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Abstract: Data uncertainty is a barrier in the decision-making (DM) process. The rough set (RS)
theory is an effective approach to study the uncertainty in data, while bipolar soft sets (BSSs) can
handle the vagueness and uncertainty as well as the bipolarity of the data in a variety of situations.
In this article, we introduce the idea of rough bipolar soft sets (RBSSs) and apply them to find the
best decision in two different DM problems in medical science. The first problem is about deciding
between the risk factors of a disease. Our algorithm facilitates the doctors to investigate which risk
factor is becoming the most prominent reason for the increased rate of disease in an area. The second
problem is deciding between the different compositions of a medicine for a particular illness having
different effects and side effects. We also propose algorithms for both problems.
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1. Introduction

Data analysis in several domains demands different problems associated with DM. Many algorithms
are developed by the researchers, in this respect to get a wise decision. The theories of RSs [36–38]
and soft sets (SSs) [33] are constructed to address the uncertainty and vagueness appearing in the
data compiled for multiple objectives. These theories synchronized the mathematical designs with
incomplete real-world data. In RS theory [36–38], Pawlak investigated the certainty of the information
attached to the objects through the lower and upper approximations. Generalization of RS theory by
relaxing the condition of an equivalence relation (ER) to any arbitrary relations has been studied by
several researchers [5,8,21]. This generalization has been discussed using the topological approach as
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illustrated in [6, 7, 10, 20, 22].
In 1999, the novel concept of SS was offered by Molodtsov [33] as an alternative mathematical

strategy to handle inaccuracies and uncertainties. There has been noticed a heightened interest in SS
theory. Maji et al. [26] launched algebraic operations of SS theory. Following [26], Ali et al. [3] offered
some novel operations on SSs and enhanced the idea of the SS compliment. Al-shami [9] defined a
new type of soft subset relation in order to preserve the major properties of the intersection and union
operators between sets via their counterparts in soft settings. Fatimah et al. [17] established the idea of
N-soft set (N-SS). Al-shami and A. Mhemdi [28] introduced some soft relations via the environment
of double-Framed soft sets and explained how it can be applied to treat a practical issues. Topological
structures via soft set theory have been explored by many authors like infra soft topology [29], soft
somewhat open sets and their applications [30], ordered soft topology [31] and soft Menger spaces [32].

Due to their diverse applications, rapid growth can be seen in the research on RSs and SSs in the
last few years. Al-shami et al. [1] provided a new generalization of fuzzy SSs which is known as (a, b)-
fuzzy SSs. Dubois and Prade [16] proposed rough fuzzy sets and fuzzy rough sets. Feng et al. [18]
initiated a hybridized model of SSs, fuzzy sets, and RSs. Zhan et al. [45] pioneered the idea of Z-soft
fuzzy rough set model with applications in DM. For more about the hybridization of SSs, RSs, and
their generalization with application, we refer to References [27, 34, 44].

Chen et al. [14] redefined the SS parameterization reduction. Zou and Xiao [43] discussed data
analysis techniques of SS under incomplete information. Çağman and Enginoglu [13] pioneered fuzzy
parameterized SS theory and its applications in DM problems. The SS theory has a wide range of
potential applications in several domains. Çağman and Enginoglu [12] proposed soft matrix theory
and its DM applications. Chen et al. [14] provided the parametrization reduction of SSs and their
applications. Feng et al. [19] investigated an adjustable approach to fuzzy SS based DM. Ma et al. [25]
review some DM methods in the context of fuzzy sets, RSs, and SSs. Zou and Xiao [43] suggested
data analysis approaches for SSs under incomplete information. Zhan and Zhu [44] proposed Z-soft
rough fuzzy ideals of hemirings with DM application.

Along with uncertainty, the bipolarity of the information is also faced in many real-life problems.
Bipolarity speaks about the positive and negative aspects of the data. The positive data reveals what
is guaranteed to be possible, while the negative data indicates what is impossible. The idea which
lies behind the existence of bipolar information is that a wide variety of human cognition is based on
bipolar judgmental thinking. For example, not having high blood pressure does not imply that the
person’s blood pressure is low. The notions of BSSs, introduced by Shabir and Naz [40], successfully
tackled this problem of the bipolarity of the information. Karaaslan and Karataş [24] redefined a
variant of BSSs with different approximations allowing a chance to look at the topological structures
of BSSs. They also established a DM strategy using BSSs. Al-shami [4] initiated the idea of belong
and nonbelong relations between a BSS and an ordinary point. Mahmood [41] redefined a model of
BSSs known as T-BSSs and utilized this idea in DM. Dalkılıç and Demirtaş [15] established a decision
analysis review on the concept of class for BSS theory. Karaaslan et al. [23] pioneered the notion of
bipolar soft groups. Naz and Shabir [34] proposed the conception of fuzzy BSSs and investigated their
algebraic structures. In 2017, Shabir and Bakhtawar [39] developed the idea of bipolar soft connected,
bipolar soft disconnected, and bipolar soft compact spaces. Then, Öztürk [35] further offered the
notions of interior and closure operators, basis, and subspaces in the bipolar soft topological spaces.
Recently, Aras et al. [11] have probed the concepts of local compactness and paracompactness via the
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frame of bipolar soft topological spaces. They also adjusted the definition of bipolar soft points and
showed the shortcoming of the previous model. In [27], Malik and Shabir formatted the idea of rough
fuzzy BSSs with applications in DM problems.

This article aims to introduce the notion of RBSS and apply this concept to DM problems. We
address two different decision problems related to medical science. First, we discuss the problem
where the decision is to be taken between the attributes possessed by some objects. We consider the
situation in which a particular disease is increasing rapidly in a region. Our study facilitates the doctors
to investigate the factor most responsible for increasing the rate of that disease in a region or area. In
this way, the most prominent reason for that disease can be identified to control the disease in the
area. The second problem is about deciding between some objects according to their attributes (or
properties). For this, we discuss the problem of deciding between different compositions of medicine
considered by a pharmaceutical company to manufacture. Each composition has some positive effects,
as well as some side effects. The company wishes to finalize a single composition to manufacture
which can give best results. We provide algorithms for both problems using the concept of RBSS.

The article is organized as follows: In Section 2, we recall some basic concepts. In Section 3, we
study the RBSS. In Section 4, we use the RBS approximations of a BSS to design algorithms for two
different DM problems in medical science. Section 5 compares the suggested DM methods with some
other approaches in the bipolar soft framework. Finally, Section 6 ends with an overview of the current
research and a few future perspectives.

2. Preliminaries

The RS theory [36–38] offers a systematic mechanism for tackling uncertainty in data because
of indiscernibility in a scenario with incomplete knowledge. Let U (, ∅) be the initial universe of
discourse and ϑ be an ER defined on U. Then, (U, ϑ) is said to be Pawlak approximation space
(PA-space). The ER ϑ forms a partition U/ϑ of the universe U into the equivalence classes. These
equivalence classes work as the elementary building blocks in the data analysis. In the partition U/ϑ,
we denote the equivalence class of the element u ∈ U by [u]ϑ (or by [u], for convenience). For Q ⊆ U,
the relation ϑ yields the following operators.

Q =
{
u ∈ U : [u]ϑ ⊆ Q

}
, (1)

Q =
{
u ∈ U : [u]ϑ ∩ Q , ∅

}
. (2)

These operators assign two subsets, Q and Q of U, to any Q ⊆ U, known as the lower and upper
approximations of Q w.r.t ϑ, respectively.

Definition 2.1. [38] Suppose that (U, ϑ) is a PA-space. A subset Q of U is definable when Q = Q;
else, Q is a RS.

For the non-empty universe U of objects, let 2U denote the power set of U and let E denote the
non-empty finite set of attributes (characteristics, properties or parameters) the objects of U possess.

Definition 2.2. [33] A SS over U is a pair (F,A), where A ⊆ E and F : A −→ 2U is a set-valued
mapping.
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Thus, the objects of U with the property e are covered by the set F(e). The BSS is built to distinguish
between the positive and the negative characteristics of the data, that is, the assured and the prohibited
presence of the property e in the objects. A BSS, in contrast to a SS, is constructed with the help of
two sets of parameters. One is the attribute set E, while the other set, denoted by ¬E and named as
“not set of E”, contains the attributes opposite to those of E.

Definition 2.3. [40] A BSS over U is a triplet ð = (F,G,A), where A ⊆ E and F : A −→ 2U and
G : ¬A −→ 2U such that F(e) ∩G(¬e) = ∅ for all e ∈ A.

Here, F(e) denotes the objects in U having a property e ∈ A and G(¬e) denotes the objects in U
having a property ¬e, opposite to e. The condition F(e) ∩G(¬e) = ∅ is the consistency constraint. It
is worth noting that an object lacking a property e, may not have the property ¬e, opposite to e. So, we
may have G(¬e) , U − F(e) for some e ∈ E. We write H(e) = U −

(
F(e) ∪G(¬e)

)
and call it the grey

area of ð relevant to e. This grey area gives the degree of the hesitancy of the BSS ð over U, using an
allied SS (H, A) over U. The set having all the BSSs over U is denoted by Ω.

Definition 2.4. [40] A BSS ð = (F,G,A) ∈ Ω is a bipolar soft subset of a BSS ð1 = (F1,G1,B), if

(1) A ⊆ B,

(2) F(e) ⊆ F1(e) and G(¬e) ⊇ G1(¬e) for all e ∈ A.

We denoted it by ð ⊆̃ ð1. Two BSSs ð and ð1 over the same universe U are equal if each of them is a
bipolar soft subset of the other.

Definition 2.5. [40] The relative whole BSS is UA = (U,Φ,A) ∈ Ω, where U : A −→ 2U and
Φ : ¬A −→ 2U are defined for all e ∈ A as U(e) = U and Φ(¬e) = ∅. The relative null BSS is
ΦA = (Φ,U,A) ∈ Ω, where Φ : A −→ 2U andU : ¬A −→ 2U are defined for all e ∈ A as Φ(e) = ∅

andU(¬e) = U.

Definition 2.6. [40] Let ð = (F,G,A), ð1 = (F1,G1,B) ∈ Ω. Then, their intersections and unions are
characterized as:

(1) The extended union of ð and ð1 is a BSS ð ∪ε ð1 = (F∪̃F1,G∩̃G1,A ∪ B) ∈ Ω, where F∪̃F1 and
G∩̃G1 are defined as:

(F∪̃F1)(e) =


F(e) if e ∈ A − B
F1(e) if e ∈ B −A
F(e) ∪ F1(e) ife ∈ A ∩ B

(G∩̃G1)(¬e) =


G(¬e) if e ∈ A − B
G1(¬e) if e ∈ B −A
G(¬e) ∩G1(¬e) if e ∈ A ∩ B

(2) The extended intersection of ð and ð1 is a BSS ð∩ε ð1 = (F∩̃F1,G∪̃G1,A∪B) ∈ Ω, where F∩̃F1

and G∪̃G1 are defined as:

(F∩̃F1)(e) =


F(e) if e ∈ A − B
F1(e) if e ∈ B −A
F(e) ∩ F1(e) if e ∈ A ∩ B
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(G∪̃G1)(¬e) =


G(¬e) if e ∈ A − B
G1(¬e) if e ∈ B −A
G(¬e) ∪G1(¬e) if e ∈ A ∩ B

(1) The restricted union of ð and ð1 is a BSS ð∪r ð1 = (F∪̃F1,G∩̃G1,A∩B) ∈ Ω, where (F∪̃F1)(e) =

F(e) ∪ F1(e) and (G∩̃G1)(¬e) = G(¬e) ∩G1(¬e) for all e ∈ A ∩ B, providedA∩B , ∅.

(2) The restricted intersection of ð and ð1 is a BSS ð ∩r ð1 = (F∩̃F1,G∪̃G1,A ∩ B) ∈ Ω, where
(F∩̃F1)(e) = F(e) ∩ F1(e) and (G∪̃G1)(¬e) = G(¬e) ∪ G1(¬e) for all e ∈ A ∩ B, provided
A∩B , ∅.

Definition 2.7. [40] The compliment of a BSS ð = (F,G,A) ∈ Ω, is a BSS ðc = (Fc,Gc,A) ∈ Ω,
where Fc(e) = G(¬e) and Gc(¬e) = F(e) for all e ∈ A.

Example 2.8. Suppose that U = {}1, }2, }3, }4, }5, }6} is a universe containing six animals and E =

{e1 =tame, e2 =beautiful, e3 =big, e4 =healthy, e5 =lives on land} is a set of parameters for U. Let
¬E = {¬e1 =wild, ¬e2 =ugly, ¬e3 =small, ¬e4 =weak, ¬e5 =lives in water}. In this example, we
construct a BSS and discuss the degree of hesitancy for an attribute. We define the BSS ð = (F,G,A)
withA = {e1, e2, e4} ⊆ E, which points out the animals having a property ei or ¬ei as follows.

F(e) =


{}1, }3, }4, }6} if e = e1

{}2, }3, }5} if e = e2

{}2, }3, }4, }5} if e = e4

G(¬e) =


{}2, }5} if ¬e = ¬e1

∅ if ¬e = ¬e2

{}1, }6} if ¬e = ¬e4.

Here, H(e2) = {}1, }4, }6} is the degree of hesitancy of the BSS ð w.r.t. the attribute e2, which depicts
that although these animals are not beautiful, they are not ugly as well.

3. Rough bipolar soft sets

In this segment, we establish the idea of RBSSs and investigate their basic properties.

Definition 3.1. Let ð = (F,G,A) ∈ Ω with (U, ϑ) as a PA-space. The lower and upper RBS
approximations of ð w.r.t (U, ϑ) are the BSSs represented by ðϑ = (Fϑ,Gϑ

,A) and ð
ϑ

= (F
ϑ
,G

ϑ
,A),

respectively, where Fϑ, F
ϑ

are defined as:

Fϑ(e) =
{
u ∈ U : [u]ϑ ⊆ F(e)

}
, (3)

F
ϑ
(e) =

{
u ∈ U : [u]ϑ ∩ F(e) , ∅

}
(4)

for all e ∈ A, and G
ϑ
, G

ϑ
are defined as:

G
ϑ
(¬e) =

{
u ∈ U : [u]ϑ ∩G(¬e) , ∅

}
, (5)

G
ϑ
(¬e) =

{
u ∈ U : [u]ϑ ⊆ G(¬e)

}
(6)

for all ¬e ∈ ¬A. If ðϑ = ð
ϑ
, then ð is said to be R-definable; otherwise, ð is a RBS over U.
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Furthermore, the knowledge regarding an element u ∈ U, interpreted by these RBS approximations
of ð, is as follows:

• If u ∈ Fϑ(e), then u definitely possess the attribute e.

• If u ∈ G
ϑ
(¬e), then u definitely possess the attribute ¬e.

• If u ∈ F
ϑ
(e), then u probably has the attribute e.

• If u ∈ G
ϑ
(¬e), then u probably has the attribute ¬e.

For simplicity, we write ð and ð for ðϑ and ð
ϑ
, respectively (if there is no confusion in ϑ).

Following are some basic characterizations of the RBSs.

Theorem 3.2. Let ð = (F,G,A) ∈ Ω with (U, ϑ) as a PA-space. Then, the following statements hold:

(1) ð ⊆̃ ð ⊆̃ ð,

(2) ΦA = ΦA = ΦA,

(3) UA = UA =UA,

(4) (ð) = ð =
(
ð
)
,

(5) (ð) = ð = (ð),

(6) ðc =
(
ð
)c

,

(7) ðc =
(
ð
)c

.

Proof. (1)–(5) can be verified by using Definitions 2.4, 2.5 and 3.1.
(6) We have ðc =

(
Fc,Gc,A

)
. As Fc(e) = G(¬e) and Gc(¬e) = F(e) for all e ∈ A, so using

Definitions 2.7 and 3.1, we get

Fc(e) = {u ∈ U : [u] ∩ Fc(e) , ∅} = {u ∈ U : [u] ∩G(¬e) , ∅}
= G(¬e) = (F)c(e)

and

Gc(¬e) = {u ∈ U : [u] ⊆ Gc(¬e)} = {u ∈ U : [u] ⊆ F(e)}
= F(e) = (G)c(¬e)

for all e ∈ A. But
(
(F)c, (G)c,A)

)
=

(
ð
)c

. Thus by Definition 2.4, we have ðc =
(
ð
)c

.
(7) Analogous to the proof of (6). �

Theorem 3.3. Assume that ð = (F,G,A), ð1 = (F1,G1,B) ∈ Ω with (U, ϑ) as a PA-space. Then, the
following properties hold:

(1) ð ⊆̃ ð1 implies that ð ⊆̃ ð1 and ð ⊆̃ ð1,
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(2) ð ∩ε ð1 = ð ∩ε ð1,

(3) ð ∩r ð1 = ð ∩r ð1,

(4) ð ∪ε ð1 ⊇̃ ð ∪ε ð1,

(5) ð ∪r ð1 ⊇̃ ð ∪r ð1,

(6) ð ∩ε ð1 ⊆̃ ð ∩ε ð1,

(7) ð ∩r ð1 ⊆̃ ð ∩r ð1,

(8) ð ∪ε ð1 = ð ∪ε ð1

(9) ð ∪r ð1 = ð ∪r ð1.

Proof. (1) Assume that ð ⊆̃ ð1. Then we have F(e) ⊆ F1(e) and G(¬e) ⊇ G1(¬e) for all e ∈ A, where
A ⊆ B. Now for all e ∈ A, we have

F(e) = {u ∈ U : [u] ⊆ F(e)} ⊆ {u ∈ U : [u] ⊆ F1(e)} = F1(e)

G(¬e) = {u ∈ U : [u] ∩G(¬e) , ∅} ⊇ {u ∈ U : [u] ∩G1(¬e) , ∅} = G1(¬e).

Thus according to Definition 2.4, ð ⊆̃ ð1.
Similarly, we can show that ð ⊆̃ð1.
(2) In the light of Definition 2.6, we have ð ∩ε ð1 = (F∩̃F1,G∪̃G1,A ∪ B). From Definition 3.1,

we have

(F∩̃F1)(e) = {u ∈ U : [u] ⊆ F(e) ∩ F1(e)}

= {u ∈ U : [u] ⊆ F(e)} ∩ {u ∈ U : [u] ⊆ F1(e)} = (F∩̃F1)(e)

(G∪̃G1)(¬e) = {u ∈ U : [u] ∩ (G(¬e) ∪G1(¬e)) , ∅}
= {u ∈ U : [u] ∩G(¬e) , ∅} ∪ {u ∈ U : [u] ∩G1(¬e) , ∅}
= (G∪̃G1)(¬e).

But (F∩̃F1,G∪̃G1,A∪B) = ð ∩ε ð1. So, assertion (2) is proved by Definition 2.4.
(3) It can be deduced from (2).
(4) By Definition 2.6, we have ð ∪ε ð1 = (F∪̃F1,G∩̃G1,A∪B), where

(F∪̃F1)(e) = {u ∈ U : [u] ⊆ F(e) ∪ F1(e)}

⊇ {u ∈ U : [u] ⊆ F(e)} ∪ {u ∈ U : [u] ⊆ F1(e)} = (F∪̃F1)(e)

(G∩̃G1)(¬e) = {u ∈ U : [u] ∩ (G(¬e) ∩G1(¬e)) , ∅}
⊆ {u ∈ U : [u] ∩G(¬e) , ∅} ∩ {u ∈ U : [u] ∩G1(¬e) , ∅}
= (G∩̃G1)(¬e).

But (F∪̃F1,G∩̃G1,A∪B) = ð ∪ε ð1. So, assertion (4) is proved by Definition 2.4.
(5) It can be deduced from (4).
(6)–(9) can be verified in the same way as (2)–(5) above. �
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The following example illustrates the evaluation of RBS approximations of a BSS.

Example 3.4. Consider the BSS ð = (F,G,A) as in Example 2.8. Let ϑ be an ER on U defining classes
{}1, }2, }3}, {}4, }5} and {}6}. Then, the lower RBS approximation of ð is ð = (F,G,A), where F and G
are calculated according to Definition 3.1 as:

F(e) =


{}6} if e = e1

∅ if e = e2

{}4, }5} if e = e4

G(¬e) =


{}1, }2, }3, }4, }5} if ¬e = ¬e1

∅ if ¬e = ¬e2

{}1, }2, }3, }6} if ¬e = ¬e4

and the upper RBS approximation of ð is ð = (F,G,A), calculated as:

F(e) =


U if e = e1

{}1, }2, }3, }4, }5} if e = e2

{}1, }2, }3, }4, }5} if e = e4

G(¬e) =


∅ if ¬e = ¬e1

∅ if ¬e = ¬e2

{}6} if ¬e = ¬e4

.

Notice that ð , ð, so ð is a RBSS. Also F(e) ⊆ F(e) ⊆ F(e) and G(e) ⊇ G(e) ⊇ G(e) for all e ∈ A.
This shows that ð ⊆̃ ð ⊆̃ ð.

The following proposition indicates that the ϑ-definable BSS over U, when ϑ is identity or universal
binary relation on U.

Proposition 3.5. Let (U, ϑ) be a PA-space.

(1) Each BSS over U is ϑ-definable, whenever, the relation ϑ on U is the identity binary relation.

(2) If the binary relation ϑ = U × U and ð ∈ Ω is ϑ-definable, then, ð ∈ {UA,ΦA : A ⊆ E}.

Proof. Straightforward. �

Theorem 3.6. Let ð = (F,G,A) ∈ Ω with (U, ϑ) as a PA-space. Then, the following assertions are
equivalent:

(1) ð ⊆̃ ð.

(2) ð ⊆̃ ð.

(3) ð is ϑ-definable.

Proof. (1)⇒(2) Assume ð ⊆̃ ð. Then, by Theorem 3.3, (ð) ⊆̃ ð. By Theorem 3.2, we get

ð ⊆̃ ð = (ð) ⊆̃ ð.

(2)⇒(3) By Theorem 3.2, ð ⊆̃ ð, also given that ð ⊆̃ð. So, ð = ð. This gives ð = (ð) = ð. Thus ð is
ϑ-definable.

(3)⇒(1) Straightforward. �

The next result is important because it highlights a remarkable link between lower and upper RBS
approximations of a BSS ð when the ER ϑ in the PA-space is substituted by another ER % on U, which
contains ϑ.
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Theorem 3.7. Let ð = (F,G,A) ∈ Ω with (U, ϑ) as a PA-space and let % be an ER on U, such that,
ϑ ⊆ %. Then, ð%⊆̃ ðϑ and ð

ϑ
⊆̃ ð

%
.

Proof. Let ð ∈ Ω for someA ⊆ E. Since ϑ ⊆ %, we have [u]ϑ ⊆ [u]% for all u ∈ U. Thus, F%(e) ⊆ Fϑ(e)

and G
%
(¬e) ⊇ G

ϑ
(¬e) for all e ∈ A. So, we have ð%⊆̃ ðϑ. Similarly, one can verify that ð

ϑ
⊆̃ ð

%
. �

4. Applications of RBSSs in DM problems

As we know that, uncertainty is an intrinsic component of medical diagnosis since a symptom is
an uncertainty index about whether or not a disease is occurring. In this segment, we use the RBS
approximations of the BSSs to solve DM problems related to the medical field. Sometimes, it is
required to decide on the best object from a collection of objects. But sometimes, the decision between
the attributes of some objects is also needs to be made. We propose algorithms for both situations using
RBS approximations of the bipolar soft information about the objects. These algorithms are designed
so that the larger data can also be managed. Let the set of attributes be E = {ei : 1 ≤ i ≤ p} and the
collection of objects be U = {u j : 1 ≤ j ≤ q}. Let the bipolar soft information about the objects and
their attributes be expressed by the BSS ð = (F,G,E). We input ð in the form of a matrix M by taking
the (i, j)th entry ai j corresponding to the attribute ei and the object u j as:

ai j =


1 if u j ∈ F(ei)
−1 if u j ∈ G(¬ei)
0 otherwise

. (7)

Let ϑ be the ER on U, dividing U into q′ classes. Surely, q′ ≤ q. We input the relation ϑ as a q′ × q
matrix, whose each row corresponds to an equivalence class in such a way that the objects of the class
are denoted by 1 and the objects not in that class are given ′0′. With the help of the relation ϑ, the
lower RBS approximation ð and the upper RBS approximation ð are evaluated. Denote the (i, j)th
entry in the matrices B and C of ð and ð by bi j and ci j, respectively. Then, using the matrix notation
and Definition 3.1, we deduce that bi j =

∧
[u j]

ai j and ci j =
∨
[u j]

ai j.

Definition 4.1. The decision coefficient D has the values di for each attribute ei ∈ E, given by

di =

q∑
j=1

(
bi j + ci j

)
. (8)

4.1. Decision for the most responsible risk factor of a disease

In this subsection, we use the RBS approximations of the BSSs to solve a DM problem, where the
decision is made between the attributes of some objects. We propose a multipurpose algorithm that
helps to decide for an attribute causing the maximum or minimum effect on the objects and use this
algorithm to decide for the most responsible risk factor of a disease.

4.2. Algorithm 1

Step 1: Input the BSS ð = (F,G,E) and ages of the patients.
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Step 2: Construct an ER ϑ on U.

Step 3: Compute ð and ð.

Step 4: Compute the values di for each attribute ei ∈ E.

Step 5: Find dk = max
i

di.

Step 6: If k has more than one value then choose any of ek.

Let us use the above algorithm to solve the following problem.

Example 4.2. We discuss the situation of a city X where many young citizens are suffering from the
disease of heart attack, while it is usually considered to be a disease of old age. Dr. Y, a cardiologist, is
trying to search out the most prominent reason of occurrence of this disease in early ages so frequently
in the city. The common risk factors causing heart attacks are E = {e1 = smoking, e2 = heavy drinking
of alcohol, e3 = diabetic, e4 = high cholesterol level, e5 = sedentary life style, e6 = high blood
pressure}, which will serve as the attribute set for U. We take the set ¬E as ¬E = {¬e1 = no smoking,
¬e2 = no drinking of alcohol, ¬e3 = non-diabetic, ¬e4 = normal cholesterol level, ¬e5 = healthy life
style, ¬e6 = normal blood pressure}. Dr. Y takes a sample of heart patients of age group (30 years -
50 years) admitted in different hospitals of the city. To give an understanding of the procedure, we take
a small sample U = {u1, u2, ....., u8} of eight patients, whose ages are shown in Table 1. Although, this
sample is too small for this study, one can take a sufficiently large sample and apply the algorithm.

Table 1. Ages of patients.

Patients u1 u2 u3 u4 u5 u6 u7 u8

Age (in years) 32 36 38 41 42 42 48 50

We divide the patients into four age groups, whose age (in years) is in interval [30 − 35), [35 − 40),
[40 − 45) or [45 − 50]. Define a relation ϑ on U such that two patients ui and u j are ϑ-related if
they belong to the same age group. Then, ϑ serves as an ER dividing U into equivalence classes {u1},
{u2, u3}, {u4, u5, u6} and {u7, u8}. The history and examination report of patients under consideration
taken by Dr. Y, is given by a BSS ð1 = (F,G,E) as shown in Table 2.

Table 2. History of patients.

ð1 u1 u2 u3 u4 u5 u6 u7 u8

e1 1 −1 1 1 1 1 −1 −1

e2 −1 1 1 −1 −1 1 1 1

e3 1 1 −1 1 0 −1 −1 1

e4 0 1 0 1 −1 −1 −1 0

e5 −1 1 0 −1 −1 1 1 −1

e6 1 −1 1 1 0 −1 1 −1

AIMS Mathematics Volume 8, Issue 8, 18185–18205.



18195

Recall that the (i, j)th entry in the matrices of ð1 and ð1 is bi j and ci j, respectively.
The Algorithm 1 designed to decide for the optimal attribute takes an ER, set of attributes E and

a BSS ð1 as input. As an output, the decision table is constructed with the columns of E and D,
rearranged in the descending order w.r.t di. Select k, so that, dk = max

i
di. Then ek is the best optimal

attribute. The decision table of ð1 is given in Table 3:

Table 3. Decision table of ð1.

E D
e2 6
e1 4
e3 2
e6 2
e4 0
e5 0

We get max
i

di = d2 = 6 and hence k = 2. And the second highest decision value is for k = 1.
Thus, Dr. Y comes to the result that the most dominant reason of so frequent heart attacks in younger
generation of the city X is firstly heavy drinking of alcohol (e2) and secondly heavy smoking (e1). This
indicates the excessive use of alcoholic drinks and heavy smoking in the city, which is to be controlled
on first preference in order to overcome the disease in younger generation. Moreover, the ranking
order among the attributes is given as follows:

e2 � e1 � e3 � e6 � e4 ≈ e5.

4.3. Deciding for the best composition of a medicine

While deciding in the favour of an object from a given collection of objects, sometimes it becomes
difficult to take the decision which is possibly the best. In that case, detecting the worst object can
also aid the decision-makers to sidestep the worst decision. The algorithm proposed in this subsection
pinpoints both, the best and the worst decision. This algorithm covers a vast variety of problems where
a decision is needed to be taken between some objects having different properties. We discuss here
a problem in which a pharmaceutical company requires to decide in the favour of a composition of a
particular medicine to be manufactured amongst five different compositions U = {m j : 1 ≤ j ≤ q} of
that medicine having different positive effects, say E = {ei : 1 ≤ i ≤ p} and side effects ¬E = {¬ei1 ≤
i ≤ p}. The information about medicines m j ∈ U is expressed as a BSS ð = (F,G,E) over U in matrix
form, whose (i, j)th entry ai j is defined as:

ai j =


1 if m j has effect ei

−1 if m j shows side effect ¬ei

0 otherwise
. (9)

Now we define the ERs on U associated with the BSS ð. Due to indiscernibility in U, we can
partition U into the following three classes for any ei ∈ E.

Ai = {m j ∈ U : ai j = 1}
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Bi = {m j ∈ U : ai j = −1}
Ci = {m j ∈ U : ai j = 0}.

These classes (if non-empty) can serve as equivalence classes by considering two objects to be
equivalent if they belong to the same class. Then, to each ei ∈ E, corresponds an ER, say ξ(ei) on U.
Denote

Ŕ =
⋂
ei∈E

ξ(ei). (10)

Then, Ŕ also gives an ER on U. This ER serves as our key tool to calculate the lower RBS
approximation ð and the upper RBS approximation ð. Denote the (i, j)th entry in the table of ð and ð
by bi j and ci j, respectively.

Moreover, this ER can also be expressed as

m j ∼ ml if aim = ail ∀ i = 1, 2, · · · , p.

Then the lower and upper approximations of the BSS ð are calculated in the similar way.

bi j = m
l
in{ail} such that m j = ml,

ci j = m
l
ax{ail} such that m j = ml.

Definition 4.3. The decision coefficient D has the values d j for each m j ∈ U, given by

d j =

p∑
i=1

(
bi j + ci j

)
. (11)

Note that the relation Ŕ in our problem is the identity relation. So ð2 is Ŕ-definable by
Proposition 3.5. The Algorithm 2 is designed to decide for the best, as well as, for the worst object and
it takes U and ð as input. As an output, the decision table is constructed with the columns of U and D,
rearranged in the descending order w.r.t d j. Select l and k, so that dl = min

j
d j and dk = max

j
d j. Then

mk is the best decision, while ml is the worst decision.

4.4. Algorithm 2

Step 1: Input the BSS ð = (F,G,E) in tabular form.

Step 2: Compute the ER Ŕ according to Eq (10).

Step 3: Compute ð and ð.

Step 4: Evaluate the values d j for each medicine m j ∈ U.

Step 5: Find dk = max
j

d j.

Step 6: If k has more than one value then choose any of mk.
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Example 4.4. Assume that a pharmaceutical company requires to decide in the favour of a
composition of a particular medicine to be manufactured amongst five different compositions U =

{m1,m2,m3,m4,m5} of that medicine having different positive effects, say E = {e1, e2, e3, e4, e5, e6} and
side effects ¬E = {¬e1,¬e2, e3,¬e4,¬e5,¬e6}. The information about medicines m j ∈ U is expressed
as a BSS ð2 = (F,G,E) over U given as follows (see Table 4):

Table 4. The BSS ð2.

ð2 m1 m2 m3 m4 m5

e1 0 −1 1 1 0

e2 1 1 −1 1 0

e3 0 −1 1 1 1

e4 −1 0 1 −1 1

e5 1 1 1 1 −1

e6 1 −1 1 1 −1

Now, for each ei ∈ E, corresponds an ERs on U, can be calculated using Table 4 as follows:

• ξ1 for e1: {m3,m4}, {m1,m5}, {m2},

• ξ2 for e2: {m1,m2,m4}, {m5}, {m3},

• ξ3 for e3: {m3,m4,m5}, {m1}, {m2}.

Therefore, Ŕ =
⋂

ei∈E

ξ(ei) = Identity relation.

Using the ER Ŕ, we can calculate ð2 and ð2 same as give in Tables 8 and 9.

The decision table of ð2 is given as in Table 5 as follows:

Table 5. Decision table of ð2.

U D

m3 8

m4 8

m1 4

m5 0

m2 −2

We get max
j

d j = d3 = d4 = 8 and min
j

d j = d2 = −2. Hence k = 3, 4 and l = 2. Thus, any one of

the medicines m3 and m4 can be manufactured, while m2 is the worst decision. Moreover, the ranking
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among the medicines is given as:

m3 ≈ m4 � m1 � m5 � m2.

5. Comparative study

This segment emphasizes the advantages of the proposed DM approaches and conducts a
comparison with few other techniques in a bipolar soft environment.

5.1. Advantages

Real-world DM problems typically appear in a complex environment under uncertain and imprecise
data, which is difficult to address. The suggested methods are highly suitable for the situation when
the data is complex, vague, and uncertain. particularly, when the existing data is relies on the bipolar
soft information. A few advantages of the suggested techniques are listed as follows:

(i) The suggested methods incorporates positive and negative aspects of each object in the form of a
BSS. These hybrid models are more generalized and suitable to tackle with DM problems consists
of bipolar soft information.

(ii) The proposed DM approaches are simple to understand and can be used to DM problems in
reality.

(iii) The advantages of suggested model can easily be judged from the Table 6 given below. In
Table 6, we compare the characteristics of the established method and the introduced approaches
in [12,13,17,24,41]. We conduct qualitative comparison from six features: Membership function
(MF), non-membership function (NMF), parametrization, roughness of an information system
(IS), ranking of alternatives and ranking of attributes to illustrate its superiority. From Table 6, it
can be observed that the proposed method has all listed characteristics, but the mentioned methods
do not have all of them.

Table 6. Characteristics comparison of different methods with proposed method.

Methods Characteristics

Handle
MF

Handle
NMF

Manage
parametization

Roughness
of an IS

Ranking of
alternatives

Ranking of
attributes

Çağman and Enginoglu [12] X 7 X 7 X 7

Çağman and Enginoglu [13] X 7 X 7 X 7

Fatimah et al. [17] X 7 X 7 X 7

Karaaslan and Karataş [24] X X X 7 X 7

Mahmood [41] X X X 7 X 7

Proposed Approach X X X X X X
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5.2. Comparison with other methods

There are many approaches in the literature useful for addressing various DM problems. Each of
these DM approaches has advantages and disadvantages of its own. The capacity of each method
depends on the problem under consideration. Here we conduct a comparison of the presented DM
techniques with few other DM methods in the fuzzy and bipolar fuzzy, and bipolar soft environments
and see the significance of the proposed DM strategies.

(i) If we compare our proposed strategies with the methods offered in [12–14, 17, 25, 26, 43], we
can observed that these methods cannot capture bipolarity in DM procedure which is an intrinsic
component of human thinking and cognition. Therefore, the suggested techniques in this work
have wider practicability and stronger effectiveness.

(ii) Several researchers presented different generalizations of SS theory and BSS theory (see [4, 12,
15, 24, 41]). But the roughness in these models is not investigated. Our work is a conglomeration
of RS theory and BSS theory, which is the distinctiveness and novelty of our work.

(iii) In the fuzzy and bipolar fuzzy DM settings, a MF is usually required to fuzzify the data. In the
suggested techniques, we have utilized the conception of the RBS approximations to derive the
uncertainty from the original set of data without additional adjustment and MFs. In hybrid fuzzy
and bipolar fuzzy methods, the MF depends on the choice and thinking of the decision-makers
which makes the results more biased.

(iv) When we apply the methods suggested in [4, 24, 40] to our case 4.3, we obtain the following
ranking among the objects displayed in Table 7. From Table 7, we observe that the optimal
solution via all methods is the same, making our technique is feasible and effective.

Table 7. Comparison with some other methods.

Methods Ranking
Al-shami [4] m3 ≈ m4 � m1 � m5 � m2

Karaaslan and Karataş [24] m3 ≈ m4 � m1 � m5 � m2

Shabir and Naz [40] m3 ≈ m4 � m1 � m5 � m2

Our proposed method m3 ≈ m4 � m1 � m5 � m2

6. Conclusions

RS and SS theories are successful tools to handle the uncertainty in the data, while the BSSs are
the suitable mathematical approach to handle the uncertainty and the bipolarity of the data. In this
work, we have introduced the concept of RBSSs as a hybridization of the RSs with the BSSs and used
this concept to two different DM problems. The first problem addresses the case where a decision is
needed to be taken between the attributes of some objects. We discussed the situation where the rate of
heart attacks in younger generation is increasing rapidly in a city. Algorithm 1 provided the decision
between the risk factors of heart attack which is becoming the most prominent cause. So that, the
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problem could be controlled. Second problem addresses the case where a pharmaceutical company
wishes to decide between different compositions of a particular medicine to be manufactured. Each
composition has different effects and side effects. Algorithm 2 provided the decision for the best, as
well as, the worst composition of that medicine. Both algorithms are multipurpose and can be applied
to many other similar problems.

In the future, based on the characterized idea in this article, scholars may also look at the algebraic
structures of RBSSs. Another perspective direction is to examine the topological properties of RBSSs
to seek a concrete foundation of the research studies and enhancement of working strategies. Moreover,
the notions of RBSSs could also be extended to fuzzy and multi-granulation environments, and
successful DM strategies can be developed. Furthermore, we will focus on the implementation of
the suggested framework in tackling a more extensive scope of selection techniques, like TOPSIS,
VIKOR, ELECTRE, AHP, and PROMETHEE.

Appendix

The two matrices ð1 and ð1 of data given in Example 4.2 are presented by Tables 8 and 9,
respectively.

Table 8. Lower approximation ð1 of ð1 = (F,G,E).

ð1 u1 u2 u3 u4 u5 u6 u7 u8 Bi

e1 1 −1 −1 1 1 1 −1 −1 0

e2 −1 1 1 −1 −1 −1 1 1 0

e3 1 −1 −1 −1 −1 −1 −1 −1 −6

e4 0 0 0 −1 −1 −1 −1 −1 −5

e5 −1 0 0 −1 −1 −1 −1 −1 −6

e6 1 −1 −1 −1 −1 −1 −1 −1 −6

Table 9. Upper approximation ð1 of ð1 = (F,G,E).

ð1 u1 u2 u3 u4 u5 u6 u7 u8 Ci

e1 1 1 1 1 1 1 −1 −1 4

e2 −1 1 1 1 1 1 1 1 6

e3 1 1 1 1 1 1 1 1 8

e4 0 1 1 1 1 1 0 0 5

e5 −1 1 1 1 1 1 1 1 6

e6 1 1 1 1 1 1 1 1 8

AIMS Mathematics Volume 8, Issue 8, 18185–18205.



18201

In Table 10 the values D j for each e j ∈ E, given by

D j =

p∑
j=1

(
B j + C j

)
(111)

Table 10. Decision.

E Bi Ci Di

e1 0 4 4

e2 0 6 6

e3 −6 8 2

e4 −5 5 0

e5 −6 6 0

e6 −6 8 2

The MATLAB code of Algorithms 1 and 2 are given below.

Algorithm 1: R=[1 0 0 0 0 0 0 0;
0 1 1 0 0 0 0 0;
0 0 0 1 1 1 0 0;
0 0 0 0 0 0 1 1];
E=[’e1’;’e2’;’e3’;’e4’;’e5’;’e6’];
M=[1 -1 1 1 1 1 -1 -1;
-1 1 1 -1 -1 1 1 1;
1 1 -1 1 0 -1 -1 1;
0 1 0 1 -1 -1 -1 0;
-1 1 0 -1 -1 1 1 -1;
1 -1 1 1 0 -1 1 -1];
for x=1:size(R,1)
I=find(R(x,:));
for y=1:sum(R(x,:))
Q(:,y)=M(:,I(y));
for y=1:sum(R(x,:))
B(:,I(y))=min(Q,[],2);
C(:,I(y))=max(Q,[],2);
clear Q
Smin=sum(B,2);
Smax=sum(C,2);
D=Smin+Smax;
DecisionTable=sortrows(table(E,D),2,’descend’)
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Algorithm 2: R=[1 0 0 0 0;
0 1 0 0 0;
0 0 1 0 0;
0 0 0 1 0;
0 0 0 0 1];
U=[’m1’;’m2’;’m3’;’m4’;’m5’];
M=[0 -1 1 1 0;
1 1 -1 1 0;
0 -1 1 1 1;
-1 0 1 -1 1;
1 1 1 1 -1;
1 -1 1 1 -1];
for x=1:size(R,1)
I=find(R(x,:));
for y=1:sum(R(x,:))
Q(:,y)=M(:,I(y));
for y=1:sum(R(x,:))
B(:,I(y))=min(Q,[],2);
C(:,I(y))=max(Q,[],2);
clear Q
Smin=sum(B,1)’;
Smax=sum(C,1)’;
D=Smin+Smax;
DecisionTable=sortrows(table(U,D),2,’descend’)
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