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Abstract: The major objective of this scheme is to investigate both the existence and the uniqueness
of a solution to an integro-differential equation of the second order that contains the Caputo-Fabrizio
fractional derivative and integral, as well as the g-integral of the Riemann-Liouville type. The equation
in question is known as the integro-differential equation of the Caputo-Fabrizio fractional derivative
and integral. This equation has not been studied before and has great importance in life applications.
An investigation is being done into the solution’s continued reliance. The Schauder fixed-point theorem
is what is used to demonstrate that there is a solution to the equation that is being looked at. In
addition, we are able to derive a numerical solution to the problem that has been stated by combining
the Simpson’s approach with the cubic-b spline method and the finite difference method with the
trapezoidal method. We will be making use of the definitions of the fractional derivative and integral
provided by Caputo-Fabrizio, as well as the definition of the g-integral of the Riemann-Liouville type.
The integral portion of the problem will be handled using trapezoidal and Simpson’s methods, while
the derivative portion will be solved using cubic-b spline and finite difference methods. After that,
the issue will be recast as a series of equations requiring algebraic thinking. By working through this
problem together, we are able to find the answer. In conclusion, we present two numerical examples
and contrast the outcomes of those examples with the exact solutions to those problems.
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1. Introduction

Mathematicians and physicists have become increasingly interested in fractional calculus and
quantum calculus (g-calculus), which provide an effective way to describe a wide range of real-world
dynamical phenomena encountered in scientific fields and engineering. In addition, they have paid
attention to the study of partial differential equations because they are very useful in modelling
practical phenomena; for example, for time-fractional stochastic models, see [1, 2], for the time
fractional chemotaxis model, see [3], and for the time fractional Rayleigh-Stokes equation, see [4].
Researchers find it difficult to obtain direct solutions to most fractional and g-fractional differential
equations. As a result, the researchers are interested in studying the existence and uniqueness of
solutions to various fractional integro-differential equations. Researchers have obtained numerous
results concerning the existence and uniqueness of solutions to a number of fractional
integro-differential equations [5, 6]. Furthermore, many researchers are interested in the existence of
solutions to g-fractional integro-differential equations [7, 8]. Simultaneously, numerous numerical
solutions to many types of integro-differential equations have been obtained [9-11]. The authors
presented analytical and numerical solutions to some ordinary integro-differential equations, as well
as fractional q integro-differential equations with nonlocal and initial conditions [12, 13]. We now
investigate the nonlocal fractional q integro-differential equations shown below analytically and
numerically:

80 = F(1.6/0. 19 0,60, D60 Lt 6 0)). 1€ 0,1), (L1)
(-qp ) o) =0, #O)=£ pe1], (1.2)
x=0

where CF1%¢'(t) , “F DPo¢(t) are the Caputo-Fabrizio fractional integral and derivative of order a, and
Bo for the unkwon function respectively, 1)° is the Riemann Liouville type’s fractional g-integral of
order yy > 0, o,¢ are constants, and ¢, @p,Bp € (0,1). We use the definitions of the integral and
derivative fractional Caputo-Fabrizio to prove the existence, uniqueness, and continuous dependence
of the solution. Then, we solve the proposed equation numerically by using two methods: The first is
the merging of the cubic b-spline and Simpson’s method, and the second is the merging of the finite
difference and trapezoidal methods. Both the cubic b-spline and finite difference methods will be
applied to the derivative parts of the equation, and both Simpson’s method and the trapezoidal method
will be applied to the integral part. These methods will transform the proposed equation into a system
of algebraic equations. Therefore, we can obtain the solution to the problem by solving this system
together.

This paper is structured as follows: In Section 2, we introduce some key definitions and lemmas
that will be needed throughout our paper. We give the main results in Section 3. Section 4 contains an
overview of the numerical techniques that will be employed in our paper. In Section 5, we discuss the
existence of the solution to some examples, and then we will get the numerical solution to them using
the cubic-Simpson’s method and the finite-trapezoidal method. Finally, we introduce the conclusion
section.
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2. Basic concepts

Some key definitions and lemmas related to g-calculus and Fractional calculus will be introduced.

Definition 2.1. [/4] We can define the Caputo—Fabrizio fractional derivative of order 0 < & < 1 of
any function (¢t) € Cla, b] as follows:

Y(&)

:
“% =N (Vd
—&J ¢ (§)dg,

"D =
where  is a normalization function with the property that ¥(0) = (1) = 1.
Later, the above Caputo-Fabrizio fractional derivative is modified by Losada and Nieto [15] to
become

ROR —(22(18_) ‘f;f ) eI Gds.
They demonstrated that (&) = 57 8, forany & € (0, 1). Hence, we get
TP =g fo TN (). @.1)
Also, they showed that
”ﬁmo:a—amm+al:w@m, (2.2)

where €T IA(1) is the fractional integral of order & for the function U(t).

Definition 2.2. [16, 17] Assume that U(t) defined on [0, 1], g € (0, 1), & > 0. Then, we can define the
fractional g-integral of the Riemann-Liouville type as

(IEW(0) = { . e=0 23)
m© (=49 W, £>0, re0.1],
where (1 — )&
I, = a-CIW g€ 0.1),
and satisfy T(E+ 1) = [E),T,(E),  where [8],= 1L,
SO T o —a'y)
w-02=1, (-p= H()(x —g,leN, (-9 =y H TR
Lemma 2.3. [16] Using g-integration by parts, we get the following:
e
U210 = ——— &> 0. (2.4)

r,E+1)

For more details on the properties of q fractional calulus, see [18, 19].
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3. Main results

Lemma 3.1. Assume thatv = (1 — q)p X", q*. The solution of (1.1) and (1.2) is obtained as follows:

n q'p 4
¢(0) = V_I[Q ~(l-qp ) ¢ fo z(g)dg] + fo «$)ds;, (3.1)
x=0
where,

t S m q"p
)=+ [ T{s.x0.0 -+ a0 [ s o--ap Y [ o]
x=0

3.2)
+ fg z2(s)ds, 1 fc e_'%o(g_s)z(s)ds, Iu(s, z(g‘)))dg‘, t€(0,1],
0 1 =Bo Jo 1
Proof. Integrating (1.1) first time from 0 — ¢, we obtain
(1) = ¢(0) + fo T (5006, 16 (6),6(6), F DP (6. [Pt ) Jds, 1€ (O, 11,
Using (2.1) and (2.2), we get
f S
¢'(1) =¢'(0) + f 7"(9 ¢'(), (1 — ap)d’(s) + o f ¢’ ($)ds, $(s),
] Og , 0 (3.3)
= fo & TRE Y (s, [Puls # ))ds, 1€ .11
Put ¢’(¢) = z(¢) in (3.3), we get
t S
z(t) =¢ + f F (g, 2(¢), (I — ap)z(s) + ap f z(s)ds, ¢(s),
. . N 0 (3.4)
T fo e T Vz(s)ds, IS, z(g)))dg, te(0,1],
where )
¢(1) = ¢(0) + fo z2e)ds, 1€ (0,1], (3.5)
using (1.2), then
m m m q'p
(=0 Y a'0(ap) = 601 ~a)p Y g+ (1=ap )" [ (s
x=0 x=0 x=0
Therefore,
" q'p
$(0) = v‘l[@ ~(l-g)p ) q" fo z(g)dg]. (3.6)
x=0
Now, we obtain (3.1) and (3.2) from (3.4)—(3.6). The proof is completed. O

Theorem 3.2. Let the problem (1.1) and (1.2) satisfy the following conditions:
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1) F:00,11 xR = R, u:[0,1] x R — R are measurable and continuous for almost all t € [0, 1].

2) There exist functions A (1), Ax(t) € Li[0, 1] and a positive constants Ny, N, > 0, such that for any
¢,2,{,u,v € R, we have

17, ¢, 2, {, u, v)| < A1) + Nilgl + Nzl + Nilg] + Nilul + Nifvl,

lu(t, 2)| < Ax(t) + Nolzl.

3)
! !
sup f Ai(g)ds < ay, sup f IZOAZ(g)dg < .
1e[0,11 Jo tel0,11 Jo
4)
By
Bo = (Bo - 1)(@130-‘ - 1) NN,
4N; + N, 5 + <1
B (yo+ DI'y(yo + 1)

Then, (3.2) has at least a solution z(t) € C[0, 1].
Proof. Define the operator H associated with (3.2) by

Hz(r) =€ + fo f(g,z<g>,<1—ao>z(g)+ao f; 2(s)ds,

mn q'p S
V_I[Q ~(l-gp ) 4" f z(g)dg] + f 2(s)ds,
x=0 0 0

1 s ) o)
1 ﬁ e T Z(S)ds’ Iq ﬂ(ga Z(g)) dg
- P00 Jo
-1
Let &, = {z(r) e R : ||zllc < r}, where r = TR
ﬂo-(ﬁo-l)[eﬁo_l ‘1]
NN
1—(4N1 +N; [% +(yo+1)1Lq(270+1))

Thus, for z(¢) € 9,, we get
!
0
m q'p ¢
vile-a-an ) [ aods|+ [z
x=0 0 0

1 QL o
— [ ez pruts. o )]
- 0

i+ f
0
m q'p S
v‘l[g—(l—q)qu" f z(;)d§]+ f 2(s)ds,
x=0 0 0

1
1 =P

IHz(Dllc < ‘§+fT(S‘,Z(G),(l—CVo)Z(S‘)+C¥of z(s)ds,
0

IA

75,2060, (1 = a0)e(6) + ay fo «(s)ds,

S B
f ¢ TR (5)ds, 1°u(s, z(g)))‘dg
0
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18211

IA

€1+ fo [Al(g) + Nilz(O)f + MiI(1 = ao)z(s) +aof0 z(s)ds|

m q'p S
Vile--ap) f (s)ds] + f «(s)ds
=0 0 0
N,
1= Bo

+N1

+

S _ B s
[ 1€ atsas + Nt ol
0

IA

€]+ ay + f [N1|Z(S‘)|+N1(1—ao)|Z(S‘)|+N16¥o f 2(s)lds
0 0

m q'p S
Nl + (1 =ap Yo" [ et@lds] e [ atods
x=0

N,
1 =B
f
e+ ap + f [N1||Z|| + Ni(1 = ao)llzll + Nyaollzll + Nyv~'lol + Nillzll + Nillzll
0

S B
" f e TS z(s)ds + N P (As(s) + Nzlz@)l)]dg
0

IA

Bos
Nillzl|(1 — e”o7T) g ]
+ + Nja, + NN ——|d
Bo 102 1 lezlqu(yo ) S

Bo— (o= D)[en - 1)
B

IA

€] + a; + 4Ny + Niv ol + Nir
N]Nzl"
=r.
(yo+ DIy(yo + 1)

This proves that H : ¢, — 1, and {Hz(#)} is uniformly bounded in #,.
Now, Assume that 0 < #;,%, < 1 and |t, — ;]| < 0; therefore,

+Nja, +

|Hz(t;) — Hz(t))| = ‘f + fo 7’(§,z(§),(1—ao)z(§)+ao fo z(s)ds,
m q*p S
v‘l[g—(l—q)qux f z(c)d§]+ f z(s)ds,
x=0 0 0
1

S Bo
— 15 (5—5)
e 0 Vz(s)ds, [u(c, z )d -
l—ﬁofo (8)ds, I’ (s, 2(5)) |ds

11 S
&— fo T(g,z(g),(l—ao)z(g)+ao fo 2(s)ds,

m q'p S
V_I[Q ~(l-qp ) ¢ f z(g)dc] + f z(s)ds,
x=0 0 0

1
1= po

< f ¢(g,z(g>,(1 — a)2(s) + o f «s)ds,
11 0

R S
e T Tz(s)ds, I°ucs, z(c)))dg'
0
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m q'p S
v [Q —(I-q)p Z q f z(g)dg] + f z(s)ds,
=0 0 0

1
1 =P

S B S
f PRREC &(s)ds,lg‘)u(g,z(g)))'dg
0

Bos
Nir(1 = ef )t — 1)
Bo

IA

153
f Ai(s)ds + 4Nyr(ty — 1) + Nyv ol — 1)) +
131
] ) g‘(”’)
+Nf I'°A (g‘)dg+NNrf —ds.
e ), T+ D

As aresult, {Hz(#)} is equi-continuous in .
Assume that z;() € ¥, zx(f) = z(t)(k — o0). Therefore, the continuity of the two functions ¥ and
Hs lmphes that ?(t’ ¢k’ Zkes gka Up, Uk) - fc(t’ ¢7 <, {a u, U) and #(t’ Zk) - /‘l(t’ Z) as k — oo. AlSO,

t S
]}im Hzi(t) = ]}im[§+ f T(g,zk(§),(1—ao)zk(§)+ao f zi(s)ds,
- - 0 0

mn q"p
V_I[Q —(-qp Z q f zk(g)dg] + f z(s)ds,
x=0 0 0

1
1= po

Using assumptions 1 and Lebesgue dominated convergence theorem [20], then

S B
f e_%(g_s)zk(.f)ds, Igoﬂ(g’ Zk(g)))dg]
0

¢ s
,}im Hz (1) =& + f ,}im 7-(5‘, 2(), (1 — ap)zi(s) + o f 2 (8)dss,
—00 o k—ooo 0

n qp S
Vle-t-ap)a [ awds]+ [ aws
x=0 0 0
1
=

Then, Hz;(t) — Hz(t) as k — oo. As aresult, the operator H is continuous in #,. Therefore, Schauder’s
fixed point Theorem implies that there exists at least a solution z(t) € C[0, 1] of (3.2). As a result,
Lemma 3.1 implies that (1.1) and (1.2) possess a solution ¢(¢) € C[O, 1].

S _ 5B
f e Vz (s)ds, Dou(s, zk(g)))dg = Hz(1).
0

O

Theorem 3.3. Assume that ¥ and u are measurable and continuous for all t € [0, 1] and satisfy the
following conditions:

(i)
|F(t, b, 2, ,u, v)=F (2, 1,21, {1, ur, vi)l < Nildp— 1|+ Nilz—zi |+ Nild = S|+ Nilu—u |+ Nilv—vy],
(ii)
lu(t, z) — u(t, 21)l < Nalz = zil.

Therefore (3.2), has a unique solution.

AIMS Mathematics Volume 8, Issue 8, 18206-18222.
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Proof. Assume that (3.2) has two solutions z(¢), z*(¢). Therefore, we have

-0l < [
n qp S

vie-t-ap)a [ aos|+ [ ass
=0 0 0

1
5
76,26, - a0’ ) + fo Z(s)ds,

m q*p S
V_I[Q —(-qp Z q f z*(g)dg] + f ' (s)ds,
x=0 0 0
|
1= po

< fo [Mikzto) - 21+ vy

S
¥ (9 2(s), (1 = ap)z(s) + ap fo z(s)ds,

$ A (s—9)
[ s ot o )ds -
0

S 4
f ¢ T2 (5)ds, 1u(s, Z*(S‘)))'dg
0

(I = ao)(z(¢) - 2°(5))

+ N

'S 1 <
— 2 (sNd 1 - g
T fo (@(s) = Z(s))ds (1-gp X, g ; v

Y S
() - () + fo (2(s) - 2'(5))ds
L (R R
1_ﬁ0f0 e TF |z(s) — Z°(s)lds
NI, 2(6)) - (s, 2 )l ds

0

+N

Bos
! 1 — eBo T
<N f [4|z(§) —Z (N + doem) )Iz(g) —Z ()l
0 Bo

N, g(Yo)

+m|z(§) - Z*(§)|]d§

Bo— By = D) - 1)

<ANyllz - 2l + Ny . Iz — 2
By
NN
+ 2 llz - 2l
(yo+ DIy(yo + 1)
Bo_
< (4w + N oo (e 1) AL Jie - 21
= =2 ||
S B (Yo + DL, (yo + 1)
Hence,
Bo— (8 1)( T 1)
0o — (Bo — ebo~l —
NN,
1-AN,+N + )]||z—z*|| <0.
[ S I (Yo + DL, (yo + 1)
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5
Bo—(ﬁo—l)(eﬁ091 —1]

. NiN> J . - .
Since 4N; + N, 7 Gor Do) < 1, this implies that z(¢) = z*(¢). Therefore, the solution

of (3.2) is unique. Thus, Lemma 3.1 implies that the proplem (1.1) and (1.2) possess a unique solution
o(t) € C[0, 1]. O

3.1. Continuous dependence on o

Definition 3.4. The solution ¢(t) € C[0, 1] of (1.1) and (1.2) depends continuously on o, if
Ve>0, 3 6bo(e) st lo-0<do=ll¢-¢"ll<e

where ¢*(t) is the solution of

870 = F(1.67 0.7 197 0,80 DPE O, "0, 1€ O, 1], (37
(1-qp Y q'¢"(@'p) =o', ¢"(O)=¢ (3.8)
x=0

Theorem 3.5. Assume that conditions 1—4 of the Theorem 3.3 are satisfied. Therefore, the solution of
(1.1) and (1.2) is continuously dependent on o.

Proof. Assume that z(¢), z*(¢) are two solutions of (1.1) and (1.2) and (3.7) and (3.8) respectively. Then,

|lz(¢) — z°(0)| =

t S
fo [T(g, 26), (1 - ao)(s) + o fo 2(s)ds,

" q'p S
v‘l[g ~(l-qp > ¢ f z(g)dg] + f 2(s)ds,
x=0 0 0

1
1 =po

—?(g, 2(6), (1 - )z (¢) + g f Z(s)ds.
0
m q*p 'S
v‘l[g* ~(1-g)p ) q" f z*(g)dg] + f Z(s)ds,
=0 0 0

1
1 =P

3 S
fo T(g,z(g),(l — a0)z(s) + o f 2(s)ds,
1

S B s
f & ThE2(s)ds, [u(s, 26))
0

S B ~
f ¢ TH V2 (5)ds, s, 7 (s )))]dg'
0

IA

0
m q*p S
v [Q ~(l-gp > ¢ f z(g)dg] + f z(s)ds,
x=0 0 0
1

¢ -2 (5-s)
f & ThE I 2(s)ds, [u(s, 26))
0

1 =5
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Hence,

Therefore,

Hence,

IA

IA

IA

IA

S
(5,26, (1 - ap)'(6) + fo 2 (s)ds,

m 7' S
v—1[Q* —(1- q)pz qxf Z*(s‘)dg] + f Z(s)ds,
x=0 0 0

1 s Fo

[ ez s pus.z )
0

ds

1-Bo
!
f [4N1 12(5) = ()] + N1y o — o]
0
1 S Bo (.
+N, f ¢ T2 (s) — 2°(8)lds
1 =50 Jo
NI, 2(6)) = s, (sl ds
!
f[4N1||z 2+ Ny oo
0
Nl fg —’B—O(g—s) * g(?’()) %
n TS e(s) - 2 ()lds + NNy |l — 2 ||]dg
1-80 Jo PRy + 1)
B
Bo— By = (e - 1)
4Nyllz = 2*|l + Nyv ' — o' + Ny - llz = 2|
By
NN, .
+ llz = 2"l
(Yo + Dy + 1)
Bo
N, + (4N +Nﬁo_(ﬁ°_1)(€ﬁo_l ) P Ji -1
=2l
A P I (vo+ Dl (yo + 1)
. Niv1is
Iz -2l < L
Bo—(ﬁo—n[efF —1] .
- (4N1 M R * (70+1)1Lq(27o+1))
| m qxp !
66 — ¢ (O] = | [g —(l-gp ) ¢* f z(g)dg] + f 2s)ds
x=0 0 0

—v‘l[g* - - q)pzm:qx fo " z*(g)dg] + L t z*(g)dG‘
x=0

—1 * *
< vilo-o'l+ 2zl

2N v16

% —1 1 0
g — "Il < '8 + e -
ﬁo—(ﬂo—n[eﬂo—l -1]
_ NN
1 (4N1 + N; Bo? + (70+1)rq(70+1))

As a result, the solution of (1.1) and (1.2) is continually dependent on p.
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4. Methodology of numerical technique

The problem (1.1) and (1.2) can be expressed as follows:

¢"(1) = Niki(¢' (1)) = N\ T I (1) = Nisa(p(0)) = N, D) = Ni (e, ¢ (1) = Ay (1), (4.1)

(L-qp Y. q'ogp) =0, #O) =¢.

x=0

Assume that u(t, ¢’(t)) = Ay(t) + Noks(¢' (1)), where k1 (¢'(1)), k2(P(1)), k3(¢’(s)) are nonlinear terms for
the unknown function. Then, by using (2.1)—(2.3), Equation (4.1) become:

¢ (1) = Niki(¢'(1)) — Ni(1 — ap)¢'(t) — Niao fo ¢’ (8)ds — Nika(p(1))
(4.2)

N s N !
T fo s - o fo (1 = 49" D(Aas) + Nora(@ (5))dys = Ar(0),

Now, the interval of integration [0, ¢] of Eq (4.2) is subdivided into / equally spaced intervals of width
h = (- 0)/i,i > 1[21]. Taking ¢" (1) = ¢, ¢'(1) = ¢, K1(¢’(t')) = Kki1(#), k2 (&(1)) = Kz(¢)

—Boti=s ;)
k3(9'(s)) = k3(¢), Ait) = A1, As(s)) = Agy, let ky; = r( oot — as; NV K = ﬁe Po .
Therefore, (4.2) can be expressed as follows:

B = N ()= Nil1 = a0~ N [ 05ds = Nosa@) =Ny [ K
0 0 (4.3)

ti
- N1N2f k,"jK3(¢;~)qu =B
0
where B; = Al,i + N; Oti ki,jAz,jqu.

4.1. A summary of the finite-trapezoidal method

1) We use the first and second order central finite difference method to approximate the derivative
part of (4.3) as follows:

Piv1 — 2¢i + iy
h? ’

¢l+1 ¢z
2h

¢'.’ ~ ¢f
1 1

2) We use the trapezoidal rule to approximate the integral part of (4.3) as follows:

" ’ h ’ S ’ ’
f K;¢ids ~ E[Ki,o% +2 Z Ki ¢, + Ki,i¢i],
0 =

ti l’l
f ki jk3(@))dys = —[ 10k3(p) + ZZ ki jk3 (@) + kiik3 (@} )] i=0,1,2,3,...L
0

j=1

AIMS Mathematics Volume 8, Issue 8, 18206-18222.
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3) Therefore, (4.3) becomes:

¢i+l - 2¢1 + ¢i—1 _ ¢z+1 ¢l ¢1+1 ¢t

7 Nk (———— T Dy = Ni(1 — o) (1)
1 — ¢J+1 ¢j 1 ¢,+1 bi-1
_Nlaoz[ 2h 22 2 ]
- Nukal@) = N | Ko™ ¢1>+2ZK,,<M> (44

Giv1 — Pi1 h ¢1— Py Gis1 — @1
+ Kii(——— T )] NINZE[ki,O’Q( T )+2 JZ:; ki,jKS(T)

¢z+l ¢l ] .
k,’,’ —B,‘, :O,l,...l.
+ ki iks(——— T 5 i

4.2. A summary of the cubic-Simpson’s method

We can obtain the numerical solution of (4.3) by using a merge of cubic b-spline with the Simpson’s
method as follows:

1) The unkown function ¢(#) and its derivatives can be approximated by using cubic b-spline as
follows [22]:
4 3 7’ 6
i~ Qi +40;+ Q. ¢ ® E(QM Q). ¢~ ﬁ(gi—l =20+ Qiy1),

where Q; are constants to be determined.
2) We use the Simpson’s method [23] to approximate the integral part of (4.3).
3) As aresult, we can write (4.3) as follows:

30Q;,1 — 39, 30Q;,1 — 39,
%) - N - (ZO)HTI

i1 i
h[3Q, -39, O 3241 — 3 3 =35 3Q; —3Q;
~ Nyaoo |22 4

10‘”3[ oL ) * ]Z‘ K ok

6
ﬁ(gi—l =20+ Q1) — Niki(

h -30Q_, - 30, 30,
- Nika(@ioy + 42+ Q) = N1 | ,o(—) 22,([2]( =30,

j=1

: 30, — 30, 30, — 30, h 30, - 30
43 Koo (L 4 R (PR L 2 (R

4 h ’ h 3 h
/—1
i1
30y — 3D 302, — 3D, 311 — 30
+ 2;1@ 2 K3 - L)+ 4;‘/@ 2tk () K ()
:Bi, l:0,1,l
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5. Test problems

Now, two numerical examples will be introduced by using the following two methods:
1) Finite-trapezoidal method.
2) cubic-Simpson method.

Problem 1. In (4.2), taking A, (f) = t (—O.O468103t4/3 —0.0333333¢ — 0.377778)—0.0833333 cos (zz)—
0.185185¢™ 1" — 0.166667 sin(t) cos(f) + 2.18519, A,(t) = t,N; = -, N, = L,y = 0.4,8) = 0.6,y =

12° 10°

34 = 0.5, k1(¢ (1) = sin(¢' (1)), ka(¢(1)) = cos(¢(1)), k3(¢' (1)) = ¢/ (1). Then,

'T(t, &' (1), 1% (1), p(0), "D p(1), I°u(t, ¢’(t)))‘ < ‘t (~0.0468103#*° - 0.0333333¢ - 0.377778)
1
— 0.0833333 cos (1) — 0.185185¢™"* — 0.166667 sin(r) cos(?) + 2.18519' + 5 lsing ()

1 CF o £/ i LCF 0 i 0 /
+ IO+ Sleos@)] + D g()] + U 6 D),
Bo
Bo= o= (7 - 1) NS

+ = 0.403493 < 1.
B (yo + DI'y(yo + 1)

1
I p(t, ¢ ()] < 1+ 7518 (O 4N+ Ny

Therefore, the conditions of the Theorem 3.2 are clearly satisfied. As a result, this problem has a unique
solution. Now, to solve this problem, we take / = 20,p = 0.2,m = 2,0 = 0.0045625,¢ = 0. Then,
we apply two methods: the first is finite-trapezoidal method and the second is the cubic-Simpson’s
method. The exact solution of this problem is ¢(f) = 2.

Table 1 and Figure 1 above demonstrate the comparison between the exact solutions and the
numerical solutions of the problem using two numerical methods. We can see from the results that
both numerical methods are effective. Furthermore, the continuous dependence on o using the
cubic-Simpson’s method will be studied. Taking
lo— 0| = 107* = [¢(0.2) — ¢$*(0.2)| = 5.71426 x 10~*. Therfore, ¢(z) is continuous dependence on o.

Table 1. The exact and numerical solutions to Problem 1.

t; Exact Finite-trap.  Abs. error cubic-Sim. Abs. error
solutions (Finite-trap) (cubic-Sim.)
0.1 0.01 0.009999 1.4886 x107° 0.010004 3.66028 x107°
0.2 0.04 0.040001 1.2012 x1076 0.039997 2.84075 x107°
0.3 0.09 0.090010 1.0445 x107 0.089977 2.34169 x1073
0.4 0.16 0.160035 3.5320 x107° 0.159939 6.12610 x10™*
0.5 0.25 0.250091 9.1196 x107° 0.249887 1.13342 x107*
0.6 0.36 0.360201 2.0080 x10~* 0.359831 1.69313 x107*
0.7 0.49 0.490395 3.9505 x10~* 0.489789 2.10604 x1073
0.8 0.64 0.640714 7.1376 x107* 0.639790 2.09675 x1073
0.9 0.81 0.811206 1.2062 x1073 0.809871 1.29396 x1073

AIMS Mathematics Volume 8, Issue 8, 18206—-18222.



18219

L it
r e Exact / v
0.8+ /J .
» —— Finite-Tr R
06| rv/
or W 4
ey [ cubic-Sim )‘vi
§ I P
i ) 4
0.4> P e v
o
L i
0.2 P
T
I N
e e A
0.2 0.4 0.6 0.8
t

Figure 1. Comparison between the numerical and exact solutions of test Problem 1.

Problem 2. In (4.2), taking A;(r) = -0.0541126r* + (().O415584t2 - 1.19919) cos(t) +
0.0840336e7%%" + (0.0121212¢ + 0.121008) sin(z) + 0.0437229, A,(t) = sin(f), N; = ﬁ,Nz = 11—1,010 =

0.6,80 = 0.2,70 = 3,9 = 0.2,k1(¢'(1)) = ¢’ (1), k2(h(1)) = $(1), k3(¢' (1)) = ¢’ (7). Then,

<

'?(r, &' (1), TI1¢ (1), p(2), " DPo (1), I, ¢’(t))) —0.0541126¢ + (0.0415584t2 - 1.19919) cos(t)

1 1
+0.0840336¢ 7% + (0.0121212¢ + 0.121008) sin(r) + 0.0437229| + ﬁ|¢'(t)| + ﬁ|CFW0¢'(t)|

1 P L
+ﬁ|¢(l)l+ﬁ| DP ()] + — |0 u(t, ¢ (1)),

14"
. L
G p(t, ' (D)) < sin(®) + 14" (D),
Ao
Bo— By = D)5 - 1)
AN + N : + NN = 0.327949 < 1.
By (Yo + DEy(yo + 1)

Therefore, the conditions of the Theorem (3.2) are clearly satisfied. As a result, this problem has
a unique solution. Now, to solve this problem, we take [ = 20,p = 0.5,m = 1,0 = 0.430633,¢ =
0. Then, we apply two methods: the first is finite-trapezoidal method and the second is the cubic-
Simpson’s method. The exact solution of this problem is ¢(7) = cos(?).

Table 2 and Figure 2 above demonstrate the comparison between the exact solutions and the
numerical solutions of the problem using two numerical methods. The results tabulated in the above
table demonstrate that the finite difference-trapezoidal method is better than cubic-Simpson method.
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Table 2. The exact and numerical solutions to test Problem 2.

t; Exact Finite-trap.  Abs. error cubic-Sim. Abs. error
solutions (Finite-trap) (cubic-Sim.)
0.1 0.995004  0.995024 2.01940 x107° 0.985487 9.51696 x1073
0.2 0.980067  0.980084 1.71111 x1073 0.970545 9.52204 x1073
0.3 0.955336  0.955348 1.20079 x1073 0.945809 9.52678 x1073
0.4 0.921061  0.921066 4.93372 x1076 0.911533 9.52798 x1073
0.5 0.877583  0.877579 4.03881 x1076 0.868060 9.52251 x1073
0.6 0.825336  0.825321 1.48091 x107 0.815828 9.50730 x1073
0.7 0.764842  0.764815 2.72459 x107° 0.755363 9.47939 x1073
0.8 0.696707  0.696666 4.11851 x1073 0.687271 9.43589 x1073
0.9 0.621609  0.621554 5.64288 x107° 0.612236 9.37407 x1073
1.0 [
0.9F
e Exact
T 08
© [ — Finite-Tr
0.7}
i cubic-Sim
0.6}
02 0.4 06 08

t

Figure 2. Comparison between the numerical and exact solutions of test Problem 2.

6. Conclusions

We have demonstrated the existence and uniqueness of a solution for a nonlocal fractional g-integro
differential equation. We investigated whether or not the answer has a continuous reliance on o. This
section provides a synopsis of the finite difference, trapezoidal, and cubic Simpson’s methods. The
numerical solution is applied to two cases, and the results of those solutions are compared with the
exact solution. The findings indicated that the approach is not only successful but also straightforward
to put into practice.
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