1+1f @)+ 3 (1 @1 +1f @) |)+%((fl—fz)2+(§z—§1)2)].

Remark 2.1. It is observed that, our result Theorem 8 presents the generalization of the
inequality (Proposition 1 [32]) obtained by Sarikaya et.al in classical sense. This is indeed true since
if we choose « = s =m = 1, u = 0, and B(0) = B(1) = 1, in Theorem 8, we have the following

inequality
& +& 1 >
f( . )_fz—& RECEE

Theorem 2.2. Let f : [£1,&] — R be a twice differentiable function on (&1, &) such that f” € L&, &),
for & < &.If|f”|9 is strongly (s, m)-convex with modulus p > 0, for (s,m) € (0,1] x (0, 1] and q > 1,
then the following inequality for fractional integral operator:

(fz fl)

(IF" €1+ &)1).

(55} 22
o)) o)
 EB (L )0 @or i @) ()i (£22)

Al - 22

Proof. Using Lemma 1, the Holder inequality and the strongly (s, m)-convexity of |f |9, we have

& +§2 + 4(1 -
(fz—fl)

(5 L r )

AIMS Mathematics Volume 8, Issue 8, 19391-19412.
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~ O {Err)w + (CF12+@uf)<k>}*'{(elleff)<k> + (CFG%f)<k>}”

CaE - &)
— 2 1 ’” 1 i 1
- &8 f(l—g)z[f( ~ 2 + Q§2)+f( e+ ;%)]
& =&y —f) 1+Q 1-o0 &-&)> (! W (1-p
< 2 1 f(l ( 5 é:z) + 2241 ‘fo‘(l_ )Zf( 2

Now, put %fl + ! =26 = 0é1 + (1 — 0)é,.

(&;—4&)701(1— s < a-a(52)

2
il e
([ o) ([ s wa-ofe )

IA

&1 +fz)

‘ot +(1-0)

1
dg) +

|

IA

1
q

“

IA

IA

G- 1V
2% \2p+1

(S+1)|f (fl)|q+m( )|f (§2+§1)|q (f %)2

1

+(ﬁ)|fu(§2)|q+m( )|f(§‘+§2)|q £ (e - §1+§2)]q

2m
G- 1\
2% \2p + 1

_ Ié((& s )2 +(e- 'fl%nfz)z)] .

Note that, fol (1-0)'do= fol (0)’do = HL] This completes the proof.

IA

3 +fz)|

( 1 )(If @+ If <§2>|‘1)+m( 1 )If (

s + 1

Corollary 2.6. If we choose u = 0 in Theorem 9, then we have the following inequality

=

N T S A |

a(fz—fl)
_ 1 Il’ 1 7 4 1
< © & ( ) (S+1)(|f Er+1f (§2)|q)+m( )|f (§1+§2)|q]

2 \2p+1

& o+

Sl (f (- )2de) U (1 @1+ m(1 -0 () - o1 - o)
0 2m

(-2 mfz))dw f 1(9“'|f”(§z)lq+m(1 orIf (E-2 ) - ug(l—g)(&—%)z)d&)r

1+0

AIMS Mathematics Volume 8, Issue 8, 19391-19412.
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Corollary 2.7. If we choose u = 0 and m = 1 in Theorem 9, then we have the following inequality

fl+§2 4(1-a)
k
|f +0!(§2—§1)f()

ot o) (o )
< © ;451)2(2p1+1)p (s+1)(lf @1 +1f @)+ ( il)'f” (@)W]

Corollary 2.8. If we choose u = 0 and s = 1 in Theorem 9, then we have the following inequality

‘f 5”52 ¥ 4((;2 gl)f(k)
_aém)gl)[{( 1) 0+ (T f) 0} + {(ffle‘f)<k>+(CFI"f)Uc)}]'
< & 24&) (2p1+1) B(v”(&nu|f”<fz>|‘f) 2 (fl 52)|q]

Corollary 2.9. If we choose s = 0 and m = 1 in Theorem 9, then we have the following inequality
&1+ fz + 4(1 -
a (& - -f 1)

“a (?fc_y)fl) {Ernw e (“rar)wl+{(Ear o () )

&-&y( 1
2 \2p+1

tfl- e85+ -3

Corollary 2.10. If we choose s = 1 and m = 1 in Theorem 9, then we have the following inequality

§1+§2 4(1—0)

(2 L f )

IA

)” (0" €+ 1 o) + 1 (B2

‘f v &) ©
: aéf;f;) (o (o}« {ar s Crnw
e (1 e b€

- 259 +(6- 239

AIMS Mathematics Volume 8, Issue 8, 19391-19412.
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Theorem 2.3. Let f : [£1,&] — R be a twice differentiable function on (&1, &) such that f = L[&, &),
for& < &.IFIf19, g > 1, is strongly (s, m)-convex with modulus u > 0, for (s,m) € (0, 1]x (0, 1], then
the following inequality for fractional integral operator holds:

‘f(fﬁ‘fz)_i_ 4(1 - f(k)

2 (& - 51)

e Y o e

& - &) _)
24 3

Al -5

Proof. Using Lemma 1, the power-mean inequality and the strongly (s, m)-convexity of [ |7, we have

&l +§2 + 4(1 -
(52—51)

e + sl o + (]
2952)+f"( %, + 1;%2)]

2 1
- //1
- (522461) ﬁ(l—Q)z[f( ;Q*fl +
& - &7 (! (1+0 1-0 & - & (! (1-0 1+p0
e f(l—)zf( e+ 2fz)+ = fo(l—ff( i 252).
_ 2 pl
, & 2451) f(l_g)z

Now, put 52¢, + 32 = o€ + (1 — 0)&.
dg) +

2
6+11s+6s2+s3

IA

(IF @r+1f" @1) + ( )|f (& ;gz)

(2 L r )

IA

IA

@2;4'51) fo(1‘9)2 ”(@m(l—g)(
a2 1

&8 [(f (- m"‘dg) (f (1-0?|f (egr + (1 -0 (222))f
! &+ &)\ g

(f (1—@)%19) ( £ (et + (1 -0 (2 222)) dg)

&6y (f (1 -0y d@) U (1-0relf @1 +m [ (1 -oF -0l (A2
0

fz

- §2))

- Q)(fl ;‘fz)

IA

IA

—,uf(l—Q)ZQ(l—Q) £ - f(l O I &)+

f(l—Q) (I-0

@ -&) (1)
24 3
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R e T o (g_a;fz)]

+
6+11s+6s52+s3

Note that, fol (1 — 0)?0o'do = m and j(;l (1 - 0> -0 do = ﬁ This completes the
proof.

Corollary 2.11. If we choose u = 0 in Theorem 10, then we have the following inequality

‘f (457)+ 4<(§12—§1>f (k)
(o L IO A I
. @2;451)2(%)1—; 6+11sf6s2+s3(lf”(fl)lq”f”(&)lq) (2 )i (§1+§2)|q]

Corollary 2.12. If we choose u = 0 and m = 1 in Theorem 10, then we have the following inequality

'f(§1+§2)+ 4(1 - f(k)

2 (& —fl)

0 o o)

. @-&y (_)
a 24 3

Corollary 2.13. If we choose u = 0 and s = 1 in Theorem 10, then we have the following inequality

§1+§2 4(1 - a)
k
+a(§2—§1)f()

e o o o)
( )|f (§1+§z)|q]

1
&-&) (1) 7[2 .
< Z15) | @i @)
Corollary 2.14. If we choose s = 0 and m = 1 in Theorem 10, then we have the following inequality
&1+ fz 4(1 -a)

2
6+11s+6s2+s3

L8y

(F €r+1f @) + (%) il

(5

+

(% vy Y
T (?jc—y)gl) [{( )@+ (Trar)w) {(w )+ () w)]

&1“ﬂ<@i%m*
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Corollary 2.15. If we choose s = 1 and m = 1 in Theorem 10, then we have the following inequality

§1+fz 4(1 -
V + @—m

a gz(f)gl) {Ernw (Tt o) {(Garr)w () w)

PN TN ”
%G) [—(If EDN+1f (gz)|q)+( )|f (§1+§2)|

Al 252 <255

Theorem 2.4. Let f : [£1,&] — R be twice differentiable function on (£1,&) with & < &. If 7 € L
[£1,&] and |f”|? is s-convex on [&1, &), for some fixed s € (0, 1] and g > 1, then the following inequality
for fractional integral operator holds:

51 +§2 4(1 - )
+ @ (& —fl)f(k)

B(a) N . ) )
TaE-&) [{(gl 7) (k)+(CF1f1+fzf) (k)} + {(?5521 f) 0 +(F12.1) (k)}”
(& —&) 1 g (2 -1 1
< T [19(2p+1)+ > ((s+1) BTN

where k € [£1,&), and B (@) > 0 is a normalization function, p™' =1 — g7!

f (k)

IA

(2

) (f" GO+ 11" (é-‘z)lq)] ;

Proof. Using Lemma 1, we have

&+ &\ 4
)+ @_&gw

s {Errnw + (Tr..r ) }*'{(Cﬁleaf)(k) o (1))
Q

Ca& - &)
_ 2 1 1 - 1

< (62 1661) [L (1 _ 2 f//( -; Qfl ) //( f n +Q§2)dQH

1

&1& < ;ff + Cllfg

(2

By using the Young's inequality as

&+ & 41 - a)
‘f(lz )*mf(k)
B(@) , ) Q a
‘agasmﬁﬂw+WWdeﬁ+K%dﬂ®+G%mmm
q
< (62 - é:l) [( f(l Q)Zpdg) N( Qfl + 1 - Qé':Z)dQ
q
- (_f a- Q)2pd9) + _f f"( 2 fl + ! ;sz)dg ]
P Jo q Jo
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IA

) 1 (fz)lq) +

(fz - 51) AN L+ o) ooy 1(1 -0

[( f(l 2 d") q(f( )'f €0l fo 2
"1+ o) M1 - o\

— — 2p — 4 q 17 q

(pfoa 0 dg) +q(f0( )|f &) fo( . )lf <§1>|)

(éjz - §1)2 1 1 2Y+1 - 77 1 77
T Xp(zp 1) { (zs<s_+ pV e+ s ol (52)'q)}+
1 29+1 _ . 1 )
{ (2s (s +_1) @I+ sy e )}]
(éjz _ é:l) 1 2S+1 _ l 77 7
S pep ey @ ( 6D T G +1))(|f @+ If (@)V)]

Theorem 2.5. Let f : [£1,&] — R be twice differentiable function on (£1,&) with &) < &. If f” € L
[£1, &) and |77 is concave on [&1, &), for some fixed s € (0, 1] and q > 1, then the following inequality
for fractional integral operator holds:

‘f(gl )+ 4<(§12 . fof(k)
sl o)

(g - &)
+ f// (351 + 5‘5-:2) q:|q )

(fz - 61) ” 561 + 3§z
f 8
Proof. Let g = 1, then from Lemma 1 and the Jensen integral, we obtain

IA

&+ & 4(1 - @)
'f ) - a@ ey P
B(a) ) ) ) a
gl « (e« (o - 0]
_ 2T B B
< S 9>2f"(1 e sz)d@ + fo (- Q)zf”(l 0 . Lo
G go (f - 2) ,,[fo (1 - 0 (122 + 17%2)] w©
f (1 - o)
f a - N[J(; (r- Q) ( Qé: + 1+Q§2)] dg}
fo (1 - o’

@24— &)’ {|f,,(5§1 + 352) .

b

Which proves the case for ¢ = 1. Now, by using the Holder inequality for g > 1, and then the Jensen
integral inequality, we obtain

77 361 + 562
(55
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‘f(fl ) - 4<(§12 - &)f(k)

2O erw - (ra)w) + {(Larse + Crw)]

@& — &)
2
< (62 - é‘:l) (f (1 _ 2 //( + Qé‘:l + 1 - QfZ)dQ‘)
& - &) 2l en(L =0 l+o
+1—6(f0 (1 -0 |f ( g+ — fz)de‘)
_ &ty -4 1 1 1 -
< —(62 £ [(f a - 9)2) x (1 = o)’ f"( er %6+ 2 sz)dg|
é 2% ., 1 -0 1 +0
(f(l—g)) (1—))f( > & o+ > fz)dgl
2 1 qé
< (&2 1651) [(f 1 - Q)zdg) (f 1 = o) ,,( + Qfl . 1 ;sz)dg )
0
1 o 1 1 1 - o
Lo el )
0 0
_ 2 1 o 1 Lo 548)d !
g%(fu—g)z) [f(l—g)zf“[(2§1+ Ziz)g
0 0 a-o
| Log  eg)do |
+f (1 - o) f"(( - fi - iz) Q]
0 fo(l - 0)
L & - fozx[f,,(Sgl + 3§2)q . V(M)q]
48 8 8

This completes the proof.

Remark 2.2. [t is observed that, our result Theorem 12 presents the generalization of the
inequality (Proposition 5 [32]) obtained by Sarikaya et al. in classical sense. This is indeed true since
if we choose B(0) = B(1) = 1, @ = 1 in Theorem 12, we have the following inequality:

1 > & +6
g ), Twa-s(57)

& - &)’ [(3 G (&)W)”" . (5 I @ +311 (&)W)”ql .

<

48 8 8
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3. Applications

3.1. Matrix inequalities

Consider that s € (0, 1] and &1, &, ¢ € R. We define a mapping f : [0, c0) — R as

f(x)={ él’x:O

&X'+, x> 1.

If& >0and 0 < ¢ < &, then f € k? in (see [16] for proof). Thus, for & = ¢ = 0, and & = 1, we have
f(x)=xand f: [£,&] — R, with f € k2. Suppose f : I; — R, be a non- decreasing and s-convex
functionon /; and f : J — I, C I is a non-negative convex function on J, then f oy is s-convex on /.

Corollary 3.1. Suppose ¢ : I — I, C [0, 00) is a non- negative convex function on I, then ¥° (x) is
s-convex on [0,00),0 < s < 1.

Example 3.1. We denote the set of all n X n complex matrices by C", and we denote M,, to be the
algebra of all n X n complex matrices, and by M, we mean the strictly positive matrices in M,. That
is, A € My if <A§1,§1> > 0 for all nonzero & € C”". In [31] Sababheh proved that the function
v (0) = ||A°XB"" + A"°XB’||, A,B € M} , X € M, is convex for all § € [0, 1], s € (0, 1). Then by
using Corollary 2, we have

[ xp-5 4 xpt | < B fferp it ixp| +
a (& —&1)
I ) « |A*XB'* + A”‘XB"||} {CFI§1 o ||[A*XBTF + AT XBY| +
CFIa ||AkXB1 kg Al- kXBk”} ;((; =3 ”AkXBl koAl kXBk”
2761

& - &)

24+s

IA

s+1D(s+2)(s+3)

( 2 14 -s5(s+7) ){“A&XBH‘I +AEXBY | +

JA¢XBIE + AExBe) + (s ! 3) (¢ xB-e + At xpe|

+||a2xB'E + AT xB2||)].

3.2. Special means inequalities

We shall consider the following special means.
(a) The arithmetic mean:

fl"‘fz

A=A(£,85) = , 61,620

(b) The Geometric Mean:
G =G (&,86) = V&€, 61,6 2 0.

(c¢) The Harmonic Mean:

H=H@E.86)= ¢ ff; JE1,6, > 0.
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(d) The Logarithmic Mean:

& —&

mfl,& > 0,8 # &.

L{1,6) =

(e) The Generalized Logarithmic Mean:

1/r
L= L. = | —28 ] .
(r+1)(&-¢&)
It is well known that L’ is monotonically nondecreasing over r € R with L_; = L. In particular, we
have the following inequalities
H<G<L<A.

Proposition 3.1. Forann € Z{—1,0}, 0 < & < &, we have

nin-1)(& - &)
48

|A" (£1,&) — L(é),6)] < [|§1|n_2 + |§2|n_2] .

Proof. The assertion directly follows from Theorem 8 applying for f(x) = x"ande =s=m = 1,
and u =0, B(0) = B(1) = 1. For a graphical depiction of this see Figure 1.

Figure 1. Graphical description of error bound for Proposition 3.1, where the left side
inequality of Proposition is shown in blue color and the right side of that inequality is shown
in red color.

Proposition 3.2. For some 0 < & < &, then we get,

&7 + 167

_ 2
47 @ - L )| < B 5

4

Proof. The assertion directly follows from Theorem 8 applying for f(x) = x'anda =s=m = 1,
and u =0, B(0) = B(1) = 1. For a graphical depiction of this see Figure 2.
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Figure 2. Graphical description of error bound for Proposition 3.2, where the left side
inequality of Proposition is shown in blue color and the right side of that inequality is shown
in red color.

Proposition 3.3. For some £1,6 € R, 0 < & < &, and g > 1, then we get

n(n-1)&-&)

AT &L e - LT (L E)| <

48
361+ 56\ (56 + 36\
) )|

Proof. The assertion follows from Theorem 12 applying for f (x) = %, x € [é,6]a=1and B(0) =
B(1)=1.

4. Conclusions

Fractional calculus is an interesting subject with many applications in the modelling of natural
phenomena. We are always in need to enhance and improve our ability to generalize the results
directly related to the topic of fractional calculus. Many mathematicians have generalized a variety of
fractional integral operators using the techniques and operators of fractional calculus. In this paper,
we have established several inequalities accomplished for the functions whose second derivatives are
strongly (s,m)-convex functions via Caputo fractional derivatives. The main results show a
generalization of Hermite-Hadamard-type inequalities for the strongly (s,m)-convex function via
Caputo-Fabrizio integral operator. Lemmas 1 is established to get novel inequalities regarding
Caputo-Fabrizio integral operator, which are applied to obtain some special means inequalities and an
inequality involving the matrix function. The Lemma 1 is also appropriate to get new bounds and
error estimates for midpoint inequalities. Moreover, the novel study of this article that are discussed in
Theorem 5 and Theorem 9 are generalization of the inequalities proved in ( Proposition 1 and
Proposition 5 [32]). Similar types of inequalities can be obtained with the different classes of convex
functions. In the future, scholars may explore inequalities of the Ostrowski type, Jensen-Mercer type,
and Hermite-Hadamard-Mercer type with modified Caputo-Fabrizio fractional operators and modified
A-B fractional operators.
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