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Abstract: It is known in the financial world that the index price reveals the performance of 

economic progress and financial stability. Therefore, the future direction of index prices is a 

priority of investors. This empirical study investigated the effect of incorporating memory and 

stochastic volatility into geometric Brownian motion (GBM) by forecasting the future index price 

of S&P 500. To conduct this investigation, a comparison study was implemented between twelve 

models; six models without memory (GBM) and six models with memory (GFBM) under two 

different assumptions of volatility; constant, which were computed by three methods, and 

stochastic volatility, obeying three deterministic functions. The results showed that the best 

performance model was for GFBM under a stochastic volatility assumption using the identity 

deterministic function 𝜎(𝑌𝑡) = 𝑌𝑡, according to the smallest values of mean square error (MSE) 

and mean average percentage error (MAPE). This revealed the direct positive effect of 

incorporating memory and stochastic volatility into GBM to forecast index prices, and thus can be 

applied in a real financial environment. Furthermore, the findings showed invalidity of the models 

with exponential deterministic function 𝜎(𝑌𝑡) = 𝑒𝑌𝑡  in forecasting index prices according to huge 

values of MAPE and MSE. 

Keywords: geometric Brownian motion; geometric fractional Brownian motion; stochastic volatility; 
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1. Introduction 

In the financial world, the market index of any country reveals the level of financial stability and 

economic progress. In the USA, the most standout index amongst recognized lists is Standard and 

Poor’s 500 (S&P 500). The S&P 500 is the main stock market indicator of major public companies in 

the US, where 500 of the top market leaders are included in it. These market leaders reflect the level of 

aggregate conduct among its business sectors. Therefore, forecasting of the performance of S&P 500 is 

a crucial issue because it assists in making correct decisions. For this purpose, there were various models 

presented in literature to forecast future market performance such as the jump diffusion process, random 

walk process, Brownian motion (BM) process, geometric Brownian motion (GBM) and geometric 

fractional Brownian motion (GFBM). This work focuses on GBM and GFBM models. 

GBM and GFBM models are special cases of stochastic differential equations (SDE). In general, 

SDE models have wide applications in financial environment, especially in predicting and modeling 

financial products. For some examples, GBM models together with the famous Black-Scholes model 

obtained a closed-form solution for the European option pricing problem [1], SDE with stochastic 

volatility is used to overcome the smile effect such as in the Heston model [2] and Hull-White model [3], 

models dealing with crises where the impact of a financial crunch is represented by an additional term in 

the stochastic part of the stochastic differential equation such as in [4,5], jump-diffusion models where 

the asset prices, dynamics are assumed to be driven by a continuous part represented by the Brownian 

motion and a jump part usually described by a compounded Poisson process as in [6]. 

In the work that follows, we will investigate SV models perturbed by Brownian motion (BM) and 

fractional Brownian motion (FBM) because the SV models have good features which permit them to 

provide more details on the empirical characteristics of the joint time-series behavior of option prices, 

stocks and index prices which cannot be captured by limited models. Furthermore, by incorporating 

FBM into an SV model, the behaviors of real markets can be depicted more accurately since these 

models show memory, or dependency [7]. Indeed, this work is only considering stochastic volatility 

and long memory, but there are other issues that affect indexes, like those discussed in works [8–11]. 

This paper is comprised of four main sections. Section 1 contains a brief introduction. Next, 

Section 2 provides the models of GBM and GFBM under study. Section 3 validates the models under 

study through investigation on forecasting index prices of S&P 500. Finally, Section 4 concludes the 

study. 

2. Materials and methods 

2.1. GBM and GFBM models 

Bachelier in [12] is one of the first scholars who used BM for predicting financial assets. In the 

modern era, Ross in [13] also utilized the BM process directly to model stock price. However, this 

direct employment of BM faced heavy criticism because the BM process permits the price to be 

negative where the stock prices are assumed to follow a normal random variable. To deal with this 

situation, a non-negative variation of BM named geometric Brownian motion (GBM) was employed 
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to recover the shortness of the BM in financial applications. GBM showed that it can describe the real 

situation better. Therefore, it was widely utilized in many applications of financial mathematics, such 

as index price, mortgage insurance, the Black-Scholes model, option pricing and exchange rates. 

Definition I [14]. A stochastic process 𝑆𝑡  is said to follow a GBM if the following stochastic 

differential equation (SDE) is satisfied: 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡,                           (1) 

where 𝑊𝑡 is a Brownian motion and 𝜇 and 𝜎 are drift and volatility respectively. The solution of 

Eq (1) is of the form 

𝑆𝑡 = 𝑠0 𝑒𝑥𝑝 {(𝜇 −
1

2
𝜎2) 𝑡 + 𝜎𝑊𝑡  },                   (2) 

where 𝑠0 represents an initial value. 

Despite the evolution of this approach, numerous researchers such as [15–23], observed the 

appearance of memory in the time series data which is controlled by this model. This implies the next 

step by proposing a model of GBM that can incorporate the properties of long memory. Fractional 

Brownian motion (FBM) is one of models that were offered to deal with this issue. 

Definition II  [24]. The fractional Brownian motion (FBM), {𝐵𝐻(𝑡)}, with Hurst parameter 𝐻 ∈ (0,1) 

is a centered Gaussian process whose paths are continuous with probability 1 and its distribution is 

defined by the covariance structure: 

𝐸[𝐵𝐻(𝑡)𝐵𝐻(𝑠)] =
1

2
(𝑡2𝐻 + 𝑠2𝐻 − |𝑡 − 𝑠|2𝐻). 

FBM represents a continuous Gaussian process with independent increments. The correlation 

between the increments of FBM fluctuates consistently with it self-similarity parameter which is called 

the Hurst parameter (𝐻 index). The Hurst parameter was used to capture the correlation dynamics of 

data and consequently yield better results in forecasting. There are three different types of memory 

dependency which were detected according to the value of 𝐻. If 0.5 < 𝐻 < 1, this means existence of 

long memory dependence, if 0 < 𝐻 < 0.5, this means short memory dependence, while when 𝐻 =

0.5 there is no memory dependence. 

If FBM is substituted in GBM instead of BM, this gives a model called geometric fractional 

Brownian motion (GFBM). GFBM is an evolution version of GBM which incorporates memory 

properties. 

Definition III [25]. A stochastic process 𝑆t is said to follow a GFBM if the following stochastic 

differential equation (SDE) is satisfied: 

𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡 𝑑𝐵𝐻1
(𝑡),                       (3) 

where 𝐵𝐻(𝑡) represents a FBM and 𝜇 and 𝜎 represent mean (drift) and volatility respectively. The 

solution of Eq (3) is of the form 

𝑆(𝑡) = 𝑆0 exp [(𝜇 −
1

2
𝜎2𝑡2𝐻1−1) 𝑡 + 𝜎𝐵𝐻1

(𝑡)],               (4) 

where 𝑠0 represent an arbitrary initial value. 

http://en.wikipedia.org/wiki/Stochastic_differential_equation
http://en.wikipedia.org/wiki/Stochastic_differential_equation
http://en.wikipedia.org/wiki/Stochastic_differential_equation
http://en.wikipedia.org/wiki/Stochastic_differential_equation
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The volatility (𝜎) in Definitions I and III is assumed to be constant. It can be considered as the 

historical volatility and is computed by several formulas as in Table 1. 

Table 1. Formulas of computing constant volatility. 

Volatility Formula 

Simple 

volatility (S) 
𝜎 = √

1

(𝑛−1)∆𝑡
∑ ( 𝑅𝑖 − 𝑅̅)2𝑛

𝑖=1  where 𝑅𝑖 =
𝑆𝑖+1−𝑆𝑖

𝑆𝑖
  is the return and  𝑅̅ average 

return respectively. 

Log volatility 

(L) 
𝜎 = √

1

(𝑛 − 1)∆𝑡
 ∑( 𝐿𝑜𝑔(𝑆𝑖) − 𝐿𝑜𝑔 ( 𝑆𝑖−1))2

𝑛

𝑖=1

 

High-Low- 

Closed 

volatility 

(HLC) 

𝜎 =

√
1

(𝑛−1)∆𝑡
(∑ 0.5( 𝐿𝑜𝑔(𝐻𝑖) − 𝐿𝑜𝑔 ( 𝐿𝑖))2𝑛

𝑖=1 − ∑ 0.3( 𝐿𝑜𝑔(𝑆𝑖) − 𝐿𝑜𝑔 ( 𝑆𝑖−1))2𝑛
𝑖=1 )  

 

To simplify the derivation and computations of the models in Definitions I and III, the volatility 

𝜎 was assumed to be constant. However, several empirical studies claimed that the assumption of 

constant volatility is not enough to describe the real situation accurately [15,26,27]. As an alternative, 

many efforts investigated using stochastic volatility (SV) in GBM instead of constant volatility such 

as [28–36]. In an attempt to develop a model that can describe and demonstrate real financial 

circumstances more accurately, Alhagyan in [7,37–40] extended existing works by incorporating 

stochastic volatility into GFBM instead of constant volatility. 

In a SV model, 𝜎 (constant volatility) in Eqs (1) and (3) are replaced by 𝜎(𝑌𝑡) which is a 

function of a stochastic process 𝑌𝑡 (𝑌𝑡 is the solution of an SDE that is driven by different noise). 

Table 2 shows some different SDE models that describe 𝑌𝑡 in different forms. This work focuses 

on an SV model that follows the fractional Ornstein-Uhlenbeck (FOU) process. 

Table 2. Models of stochastic processes describing 𝑌𝑡 in SV models. 

Name Model 

Log–normal process 𝑑𝑌𝑡 = 𝛼𝑌𝑡𝑑𝑡 +  𝛽𝑌𝑡𝑑𝑊2𝑡 

Cox–Ingersoll–Ross (CIR) process 𝑑𝑌𝑡 = 𝜃(𝜔 − 𝑌𝑡)𝑑𝑡 + 𝜉√𝑌𝑡𝑑𝑊2𝑡 

Ornstein–Uhlenbeck (OU) process 𝑑𝑌𝑡 = 𝛼(𝑚 − 𝑌𝑡)𝑑𝑡 + 𝛽𝑑𝑊2𝑡 

Not mean reverting process 𝑑𝑌𝑡 = 𝛼𝑌𝑡𝑑𝑊2𝑡 

Fractional Ornstein–Uhlenbeck (FOU) process 𝒅𝒀𝒕 = 𝜶(𝒎 − 𝒀𝒕)𝒅𝒕 + 𝜷𝒅𝑩𝑯𝟐
(𝒕) 

Definition IV [7]. A stochastic process 𝑆t is said to follow a GFBM perturbed by stochastic volatility 

if it satisfies the following SDE: 

𝑑𝑆𝑡 = 𝜇 𝑆𝑡𝑑𝑡 + 𝜎(𝑌𝑡)𝑆𝑡𝑑𝐵𝐻1
(𝑡),                        (5) 

http://en.wikipedia.org/wiki/Stochastic_differential_equation
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where 𝑌𝑡  is a stochastic process, 𝜇 is mean (drift), 𝐵𝐻1
(𝑡) is a (FBM) with Hurst index 𝐻1 and 

𝜎(𝑌𝑡) is a deterministic function. 

Let the dynamics of volatility 𝑌𝑡 be described by FOU process which is the solution of the following 

SDE 

𝑑𝑌𝑡 = 𝛼(𝑚 − 𝑌𝑡)𝑑𝑡 + 𝛽𝑑𝐵𝐻2
(𝑡),                      (6) 

where 𝛼, 𝛽  and 𝑚 all are constant parameters and represent mean reverting of volatility, volatility 

of volatility, and mean of volatility, respectively. 𝐵𝐻2
(𝑡) is another FBM which is independent from 

 𝐵𝐻1
(𝑡). 

The deterministic function 𝜎(𝑌𝑡)  has many formulas in literature. This work chooses three 

formulas: 𝜎(𝑌𝑡) = 𝑌𝑡, 𝜎(𝑌𝑡) = √𝑌𝑡 and 𝜎(𝑌𝑡) = 𝑒𝑌𝑡. 

This research forecasts values of closing prices of the S&P 500 in an aim to make a comparative 

study of the performance between 12 models; 6 models of GBM and 6 models of GFBM with volatility 

formulations available in Table 1 and FOU in Table 2 as illustrated in Table 3. Figure 1 shows the 

models under study. 

Table 3. Models under study. 

Abbreviation Volatility Formula 

GBM-S Constant Simple 

GBM-L Constant Log 

GBM-HLC Constant High-Low-Close 

GBM-STO 1 Stochastic 𝜎(𝑌𝑡) = 𝑌𝑡 

𝑑𝑌𝑡 = 𝛼(𝑚 − 𝑌𝑡)𝑑𝑡 + 𝛽𝑑𝐵𝐻2
(𝑡) 

GBM-STO 2 Stochastic 
𝜎(𝑌𝑡) = √𝑌𝑡 

𝑑𝑌𝑡 = 𝛼(𝑚 − 𝑌𝑡)𝑑𝑡 + 𝛽𝑑𝐵𝐻2
(𝑡) 

GBM-STO 3 Stochastic 𝜎(𝑌𝑡) = 𝑒𝑌𝑡 

𝑑𝑌𝑡 = 𝛼(𝑚 − 𝑌𝑡)𝑑𝑡 + 𝛽𝑑𝐵𝐻2
(𝑡) 

GFBM-S Constant Simple 

GFBM-L Constant Log 

GFBM-HLC Constant High-Low-Close 

GFBM-STO 1 Stochastic 𝜎(𝑌𝑡) = 𝑌𝑡 

𝑑𝑌𝑡 = 𝛼(𝑚 − 𝑌𝑡)𝑑𝑡 + 𝛽𝑑𝐵𝐻2
(𝑡)m 

GFBM-STO 2 Stochastic 
𝜎(𝑌𝑡) = √𝑌𝑡 

𝑑𝑌𝑡 = 𝛼(𝑚 − 𝑌𝑡)𝑑𝑡 + 𝛽𝑑𝐵𝐻2
(𝑡) 

GFBM-STO 3 Stochastic 𝜎(𝑌𝑡) = 𝑒𝑌𝑡 

𝑑𝑌𝑡 = 𝛼(𝑚 − 𝑌𝑡)𝑑𝑡 + 𝛽𝑑𝐵𝐻2
(𝑡) 

http://en.wikipedia.org/wiki/Stochastic_differential_equation
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Figure 1. Models under study. 

2.2. Forecasting the performance of S&P 500 

2.2.1. Description of data 

The data is accessible online at http://finance.yahoo.com. The total daily observations of data 

is 252 beginning from 2nd Jan. 2015 to 31st Dec. 2015. This period was chosen because the Hurst 

parameter is 𝐻 > 0.5, which means the existence of long memory. The return series is considered 

in logarithm (i.e., 𝑟𝑛 = ln (𝑠𝑛/𝑠𝑛−1)) to control data with high volatility. Figures 2 and 3 show the 

closing prices and its return series. 

 

Figure 2. Adjust closed prices. 

 

Figure 3. Daily returns series. 

2.2.2. Forecasting and evaluation 

According to the data of the S&P 500 in 2015, all parameters involved in the models under study 

were computed by using Mathematica 10 software (See Table 4). Next, all these parameters were 

utilized to compute the values of constant volatilities according to the formulas given in Table 1 and 

stochastic volatilities according to three deterministic functions mentioned earlier (see Table 5). 

http://finance.yahoo.com/
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Table 4. Parameters summary. 

Parameter Value 

𝐻1: Hurst index of adjusted closed price 0.57 

𝐻2: Hurst index of daily volatility of closed price 0.63 

𝜇: mean of return 0.000011 

𝛽: volatility of volatility 0.00019 

𝑚: mean of daily volatility of log return 0.000055 

𝛼: mean reverting of daily volatility of log return 2.45 

Table 5. Values of computed volatilities. 

Volatility Value 

Constant: Simple volatility 0.075828 

Constant: Log volatility 0.075687 

Constant: High-Low-Closed volatility 0.027411 

Stochastic: 𝜎(𝑌𝑡) = 𝑌𝑡 0.023750 

Stochastic: 𝜎(𝑌𝑡) = √𝑌𝑡 
0.154110 

Stochastic: 𝜎(𝑌𝑡) = 𝑒𝑌𝑡 1.024030 

The parameters in Table 4 were utilized to forecast closing prices of the first three months of 2016. 

The forecasted closing prices values were computed using six models of GBM and six models of 

GFBM as mentioned above (see Figure 1). 

To evaluate the forecasting methods, two measures of error were used; mean square error (MSE) 

and mean absolute percentage error (MAPE) were applied as follows: 

MSE=
∑ (𝑌𝑖−𝐹𝑖)2𝑛

𝑖=1

𝑛
 

MAPE=
∑

|𝑌𝑖−𝐹𝑖|

𝑌𝑖

𝑛
𝑖=1

𝑛
, 

where 𝐹𝑖 and 𝑌𝑖  represent the forecasted price and the actual price at day i, respectively, while 𝑛 is 

the total number of forecasting days. 

Lawrence in [41] determined intervals to judge the accuracy of the forecast methods by using 

MAPE as illustrated in Table 6. 

Table 6. MAPE to judgment accuracy of forecasting method. 

Accuracy MAPE 

Highly accurate MAPE< 10% 

Good accurate 10% ≤MAPE< 20% 

Reasonable 20% ≤MAPE< 50% 
Inaccurate MAPE ≥ 50% 
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3. Results 

The forecasted prices of twelve models in addition to actual prices of S&P 500 are shown in 

Appendix 1 and the accuracy levels of all models are listed in Tables 7 and 8. 

Table 7. The accuracy ranking level of forecasting model based on MSE. 

Rank Model MSE Rank Model MSE 

1 GFBM-STO1 13155 7 GFBM-L 13677 

2 GBM-HLC 13482 8 GFBM-S 13678 

3 GBM STO1 13508 9 GBM-STO2 13879 

4 GFBM-HLC 13518 10 GFBM-STO2 14129 

5 GBM-L 13538 11 GFBM-STO3 624870 

6 GBM-S 13570 12 GBM-STO3 630713 

Table 8. The accuracy ranking level of forecasting model based on MAPE. 

Rank Model MAPE Rank Model MAPE 

1 GFBM-STO1 4.8073% 7 GFBM-S 5.0974% 

2 GFBM-HLC 4.8270% 8 GBM-L 5.2462% 

3 GBM-STO1 4.8345% 9 GFBM-STO2 5.8540% 

4 GBM-HLC 4.8394% 10 GBM-STO2 5.9093% 

5 GBM-S 5.0804% 11 GFBM-STO3 67.2498% 

6 GFBM-L 5.0964% 12 GBM-STO3 67.5685% 

The findings reveal that GFBM-STO1 ranked first in terms of accuracy with the smallest values 

of MSE and MAPE. This result was achieved based on the two sources of memory 𝐻1 and 𝐻2 which 

were incorporated in GFBM-STO1 as well as the stochastic volatility assumption under the 

deterministic function 𝜎(𝑌𝑡) = 𝑌𝑡 that obeys the FOU process. In contrast, GBM-STO3 and GFBM-

STO3 ranked last with huge values of MSE and MAPE. There are some differences between ranks of 

accuracy in Tables 7 and 8. These differences do not have much effect on the results because the MSE 

values are close together and the MAPE values are close together too. 

The huge gap between the ten models with high accuracy from one side and GBM-STO3 and 

GFBM-STO3 on the other side can be justified by the large difference between the values of stochastic 

volatilities as shown in Table 5. Therefore, large volatility means large fluctuation. 

Appendix 1 shows almost close values of forecasting values based on all models except GBM-

STO3 and GFBM-STO3. Tables 8 indicates that the forecasting using GBM or GFBM models have 

high accuracy since MAPE<10%. 

These findings suggest that models with long memory are more suitable in empirical analysis. 

This result agrees with many studies, such as [16,20–23,37]. Figure 4 illustrates the comparison 

between the actual closing prices versus the forecasted closing prices computed by the twelve methods 

under study. 
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Figure 4. Forecast prices vs actual prices. 

4. Conclusions 

Index price reflects the performance of economic growth and financial stability. Therefore, 

understanding the future direction of index prices is one of the top priorities of investors. For this goal, 

numerous scholars in literature have proposed numerous models. GBM and GFBM models are two of 

the most important. In literature, there are two main assumptions with respect to volatility: a constant 

assumption and a stochastic assumption upon financial environments. Moreover, there are many ways 

to compute constant volatility and many considerations of the deterministic function in the case of 

stochastic volatility. 

The present study has dealt study with three formulas of computing constant volatility including 

simple, log and high-low-closed. Furthermore, three deterministic functions of stochastic processes 

including identity 𝜎(𝑌𝑡) = 𝑌𝑡, square root 𝜎(𝑌𝑡) = √𝑌𝑡 and exponential 𝜎(𝑌𝑡) = 𝑒𝑌𝑡.  
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In fact, this study has examined the effect of incorporating stochastic volatility and memory into 

the classical GBM model through forecasting index prices of the S&P 500. The results showed that 

performance of GFBM-STO1 is the best due to having the smallest values of MSE and MAPE. This 

empirical result has proved the direct positive affection of merging stochastic volatility and memory 

into GBM models which may use as a tool to forecast the index prices. These findings are consistent 

with many empirical studies such as [7,16,20–23,37]. Generally, the results exhibited that the models 

with exponential deterministic functions (GBM-STO3 and GFBM-STO3) cannot be used in 

forecasting index prices since the MSE and MAPE are very large. Meanwhile, the rest of models have 

high accuracy (MAPE≤10%) and thus, can be used in a real financial environment. 
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Appendix 1 

Date Actual GBM-S GFBM-S GBM-L GFBM-L GBM-

HLC 

GFBM-

HLC 

GBM-

STO1 

GFBM-

STO1 

GBM-

STO2 

GFBM-

STO2 

GBM-

STO3 

GFBM-

STO3 

05-1 2016.71 2045.94 2044.90 2050.20 2044.88 2042.14 2041.92 2039.34 2038.94 2066.52 2065.20 3419.68 3664.35 

06-1 1990.26 2045.13 2037.26 2049.24 2037.25 2038.69 2043.53 2039.03 2036.69 2065.49 2048.08 3574.95 3168.16 

07-1 1943.09 2045.72 2042.93 2049.53 2042.91 2037.97 2036.99 2039.32 2038.32 2065.77 2061.18 3517.99 3532.94 

08-1 1922.03 2044.47 2039.94 2047.78 2039.93 2038.12 2042.89 2038.87 2037.49 2063.67 2053.99 3476.29 3308.99 

11-1 1923.67 2043.69 2055.56 2047.85 2055.52 2036.38 2038.43 2038.63 2042.43 2062.07 2085.50 3517.81 3673.82 

12-1 1938.68 2051.29 2047.85 2055.58 2047.82 2042.4 2041.54 2041.06 2040.08 2077.16 2068.98 3638.51 3236.30 

13-1 1890.28 2041.42 2048.71 2045.34 2048.68 2038.49 2038.15 2037.96 2040.32 2057.21 2071.12 3595.10 3446.01 

14-1 1921.84 2036.29 2055.32 2040.22 2055.28 2037.66 2040.01 2036.30 2042.24 2046.96 2086.14 3302.62 3827.76 

15-1 1880.33 2058.80 2055.89 2062.29 2055.84 2037.56 2038.19 2043.25 2042.52 2094.01 2086.32 3977.16 3662.87 

19-1 1881.33 2046.79 2048.21 2050.96 2048.18 2041.25 2039.39 2039.63 2040.04 2068.01 2071.33 3423.64 3599.27 

20-1 1859.33 2034.24 2058.36 2038.57 2058.31 2038.11 2038.2 2035.86 2043.16 2040.98 2092.61 3190.05 3832.26 

21-1 1868.99 2058.77 2033.35 2063.07 2033.34 2040.03 2037.34 2043.37 2035.55 2092.53 2039.35 3619.74 3082.68 

22-1 1906.90 2044.55 2046.52 2048.45 2046.49 2033.03 2037.54 2039.05 2039.61 2062.36 2066.88 3414.5 3437.61 

25-1 1877.08 2039.37 2057.36 2042.95 2057.32 2042.06 2037.52 2037.53 2042.95 2050.7 2089.59 3047.09 3709.5 

26-1 1903.63 2041.73 2045.05 2045.96 2045.02 2037.97 2035.68 2037.96 2039.22 2058.66 2063.18 3567.28 3291.67 

27-1 1882.95 2050.12 2043.7 2053.77 2043.68 2033.21 2038.99 2040.82 2038.82 2073.37 2060.24 3370.88 3229.36 

28-1 1893.36 2048.95 2041.96 2053 2041.94 2039.36 2038.25 2040.44 2038.24 2071.12 2056.95 3349.65 3166.98 

29-1 1940.24 2042.38 2046.13 2045.95 2046.11 2038.34 2037.77 2038.33 2039.57 2058.19 2065.3 3283.76 3329.13 

01-2 1939.38 2056.1 2048.39 2060.75 2048.36 2038.39 2039.07 2042.67 2040.1 2085.83 2071.64 3526.04 3562.71 

02-2 1903.03 2041.02 2044.31 2045.44 2044.29 2039.25 2042.14 2037.9 2038.84 2055.56 2063.08 3324.13 3425.7 

03-2 1912.53 2048.36 2047.44 2052.78 2047.41 2037.5 2043.61 2040.1 2039.92 2071.5 2068.49 3522.46 3307.12 

04-2 1915.45 2063.92 2036.04 2068.32 2036.03 2039.2 2039.7 2045.02 2036.48 2102.78 2043.93 3726.87 2938.16 

05-2 1880.05 2043.64 2028.54 2048.38 2028.55 2040.9 2037.37 2038.75 2034 2060.52 2030.05 3258.63 3085.51 
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Date Actual GBM-S GFBM-S GBM-L GFBM-L GBM-

HLC 

GFBM-

HLC 

GBM-

STO1 

GFBM-

STO1 

GBM-

STO2 

GFBM-

STO2 

GBM-

STO3 

GFBM-

STO3 

08-2 1853.44 2039.22 2047.72 2043.28 2047.69 2036.56 2041.58 2037.46 2039.89 2050.58 2070.27 2998.6 3531.2 

09-2 1852.21 2036.27 2049.21 2040.08 2049.18 2037.58 2041.19 2036.52 2040.52 2044.88 2071.63 3129.88 3308.04 

10-2 1851.86 2033.19 2043.75 2037.74 2043.73 2037.26 2040.11 2035.57 2038.83 2038.39 2060.48 2957.91 3378.32 

11-2 1829.08 2050.69 2034.24 2054.5 2034.24 2036.03 2041.39 2041.18 2035.82 2072.82 2041.21 3232.17 3028.04 

12-2 1864.78 2048.31 2032.35 2052.53 2032.35 2039.08 2040 2040.15 2035.24 2070.63 2037.21 3353.7 3002.69 

16-2 1895.58 2036.75 2031.89 2040.47 2031.89 2040.88 2035.27 2036.69 2035.04 2045.58 2036.78 3055.54 2981.24 

17-2 1926.82 2041.74 2048.1 2046.05 2048.07 2041.08 2040.16 2038.19 2040.07 2056.33 2070.63 3229.68 3677.7 

18-2 1917.83 2056.66 2055.04 2060.83 2055 2036.89 2038.6 2042.97 2042.45 2085.73 2082.53 3426.63 3294.01 

19-2 1917.78 2042.72 2039.76 2046.89 2039.75 2041.54 2035.07 2038.46 2037.53 2058.64 2052.64 3228.82 3181.85 

22-2 1945.50 2043.37 2039.88 2048.29 2039.87 2039.52 2039.53 2038.66 2037.75 2060 2051 3255.24 2895.44 

23-2 1921.27 2043.97 2060.38 2047.91 2060.33 2040.5 2036.04 2038.86 2044.07 2061.18 2093.99 3288.17 3511.15 

24-2 1929.80 2051.52 2049.53 2055.9 2049.51 2038.11 2039.92 2041.37 2040.81 2075.16 2070.5 3317.25 3137.3 

25-2 1951.70 2041.78 2044.87 2045.99 2044.85 2041.34 2040.62 2038.3 2039.19 2055.37 2062.56 3017.16 3227.68 

26-2 1948.05 2041.02 2049.15 2045.13 2049.12 2035.87 2039.78 2038.02 2040.44 2054.33 2072.09 3095.48 3417.33 

29-2 1932.23 2042.39 2049.84 2046.64 2049.81 2038.94 2035.37 2038.57 2040.71 2055.98 2073 3047.11 3341.45 

01-3 1978.35 2031.3 2040.26 2035.54 2040.25 2032.79 2038.74 2035.13 2037.77 2032.93 2053.01 2762.5 3338.67 

02-3 1986.45 2048.81 2040.12 2053.26 2040.11 2045.62 2034.54 2040.41 2037.77 2070.75 2052.13 3330.92 3052.06 

03-3 1993.40 2035.11 2055.7 2039.16 2055.66 2037.9 2036.3 2036.23 2042.56 2041.56 2084.95 2864.2 3609.93 

04-3 1999.99 2035.25 2040.92 2038.94 2040.9 2035.82 2039.31 2036.23 2038.14 2042.3 2052.61 2961.24 2908.85 

07-3 2001.76 2049 2041.08 2052.57 2041.07 2036.62 2040.2 2040.46 2038.01 2071.08 2054.63 3380.25 3098.12 

08-3 1979.26 2039.8 2041.38 2043.99 2041.37 2041.19 2037.23 2037.64 2038.31 2051.7 2053.34 2977.95 2942.11 

09-3 1989.26 2034.53 2044.3 2038.91 2044.28 2038.22 2039.29 2035.96 2039.14 2041.25 2060.1 2947.49 3062.13 

10-3 1989.57 2047.3 2046.52 2051.3 2046.5 2035.73 2039.51 2039.99 2039.64 2067.16 2066.65 3390.59 3440.91 

11-3 2022.19 2041.21 2045.18 2045.17 2045.16 2040.88 2042.28 2038.11 2039.28 2054.37 2063.17 3056.08 3210.84 

14-3 2019.64 2043.18 2047.81 2047.4 2047.78 2039.36 2034.02 2038.7 2040.12 2058.73 2068.53 3127.52 3463.75 

15-3 2015.93 2053.64 2035.3 2058.16 2035.3 2035.73 2038.5 2041.97 2036.25 2080.1 2042.44 3417.04 3028.55 
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Date Actual GBM-S GFBM-S GBM-L GFBM-L GBM-

HLC 

GFBM-

HLC 

GBM-

STO1 

GFBM-

STO1 

GBM-

STO2 

GFBM-

STO2 

GBM-

STO3 

GFBM-

STO3 

16-3 2027.22 2044.92 2028.03 2049.24 2028.04 2039.72 2040.2 2039.4 2034.02 2060.78 2027.14 3071.59 2849.36 

17-3 2040.59 2047.97 2042.96 2052.27 2042.94 2042.84 2039.51 2040.22 2038.65 2068.25 2058.06 3249.53 3122.91 

18-3 2049.58 2035.62 2052.01 2040.12 2051.97 2039.93 2038.47 2036.27 2041.47 2043.87 2076.75 3130.32 3385.19 

21-3 2051.60 2037.12 2037.91 2041.64 2037.9 2037.7 2044.61 2036.81 2037.05 2046.13 2047.92 2972.91 3076.59 

22-3 2049.80 2044.01 2036.32 2048.6 2036.32 2037.45 2039.6 2038.88 2036.72 2061.27 2043.07 3441.14 2867.5 

23-3 2036.71 2044.34 2046.93 2048.65 2046.91 2033.8 2041.96 2039.21 2040.01 2059.51 2064.95 2970.78 3035.26 

24-3 2035.94 2053.29 2029.44 2057.35 2029.44 2040.26 2040.73 2041.92 2034.42 2078.73 2030.33 3262 2776.63 

28-3 2037.05 2033.88 2052.21 2038.1 2052.17 2039.17 2040.72 2035.96 2041.62 2037.97 2076.18 2780.14 3243.67 

29-3 2055.01 2042.54 2040.85 2046.42 2040.84 2038.92 2036.61 2038.55 2038.09 2056.75 2052.75 2975 2957.6 

30-3 2063.95 2042.6 2033.7 2046.51 2033.7 2039.45 2042.84 2038.59 2035.64 2056.78 2040.16 3071.27 3022.19 

31-3 2059.74 2040.08 2034.53 2044.11 2034.53 2043.16 2035.34 2037.92 2036.24 2050.47 2038.63 2898.3 2723.25 
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