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restriction. All existing UDVSP constructions are based on a discrete logarithm problem, which is
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1. Introduction

In user certification systems, the Certification Authority (CA) issues a signed certificate to the user.
The certificate consists of attributes of the user and the truth of certain statements about the user.
When the user wants to convince any interested verifier about the truth of the statements, the user
presents the certificate to the verifier. The verifier accepts the truth of the statements by ensuring
CA’s authentication in it. Systems that issue birth and death certificates, driving licenses, academic
transcripts, etc. are examples of user certification systems. When CA employs an ordinary signature
to authenticate a certificate, anyone who receives the certificate can easily verify the validity of the
signature. Also, it is easy in the current electronic world to copy and distribute the certificate to an
unlimited number of users and convince them that the information contained in it is true. Once the
owner of the certificate sends out his/her certificate to convince a verifier, then he/she has no control
any longer over the number of users who receive and learn the information in it. This poses a serious
threat to the certificate owner’s privacy.

Motivated by these privacy issues in certificate distribution systems, in order to convince any
designated verifier that he/she is in possession of a valid signature of the signer without disclosing the
actual signature, a designator who receives a valid signature on a message from a signer converts it into
a Universal Designated Verifier Signature (UDVS) [1]. The primary distinction between UDVS and
DVS is that, while in DVS the designation is only performed by the signer with the secret key, in UDVS
the designation is carried out by the signature holder without knowledge of the secret key. Also, UDVS
allows the designated verifier to construct a valid signature intended for him that is indistinguishable
from the one produced by the designator. As a result, the verifier is unable to convince a third party
that the assertion is true. When a signature holder owns a signature that authenticates his/her private
information, such as health data, an income summary, a tenderer’s offer in an e-auction system, etc.,
the non-transferability of UDVS enables it to protect the signature holder’s privacy.

Although UDVS has many uses, one of its major drawbacks is that the selected verifier is required
to create and certify public/private key pairs using the same public key parameter as the signer. The
verifier might not always be motivated to complete the key configuration process. This is because it
is only in the designator’s interest to demonstrate the knowledge of a signature to a verifier and not
the other way around. Let us consider the scenario stated in [2], where UDVS is less practical. Alice
has a degree from University A, and she wants to submit an online employment application. She must
persuade the employer that she is in fact the holder of the degree certificate that has been authorized by
the registrar of University A. Since she believes that anyone who has gotten the certificate may use it
for various purposes, she does not want to send her certificate. She, therefore, needs a particular kind of
digital signature that can only persuade the employer that she has a legitimate university credential. The
employer will be less likely to complete the key setup process in accordance with the public parameter
established by the university just to verify Alice’s certificate, even though it seems like UDVS would
be an excellent fit to handle her diploma verification problem. This is due to the potential cost of key
configuration using the public key infrastructure.

To solve this problem, Baek et al. proposed the idea of UDVSP [2], which is similar to UDVS
and differs from UDVS in the verification process. In UDVS, the designator provides a proof that
he/she genuinely has the signer’s signature by using the verifier’s public key. UDVSP, in contrast, does
not need the verifier’s public key and instead uses an interactive communication that the designator
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executes with the verifier to give a proof. The discrete logarithm problem on which all existing UDVSP
constructs are built are vulnerable to attacks from quantum computers. Therefore, the major objective
of this work is to provide a solution to privacy issues with certificate distribution in the quantum era
because there are no UDVSP methods that are immune to quantum computer assaults. Since code-
based cryptosystems are a leading contender for post-quantum cryptosystems, a code-based UDVSP
scheme is put forth that consists of a code-based signature, a transform algorithm, and a verification
protocol. The suggested approach would be a promising replacement for the current number-theoretic-
based schemes.

The paper is organized as follows. Related work is discussed in the following section. The
fundamental ideas of coding theory, the definition of the UDVSP system, and its security model are
briefed in Section 3. Section 4 proposes an efficient code-based UDVS proof system, and Section 5
presents its security analysis. The performance analysis and comparison of the suggested scheme are
presented in Section 6, and the paper is concluded in Section 7.

2. Related work

By adopting a bilinear group, Steinfeld et al. established the first UDVS scheme [1] and introduced
the idea of a universal designated verifier signature. Two effective UDVS techniques based on
conventional Schnorr/RSA signatures were proposed by Steinfeld et al. [3]. They expanded the
currently used Schnorr/RSA signature techniques by adding extra features to UDVS that would allow
it to make use of the key generation infrastructure and signing infrastructure that already exists. The
drawback of UDVS, however, is that the designated verifier has to generate the key pairs with regard
to the parameter selected by the signer. To overcome the above-mentioned limitation, Baek et al.
presented two UDVSP methods, one based on the Boneh-Lynn-Shacham (BLS) signature and the other
on the Boneh and Boyen (BB) signature. The difficulty of the discrete logarithm problem determines
how secure both constructions are. All the above-mentioned schemes are constructed under certificate-
based public key system. Zhang et al. introduced the first identity-based UDVS, which derives the
user’s public key from his or her identification [4]. It is an alternative to certificate-based schemes
and simplifies the key management. Yang et al. proposed UDVS in a certificateless public key
system [5] and offered the security proof in a random oracle model under the assumption of bilinear
Diffie-Hellman. In [6], Chen et al. proposed the concept of Identity-based UDVSP and developed
two Identity-based UDVSP systems employing bilinear pairings. The first system is based on the
Hess signature scheme and the other is constructed on the Cha-Cheon signature, which eliminates the
“Signature Transformation algorithm” suggested by Baek et al. in [2]. Existing UDVSP systems [2,6]
are based on the computational difficulties of solving discrete logarithm problems in a prime field’s
multiplicative group or an elliptic curve’s points over a finite field.

However, in the event of the advent of quantum computers, all of these strategies could be broken
due to Shor’s algorithm [7]. Indeed, Shor’s technique can solve both the factorization issue and the
discrete log problem in finite fields in polynomial time. As a result, utilising Shor’s algorithm [7],
the approaches in [8, 9] will no longer be secure in the quantum era. Quantum mechanisms, on
the other hand, such as the non-cloning characteristic, measurement collapse, and the uncertainty
principle, provide good foundations for unconditional security in the sense of information theory.
Gottesman and Chuang [10] pioneered quantum digital signature (QDS) research in 2001, developing a
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quantum signature technique based on quantum one-way functions. Following that, several academics
thoroughly investigated various sorts of quantum digital signature schemes. A practical quantum
designated verifier signature strategy without entanglement based on quantum key distribution
technology [11] and a quantum DVS scheme based on an asymmetric quantum public-key system [12]
are primarily explored in the subject of designated verifier signatures. To address the security risk in
the quantum era, researchers in cryptography developed new quantum-resistant primitives that appear
to be resistant to an attacker with access to a quantum computer. It is referred to as “Post-Quantum
Cryptography”, which is an active area of fundamental research making way for the creation of post-
quantum cryptosystems in the real-world. Security of post-quantum cryptosystems rely on different,
hard mathematical problems that are resistant to being solved by a large-scale quantum computer. As a
result, the cryptography community started to design post-quantum signatures that can withstand both
quantum and classical computer attacks. In the world of quantum physics, hash functions, which are
one-way functions, are sufficient for efficient and safe data transfer. Thus, it is thought that hash-based
cryptosystems are promising quantum-immune cryptosystems. Thanalakshmi et al. proposed a few
privacy providing signatures that include a quantum-resistant chameleon signature scheme [13] and
a quantum-resistant designated verifier signature scheme [14] based on a homomorphic hash function
and homomorphic pseudorandom generator. However, the creation of quantum-resistant homomorphic
hash functions is crucial for the development of identification systems and unique signatures like the
Chameleon signature and DVS signature in a quantum environment. As code-based signatures are very
secure against classical and quantum attacks, they are considered to be another promising alternative
to classical digital signatures. Also, code-based signatures come with many strong features apart from
being secure from quantum attacks. They include efficient, executable and simple operations such
as matrix-vector multiplications. Hence, in comparison to other number-theoretic-based signatures,
its signature creation and verification methods are very quick and simple to deploy. Therefore,
it is considered to be a practical option to create digital signature systems based on codes. The
identity-based signature system [15], ring signature system [16], blind signature system [17], threshold
ring signature system [18, 19], one-time signature system [20], signcryption system [21], undeniable
signature system [22] and strong designated verifier signature system [23] are few kinds of code-based
signature systems. Additionally, employing hard coding theory problems, the author of this research
work presented the designated verifier signature [24] and chameleon signature [25]. They determined
that the code-based scheme [25] provides a significantly smaller signature size than the hash-based
scheme [13]. In this study, the author proposes the first quantum-resistant UDVSP system based on
syndrome decoding a challenging coding theory problem. The author also examines the system’s
security in the context of the random oracle model and establishes that it is resistant to forgery and
impersonation attacks.

3. Preliminaries

The UDVS proof system’s formal definition and its security requirements are described in this
section along with some preliminary discussions of coding theory.
3.1. Coding theory preliminaries

This section, recalls some of the basic definitions of coding theory [24] that are required for the
construction of the proposed schemes.
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Definition 1. (Linear code) Let Fq be a finite field and a linear code C [n, k] is a linear subspace of
Fn

q which has the dimensions k and n. The words are the elements of Fn
q, whereas codewords are the

elements of C.

Definition 2. (Hamming distance) Let C be a linear code over Fq. The number of locations in which
any two codewords differ is the Hamming distance between them.

Definition 3. (Hamming weight) Let C be a linear code over Fq. The number of nonzero coordinates
of a codeword determines the codeword’s Hamming weight.

Definition 4. (Minimum distance) Let C be a linear code over Fq. The smallest Hamming distance
among all codewords is the minimal distance d of C.

A code’s capacity for error correction depends on its minimum distance. Let d be the minimum
distance in C. Then C can correct up to t = ⌊ d−1

2 ⌋.

Definition 5. (Generator matrix) A generator matrix of a linear code C [n, k] is a k×n matrix G whose
row vectors form a basis for the vector subspace C. Thus, C =

{
mG ∈ Fn

q : m ∈ Fk
q

}
.

Definition 6. (Parity-check matrix) A parity-check matrix of a [n, k] linear code C is a (n − k) × n
matrix H whose rows serve as the basis of the orthogonal complement of the vector subspace C. Thus,
C =
{
c ∈ Fn

q : HcT = 0
}
.

Definition 7. (Syndrome) Given a parity-check matrix H, the syndrome s ∈ Fn−k
q of any vector x ∈ Fn

q

is defined as s = HxT .

Definition 8. (Binary syndrome decoding problem ) Given an (n − k) × n parity-check matrix H for a
[n, k] linear code C over F2, a vector s ∈ Fn−k

2 , and an integer t > 0, find a vector e ∈ Fn
2 of weight

wt(e) ≤ t such that HeT = sT . The syndrome decoding problem is denoted by S D(n, n − k, t).

Definition 9. (l− S D(n, n− k, t)) The problem of solving l simultaneous instances of the S D(n, n− k, t)
is denoted by l − S D(n, n − k, t).

Definition 10. (Syndrome decoding problem assumption) For a [n, k]-code, a probabilistic algorithm
D is said to (τ, ϵ)-break the S D(n, n− k, t) if it can decode the syndrome sT = HeT into an error vector
e with weight wt(e) ≤ t, with probability of at least ϵ.

3.2. Universal designated verifier signature proof system

There are three participants in a UDVSP system: a signer, a designator (the person who holds the
signature), and a designated verifier. A message’s signature is created by the signer using the secret key.
Following the creation of the key pair, the signer using the secret key signs a message and transmits it
to the designator. It’s crucial to send the signature through a secure connection to maintain the secrecy
of the designator.

The designator utilizes a random mask to construct a changed signature that covers the original
signature after receiving a valid message-signature pair from the signer. Using an interactive protocol,
the designator then persuades the chosen verifier that the changed signature was created using the
signer’s original signature. Formal definition of the UDVSP system in [2] is given below:
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The following four polynomial-time algorithms, together with a protocol, constitute a UDVSP
system [2].
Key Generation (1κ): A probabilistic polynomial-time algorithm that generates a signer’s public/secret
key pair (pks, sks) using the security parameter κ as input. It is represented by (pks, sks) ← KG(κ).
Also, it produces the designator’s key pair (pk, sk).
Sign: A probabilistic procedure that, given a message M and a secret signing key sks, outputs a
signature σ on M. It is represented by σ← S ign(sks,M).
Verify: A deterministic procedure that returns Accept when the signer’s public key pks, the message
M, and the signature σ are all valid and Re ject otherwise. It is represented by d ← Veri f y(pks, σ,M),
where d ∈ {Accept,Re ject}.
Transform: A probabilistic process that creates and outputs a transformed signature employing the
signer’s public key pks, the input signature σ, and the designator’s secret mask sk. It is represented by
σ← Trans f orm(pks, sk, σ).
IVerify: This technique for interactive verification involves a designator P and designated verifier
V. The message M, the transformed signature σ, and the signer’s public key pks are the usual
inputs for P and V. The secret mask sk that is utilized to produce σ is the private input of
P. There is no private input available for V. At the conclusion of the protocol, P attempts to
persuade V that σ has been produced using the signer’s valid signature σ and secret information
sk. This protocol’s result is Accept when σ is a valid signature else Re ject. It is represented by
d ← IVeri f y[P(sk, pks, σ,M)↔V(pks, σ,M)] where d ∈ {Accept,Re ject}.

Figure 1. A UDVSP systems.

In a UDVSP system stated in Figure 1, the signer executes the Key Generation and Sign algorithms
while the designator does the Verify and Transform algorithms. IVerify protocol is run between the

AIMS Mathematics Volume 8, Issue 8, 18234–18250.



18240

designator and the designated verifier. It is to be noted that Verify is not publicly verifiable. Also, two
consistency properties are defined in [2] for a system with UDVSP. The first property indicates that
the Verify algorithm should accept the signer’s signature σ on a message M as authentic. According
to the second property, the IVerify protocol should accept the transformed signature σ created by the
designator using the legal signature σ and the secret mask sk as valid.

3.3. Security notions of universal designated verifier signature proof system

The security concepts for the UDVSP system are summarized in this section and are found in [2].
The first security criterion of the UDVSP system requires that a signature provided by the signer be
existentially unforgeable under an adaptive chosen message attack. As in [2], unforgeability against
selected message attacks is defined in the following manner:

Definition 11. (Unforgeability against chosen message attack)

Let κ be the security parameter and the algorithms KG, Sign and Verify be used to generate UDVSP.
Take the subsequent experiment Exp f−cma(κ) into consideration. A polynomial-time attacker A sends a
new message M∗with a legitimate signature σ∗ after making inquiries to the signing oracle S ign(sks, .)
in the experiment Exp f−cma(κ). If the oracle S ign(sks, .) has not yet been queried for M∗, then Verify
Accepts and outputs 1, else it Re jects and outputs 0.
Experiment (Exp f−cma(κ)) :
KG(κ) computes (pks, sks)
AS ign(sks,.)(pks) computes (M∗, σ∗)
Veri f y(pks,M∗, σ∗)
If 1← Veri f y(pks,M∗, σ∗) and M∗ has not been questioned by S ign(sks, .)
output 1
Else
output 0

The adversary A’s benefit in the above experiment is defined as Adv f−cma
A (κ) = Pr[Exp f−cma(κ) =

1]. Under a chosen message attack, the UDVSP system’s underlying signature scheme is existentially
unforgeable, if Adv f−cma

A (κ) is negligible.
The UDVSP system’s second primary security need is that the IVerify protocol should resist against

impersonation attack. In other words, a UDVSP system will stop an attacker from impersonating a
trustworthy designator who receives a valid signature from a signer even if they do not obtain a valid
signature from the signer. Type-1 and Type-2 attacks are the further classifications for impersonation
attacks. In a Type-1 attack, an attacker who is aware of the transformed signature, takes part in the
IVerify protocol as a dishonest designated verifier and repeatedly communicates with the truthful
designator. The attacker then makes an attempt to fool another honest designated verifier by pretending
to be the honest designator. The following is the description for security against the Type-1 attack
in [2]:

Definition 12. (Security against Type-1 impersonation attack)

Consider the definitions in Definition 11. Consider an attacker named A that operates in polynomial
time and consists of two sub-algorithms termed V′ and P′, which stand for a cheating designated
verifier and a cheating designated designator, respectively. Assume that P stands for an honest
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designator and a function ConvIVeri f y that creates a transcript of the IVerify protocol dialogue between
P and V′. P′s and V′s random coins are represented by the random variable T , which is written as
T ← ConvIVeri f y[P ↔ V′]. The following is a formal description of this experiment Expim−type1(κ):
Experiment Expim−type1(κ) :
KG(κ) computes (pks, sks)
S ign(sks,M) computes σ
Trans f orm(sk, pks, σ) computes σ
ConvIVeri f y[P(sk, pks, σ,M)↔V′(pks, σ,M)] for i = 1, ..., p(κ) computes Ti

IVeri f y[P′((T1, rV
′

1 ), ..., (Tp(κ), rV
′

p(κ)))↔V(pks, σ,M)]
output 1 if it Accepts
Else
output 0

In the experiment Expim−type1(κ), first, a signer’s key pair (pks, sks) is constructed for a a security
parameter κ. P and A = (V′,P′) are then each given access to the public key pks. Then a signature
sigma is generated on an arbitrarily chosen message M. Based on pks, a secret mask sk is selected,
and sk is then used to obtain a transformed signature σ for σ. A = (V′,P′) is then given σ , P is
given sk andV′ now communicates with P p(κ) times in the IVerify protocol, where p(.) stands for a
polynomial-time computable function. In the IVerify procedure, after gaining access to the transcripts
of these interactions and the random coins that V′ used in them, labelled Ti and rV

′

i respectively for
i = 1, ..., p(κ), P′ tries to impersonate the honest designator P to an honest designated verifierV.

Then, in the experiment, A′s advantage is Advim−type1
A (κ) = Pr[Expim−type1(κ) = 1]. If Advim−type1

A (κ)
is too small in κ, the UDVSP system is considered to be secure against impersonation under Type-1
attack. A Type-2 attack involves the attacker trying to create a transformed signature on their own,
without using any previously acquired transformed signatures, and uses it to pretend to be an honest
designated verifier in the IVerify procedure. According to the study of Baek et al. (2005) in [2], the
definition for security against Type-2 attacks is as follows:

Definition 13. (Security against impersonation under Type-2 attack)

Consider the definitions as in Definition 11. Let A be a polynomial-time adversary. Take into
account the experiment Expim−type2(κ). In this example, a signer’s key pair (pks, sks) is created using
the security parameter κ. A random message M is then supplied to A, A then independently creates
a designator’s secret mask sk′, a modified signature σ′, and A participates in the IVerify protocol
along with an honest designated verifier V . The following is a formal description of this experiment
Expim−type2(κ):
Experiment Expim−type2(κ) :
KG(κ) computes (pks, sks)
A(sk′, pks,M) computes σ′

IVeri f y[A(sk′, pks, σ′,M)↔ V(pks, σ′,M)]
output 1 if it Accepts
Else output 0

Therefore, in the experiment mentioned above, the benefit of A is Advim−type2
A (κ) =

Pr[Expim−type2(κ) = 1]. The UDVSP system is regarded as secure against impersonation under Type-2
assault if Advim−type2

A (κ) is too small in κ.
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4. Proposed code-based universal designated verifier signature proof system

The suggested UDVSP system is made up of four sub-algorithms, namely, KG, Sign, Verify and
Transform and a verification protocol IVerify as defined in [2]. The Sign algorithm uses mCFS
algorithm [26]. By adding a random mask, the transform algorithm converts the publicly verifiable
mCFS signature to an unverifiable signature. Through five passes of interaction, the IVerify protocol,
the prover must persuade the authorized verifier that the transformed signature was created from a
legitimate signature. The system’s sub-algorithms and protocols are each explained below:
Key generation (1κ): Select the parameters m and t such that the complexity of the t decoding in a
Goppa code with length n = 2m and dimension k = n− tm is at least 2κ. Pick a Goppa code that corrects
errors in t and a parity check matrix H of order (n − k) × n. Allow the code to remain hidden. Select a
permutation matrix R with order n × n and a non-singular matrix U with order (n − k) × (n − k )
randomly. Output signer’s public key pks = Hs where Hs = UHR and the secret key sks = (U,H,R).
Choose a matrix P ∈ Fk×n

2 such that each row has a weight not exceeding t. Calculate V of order
(n−k)×k using the formula V = HsPT . Output (Hs,V) as designator’s public key and P as designator’s
private key. Solving an instance of k − S D(n, n − k, t) is identical to recovering P from Hs and V . Let
g : {0, 1}∗ × Fn−k

2 → Fn−k
2 \{0} define a hash function called g.

Sign (sks,M): The signer picks a value r in {1, ..., 2n−k} randomly and evaluates u =

RT DecodeH

(
U−1(g (M, r)T )

)
. The process is repeated with another r until

(
u , ⊥&HsuT = g (M, r)T

)
if u =⊥.
Verify (pks,M, σ): The verifier checks whether HsuT = g (M, r)T . If the equality is true, then Accept
is output. Otherwise, Re ject is output.
Transform (sk, pks, σ): The secret key sk = (e, P), where e is an element in Fk

2. Compute y = u ⊕ eP
such that wt(y) ≤ t. Output the transformed signature σ = (y, r).
IVerify: On receiving the transformed signature σ = (y, r), the designated verifier V checks whether
wt(y) ≤ t and computes Y as HsyT ⊕g (M, r)T = YT . The verifier accepts the transformed signature only
when the designator P proves the knowledge of e that satisfies the relation VeT = YT to the designated
verifierV through IVerify protocol. P proves the knowledge of e toV by using three blending factors
that have the advantage to hide the secret mask e: a random n-bit word x , a random permutation π over
{1, ...., n} and the private key P of order k × n. Here, π(P) denotes the permutation over n columns of

matrix P. Hence, the row weights of P and π(P) are the same. Also, ∀α ∈ Fk
2,π

R
← S n, π(αP) = απ(P).

The IVerify protocol that runs between P and V is denoted by P((e, P), (Hs,V), σ,M) ↔

V((Hs,V), σ,M). The following is a description of it.

1) P computes the commitments c1 and c2 as c1 = h(π,Hs(x)T )
c2 = h(π(eP ⊕ x), π(P)) and sends toV.

2) V chooses α ∈ Fk
2 at random and passes it to P.

3) P computes β = π((α ⊕ e)P ⊕ x) and sends toV.

4) Now,V sends an arbitrary challenge b ∈ {0, 1} to P.
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5) P sends π, if b = 0
P sends π(P), if b = 1

6) IfV receives π, thenV checks whether the commitment c1 = h(π,Hsπ
−1(β)T ⊕ VαT ⊕ YT ).

If it receives π(P), then V checks whether the commitment c2 = h(β ⊕ απ(P), π(P)). Also, it
checks whether each row of π(P) has weight ≤ t.
If every check is successful, Accept is output; if not, Re ject.

Prover P(sk, pksσ,M) VerifierV(pks, σ,M)
Let h : Fn

2 × {0, 1}
∗ → Fn

2
be a hash function.

x
R
← Fn

2, π←S n
c1 = h(π,HsxT )
c2 = h(π(eP ⊕ x), π(P))

c1,c2
−−−−−−−−−→

α
←−−−−−−−−− α

R
← Fk

2

β← π((α ⊕ e)P ⊕ x)
β

−−−−−−−−−→
challengeb
←−−−−−−−−− b

R
← {0, 1}

i f b = 0
π

−−−−−−−−−→

Check
c1 = h(π,Hsπ

−1(β)T ⊕ VαT ⊕ YT )

i f b = 1
π(P)

−−−−−−−−−→

Check
c2 = h(β ⊕ απ(P), π(P))
checkwt(π(P)) ≤ t

Figure 2. IVerify protocol.

The designator P persuades the designated verifierV that the modified signature σ is derived from
a legitimate signature σ without disclosing sk via the IVerify protocol shown in Figure 2. Additionally,
it should be noted that the IVerify protocol does not require the selected verifier to do setup or compute
the private or public key.
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5. Security analysis

Completeness: The proposed UDVSP scheme clearly meets the completeness property, because any
honest prover who is familiar with the blended secret mask e, the permutation π and a legitimate secret
u can successfully respond to any question posed by the honest verifier at any time. Consequently, it is
vital to assess the two key security needs of the scheme, including the unforgeability of the signature
and the resistance against impersonation attacks. As the Sign algorithm in the proposed UDVSP system
uses mCFS algorithm, it has been demonstrated that the signature is unforgeable to chosen message
attacks in the random oracle paradigm [26]. Therefore, it is sufficient to evaluate the proposed scheme’s
security against impersonation attacks.

According to the following theorem, the suggested UDVSP system is secure against impersonation
under Type-1 attack:

Theorem 1. In the random oracle model under Type-1 attack, the code-based UDVSP system is secured
against impersonation on the assumption that SD is hard.

Proof: Let A = (V′,P′) stand for an impersonator attempting to use a Type-1 attack to compromise the
code-based UDVSP system. Let C be the challenger that runs the key generation algorithm as follows:
The signer’s public key is chosen at random by C and is a (n − k) × n binary matrix called H′ Let C be
the challenger that executes the following key generation algorithm: the signer’s public key (n− k)× n
binary matrix H′ is chosen at random by C. Then C picks a matrix V ∈ F(n−k)×k

2 randomly and gives
(H′,V) to the adversary A as the prover’s public key. Here, (H′,V) is an instance of K −S D(n, n− k, t).
When A performs the impersonation attack, C tries to output P∗ with row weight not exceeding t such
that H′P∗T = V .

C simulates the hash oracle g as follows: for the query (M, r), C chooses an element u ∈ Fn
2 with

wt (u) ≤ t randomly and computes sT = H′uT . It stores (u, s) and returns s as the response for g(M, r).
C then picks an element e ∈ Fn

2 randomly with wt (e) ≤ t and enumerates y = u ⊕ e such that wt(y) ≤ t
and gives (y, r) to A as transformed signature on M. The transformed signature created in the previous
simulation has the exact same distribution as the actual structure.
Since,

H′yT ⊕ g (M, r)T = H′(u ⊕ e)T ⊕ g (M, r)T

= H′uT ⊕ H′eT ⊕ g (M, r)T

= H′eT

= YT

The IVerify protocol is then simulated by C using an honest designator P and verifierV′ and with
the knowledge of e. For an arbitrary challenge b ∈ {0, 1}, C answers as follows:

For b = 0, C sets a random string to the commitment c2. C randomly chooses x, π and computes
h(π,H′(x)T ) and sets as c1. It gives the commitment c1, c2 to V′. By simulating the verifier, C gets
α ∈ Fk

2, and computes β = π(αP ⊕ e ⊕ x) for some P satisfying the equation H′PT = V and sends to
V′. Here, P need not necessarily satisfy that each row weight ≤ t. C computes β such that it satisfies
c1 = h(π,Hsπ

−1(β)T ⊕VαT ⊕H′yT ⊕g (M, r)T ). Thus, for b = 0, C makes a simulation which is identical
to the results of a fair interaction.
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For b = 1, C sets a random string to the commitment c1. It chooses x, e at random and picks
a random matrix P whose row weight does not exceed t and computes h(π(e ⊕ x), π(P)) and sets as
c2. It gives the commitment c1, c2 to V′. By simulating the verifier, C gets α ∈ Fk

2, and computes
β = π(αP ⊕ e ⊕ x) and sends toV′. C computes β such that it satisfies c2 = h(β ⊕ απ(P), π(P)). Thus,
for b = 1, C makes a simulation that is identical to the results of a fair interaction.

It is clear that when C produces the commitments for some b = d where d ∈ {0, 1} and receives the
same d as challenge then C succeeds in the simulation, else it fails in the simulation. Hence, C has a
50 percent chance of producing a successful simulation. After performing p(κ) times the execution of
the IVerify protocol, the dishonest verifier V′ attempts to mimic the honest designator P to an honest
designated verifier V in the protocol.

Let us consider the situation when impersonation succeeds. When a cheating prover P′ sets the
commitments c1 and c2 he/she should be prepared to answer any query (α, b) of the verifier. As α ∈ Fk

2
and b ∈ {0, 1}, there are (2k)2 possible queries. If P′ is able to give correct answers for any two values
of Fk

2 for same commitments c1 and c2, then there exists at least two values say α , α
′

for which the
queries (α, 0), (α, 1), (α

′

, 0) and (α
′

, 1) are answered correctly.
Now, let (β, π) be the response sent for the query (α, 0),

(β, z) be the response sent for the query (α, 1),
(β
′

, π
′

) be the response sent for the query (α
′

, 0),
(β
′

, z
′

) be the response sent for the query (α
′

, 1).
Here the value z with wt(z) ≤ t is sent in the place of π(P) (similarly z

′

represents the expected value
π
′

(P)). Due to the fact that β is transmitted before the bit challenge b, the same β is used for (α, 0) and
(α, 1) (similarly β

′

for (α
′

, 0) and (α
′

, 1)). With both queries (α, 0) and (α
′

, 0) ((α, 1) and (α
′

, 1) ), the
commitment c1 and c2 are the same.
Hence,
h(π,H′π−1(β)T ⊕ VαT ⊕ YT ) = c1 = h(π

′

,H′(π
′

)−1(β
′

)T ⊕ V(α
′

)T ⊕ YT )
h(β ⊕ αz z) = c2 = h(β

′

⊕ α
′

z
′

z
′

).
This implies that either P′ makes collisions on the hash function or the arguments of the hash

function are equal. As h is collision-resistant, the following equalities exist.

π = π
′

(5.1)

H′π−1(β)T ⊕ VαT ⊕ YT = H′(π
′

)−1(β
′

)T ⊕ V(α
′

)T ⊕ YT (5.2)

β ⊕ αz = β
′

⊕ α
′

z
′

(5.3)

z = z
′

(5.4)

From Eqs (1) and (2),
H′π−1(β ⊕ β

′

)T (α ⊕ α
′

)T−1
= V (5.5)

From Eqs (3) and (4),
(α ⊕ α

′

)−1(β ⊕ β
′

) = z (5.6)

Equations (5) and (6) imply
H′π−1zT = V (5.7)

Hence, P = π−1z with wt(π−1z) = wt(z) ≤ t constitutes a secret key for the public key (H′,V).
When an attacker impersonates the real prover and answers correctly the queries (α, 0), (α, 1), (α

′

, 0)
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and (α
′

, 1), the secret key is discovered. When at least 4 queries are correctly replied out of (2k)2
possible queries, an instance of k − S D(n, n − k, t) can be solved. Hence, when the cheating prover
manages to answer correctly to the verifier with probability ≥ 2

2k , the SD problem can be solved with a
high degree of probability by a machine with polynomial time probabilistic behavior.
Corollary: The code-based UDVSP system in the random oracle model is protected against Type-2
attack on the assumption that SD is hard.
Proof: In a Type-1 attack, an attacker engages in repeated interactions with an honest designator
while acting as a dishonest designated verifier in the IVerify protocol. The attacker tries to appear to
other trustworthy designated verifiers as an honest designator using the knowledge of the information
they have obtained. Contrarily, a Type-2 assault just ignores the previously acquired altered signature
and produces a fresh proof to pose as an honest designator to a trustworthy designated verifier in the
IVerify protocol. Theorem 1 ensures that even after repeatedly dealing with an honest designator,
a Type-1 attacker cannot obtain any meaningful information to pass for them, which infers that the
advantage to impersonate an honest designator by Type-2 attacker and by Type-1 attacker is the same.
Hence, the security of the scheme against the impersonation under Type-1 attacker is considered.
Soundness: It is ensured by Theorem 1.

The anonymous credential system is another part of UDVS that is connected [28–30]. As stated
in [1], this area of research, however, is more concerned with user privacy issues such “selective
disclosure” of attribute information and “unlinkability” of user transaction data. Our work and work
on UDVS [1–4] (in general) focuses more on offering an effective method of persuading designated
verifiers that a signature holder actually has a legitimate signature from the original signer. As a
result, we have avoided using complicated zero knowledge proof procedures, such those seen in many
credential systems [28–30].

6. Performance analysis and comparison

Stern’s identification scheme [27] can be used to construct the IVerify protocol. Then, the soundness
of error will be 2/3, whereas in the proposed five-pass IVerify protocol the dishonest prover has only a
50% chance of fooling the verifier and passing the verification test. Here, the soundness of error is 1/2.
Thus, by using the IVerify protocol, the soundness of error can be reduced from 2/3 to 1/2. When
the protocol runs several times, the probability that the dishonest prover succeeds is very low without
knowing the secret key. As a result, any desired level of security can be attained in fewer rounds and
thereby reducing the communication complexity.

The proposed UDVSP’s performance is contrasted with that of the current UDVSP systems.
Consider a Goppa code [n, k], where n = 2m, k and t = n−k

m are the length, dimension and error-
correcting capability of the code. For a security parameter κ, the complexity of t-decoding is least 2κ.
These parameters are used to calculate all aspects of the scheme, including the length of the signature
and the algorithmic complexity required to generate it. The signature in the proposed UDVSP system
is a pair (u, r), where u is a bit vector of length n and weight t , which can be stored in only log2

(
n
t

)
bits,

and r requires mt bits. Consequently, the signature’s size is log2

(
2m

t

)
+mt. The production of signatures

takes t! decodings, each requiring m3t2 bit operations. The cost of generating a signature is therefore
t!(m3t2). One syndrome computation, requiring m3t2 bit operations, is needed for verification. As a
result, the cost of creating a signature is t!(m3t2).
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Comparison of computational costs of the proposed UDVSP transformed signature generation,
IVerify protocol and transformed signature length with that of some existing UDVSP are given in
Table 1. The transformed signature consists of two elements (y, r) where y is an n bit vector of weight
t and r is an mt bit vector. Consequently, log2

(
2m

t

)
+ mt is the size of transformed signature. The

creation of a transformed signature, which involves one matrix-vector multiplication (MVM), takes
kn bit operations. IVerify protocol requires 6 matrix-vector multiplications HsyT , HsxT , eP, (α + e)P,
Hsπ

−1(β)T , and VαT where Hs ∈ F
(n−k)×n
2 , V ∈ F(n−k)×k

2 , P ∈ Fk×n
2 , y, x, β ∈ Fn

2, α ∈ Fk
2 with wt(y) ≤ t.

Hence, its computational cost consists of (n−k)t+(n−k)n+kn+kn+(n−k)n+kn < 3(n−k)n+3kn < 3n2

bit operations. The advantage of the proposed UDVSP is that it is quantum-safe since the security of
it depends on the hardness of SD. Also, compared to the UDVSP-BB and UDVSP-Hess schemes, the
transformed signature length is shorter. Although the proposed UDVSP system’s transformed signature
length is marginally longer than the UDVSP-BLS scheme, the transform signature generation and
IVerify protocol of the proposed scheme are faster compared to the UDVSP-BLS scheme as it requires
only matrix multiplications without any exponentiation and complex pairing operations. Comparison
of proposed UDVSP with existing UDVSP is given in Tables 1 and 2.

Table 1. Comparison of signatures in UDVSPs.

Scheme Hard
Problem

Key gen.
Time

Sign Time Verify Time
Sig.
Length
(bits)

BLS [2] CDH 1exp 1exp 2Pairing 160
BB [2] SDH 2exp. 1exp. 2 Pairing + 2exp. 320
Hess [6] CDH 1 Multip. 1 Pairing 2 Pairing + 1exp. 1120
mCFS [26] SD 2MVM Decoding 1 MVM. 270

CDH: Computational Diffie-Hellman, SDH: Strong Diffie-Hellman.

Table 2. Comparison of transformed signatures in UDVSPs.

Scheme Trans. Time IVerify Time
TSig. Length
(bits)

QS

UDVSP-BLS [2] 1exp.
2 pairing
+3exp. 160 No

UDVSP-BB [2] 1exp.
2pairing
+3exp. 320 No

ID-UDVSP-Hess [6] 1 Multip.
2pairing
+3exp. 1120 No

Prop.UDVSP-mCFS 1MVM. < 3exp. 270 Yes

QS: Quantum Safe, TSig: Transform signature.

7. Conclusions

In order to address the privacy concerns raised by the distribution of signed digital certificates
in the quantum era, this work proposes a post quantum UDVSP scheme based on coding theory.
The proposed system eliminates the disadvantage of UDVS, which requires a designated verifier to
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generate a key pair with the signer’s public key as a parameter in order to verify the designator’s claim.
The comparison of the proposed system to the current UDVSP reveals that the proposed system is
very fast in the signing and verification process, as well as resistant to quantum computer attacks.
Furthermore, when using the random oracle architecture, the system is protected against forgeability
and impersonation threats, according to the security study.
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