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Abstract: In this article, the impact of fluid flow and vibration on the acoustics of a subsonic flow
is examined. Specifically, it focuses on the noise generated by a convective gust in uniform flow that
is scattered by a vibrating plate of limited size. The study analyzes the interaction between acoustics
and structures by considering the scattering of sound waves by a soft finite barrier. To achieve this,
the Wiener-Hopf technique is utilized for the analytical treatment of the acoustic model. The approach
involves performing temporal and spatial Fourier transforms on the governing convective boundary
value problem, then formulating the resulting Wiener-Hopf equations. The product decomposition
theorem, an extended version of Liouville’s theorem, and analytic continuation are employed to solve
these equations. Finally, the scattered potential integral equations are computed asymptotically. This
study can be significant for understanding the acoustic properties of structures and how they interact
with fluid flow in subsonic environments, which could have applications in fields such as aerospace
engineering, noise reduction, and structural acoustics.
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1. Introduction

The technology of commercial aviation has motivated to development of the theory of flow-
generated sound to a large extent. This phenomenon is not significant only in the aircraft and ballistic
missile industry, where the noise generation while taking off and landing is an important factor, but
also plays a vital role in the automotive and computer industry, even in buildings and housing where
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noise due to air flow becomes a big deal as a selling argument. Therefore, the phenomenon of acoustic
propagation and generation in fluid flow has become an important feature in the mathematical study.
Concerning the defense system, the countries possessing extensive coastlines require a dire need of
protection of water regions adjacent to the land and maritime borders. Foremost is the development
and improvement of active and passive Sonar systems to assist the military struggle widely at sea.
In an active sonar system, the transducers radiate a pulse of sound signal in water. When the object
is located in the path of sound signals, on interaction with the object, the signals scatter, bounce off
the object, and return to an echo to the transducer. Sonar was used to emit the acoustic signal for
investigation of scattering effects of the cross board, square plate, and spherical object as geometrical
markers positioned on the dam face in the underwater reservoir [1]. The outcomes showed that
scattered sound pressure levels (SPL) due to cross board had larger values than those of due to the
square plate and spherical object. An acoustic scattering model was proposed for the target-recognition
procedure in sonar system [2]. The model predicted that acoustic scattering from the objects immersed
in the water can be calculated with less cost of computation and less time as compared to numerical
models, particularly in 3-Dimensional space. The scattering of acoustic waves by an elastic cylindrical
obstacle produced the cylindrical pattern which made the obstacle act as an infinite target [3]. This
model elaborated the sonar effects practically.

In recent times, noise has emerged as a significant problem for the surrounding environment.
Because of this, scientists have been motivated to work on developing methods to control noise. In
order to accomplish this, the barriers that each have their own unique qualities have been utilized [4,5].
Modeling the wave-guide structure allows for investigation into the potential for a reduction in the
amount of acoustic oscillations caused by combustion engines [6]. Analytical methods such as the
Mode-Matching Method [7, 8],

(
m + G′

G

)
-expansion technique [9], and the Wiener-Hopf technique are

being incorporated for solving the acoustic problems. The Wiener-Hopf technique [10, 11] is capable
of tackling the problems of acoustic scattering by canonical structures of finite length since such types
of models are configured with mixed boundary conditions: a velocity on the strip y = 0, p < x < q
and pressure continuity off the strip y = 0, x < p, x > q. With such kind of two mixed conditions, one
develops a Wiener-Hopf model in 1D (or scalar) form which requires multiplicative factorization of the
kernel function K (α) , that is K (α) = K+ (α) K− (α), where the factors K+ (α) and K− (α) are analytic in
up and down regions of complex α-plane, respectively. Analytic factorization in a few problems is very
convenient like the Sommerfeld diffraction phenomenon [12] and diffraction by canonical structures of
finite dimensions with first kind [13–15] and second kind [16,17] of boundary conditions, whereas little
complicated in problems of such structures with third type [18–20] of boundary conditions. Wiener-
Hopf formulation of acoustic problems has been devised for the noise scattering phenomena in moving
fluid [21–23] as well as by vibrating planes [24–26] to inspect the acoustic attenuation by using barriers
for noise control.

This study aims to investigate noise scattering by a soft plate that vibrates in a fluid in motion. The
desired outcome is achieved by having the solution to separate WH-equations, and the generalized
Fourier units are determined for respective vibration pattern. The scattering generated by the plate’s
edges includes both separated and interaction fields. This study appears to be the first effort to explore
the acoustic-structure interacting the vibrating plate and the moving fluid in the context of scattering
theory. Thus, the article being discussed examines the impact of fluid flow and vibration on the
acoustics of a subsonic flow, which is extension of the work by Ayub et al. [25] which analyzes the
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diffraction problem via an oscillating thin strip using the Kirchhoff diffraction theory and the Wiener-
Hopf technique. The current study utilizes the later for the analytical treatment of the acoustic model
and also mentions the sound scattering via a soft finite barrier and the use of asymptotic computation
of scattered potential integral equations. The present study shares a similar geometric structure
with Ayub et al. [25] when the Mach number is taken to be zero, assuming that the fluid or gas is
incompressible, and the wave equation simplifies to a simple wave equation. However, the assumption
of incompressibility may not always be valid, especially for high-frequency sound waves or high-speed
flows, in which case the full compressible wave equation should be used. Overall, the present study
investigates a different problem related to noise scattering, although it shares some similarities with the
work by Ayub et al. [25]. Moreover, the reference to Javaid et al. [13] serves as additional validation
of the mathematical analysis performed in the current study as the findings are consistent with those of
a previous study, which strengthens the reliability of the current study’s results.

Nomenclature
Cn Fourier coefficients M Mach number
ω0 Radian frequency of oscillating plate v Perturbed velocity
ωi Radian frequency of incident wave U Magnitude of velocity of moving fluid
T0 Time period of oscillating plate ψ Velocity potential
k0 Wave-number of oscillating plate ψi Incident plane wave
ki Wave-number of incident plate ψs Scattered potential
k Wave-number of Scattered sound ρ0 Density
p (x, y, t) Pressure generated in the sound wave field cs Speed of sound
Wm,n Whittaker function

2. Formulation of the problem

This model is proposed for sound scattering by finite soft plane p < x < q, y = 0, which is vibrating
vertically with velocity u0 f (t), and periodic function of time t, f (t) is revealed to be the following
Fourier series in a general:

f (t) =
∞∑
−∞

Cneinω0t, (2.1)

with

Cn =
1
T0

∞∫
−∞

f (t)e−inω0tdt, (2.2)

and

ω0 =
2π
T0

(, 0). (2.3)

To investigate the effects of a vibrating soft plane on sound scattering in a moving fluid with U,
we assume that sound is incident with velocity potential ψ (x, y) exp (ik3z) and interacts with a finite
impermeable soft plane p < x < q, y = 0 as shown in Figure 1. The direction of oscillation of a finite
plane placed horizontally is orthogonal to the direction of background mean flow with Mach number
M in positive x-direction.
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Figure 1. Geometrical structure of the acoustic interacting the finite length plate which is
vibrating vertically in the uniformly moving fluid.

The velocity potential ψ (x, y, t) for irrotational sound wave is associated with v such that v =
∇ψ (x, y, t). The pressure expression is written by

p (x, y, t) = −ρ0 (∂t + U∂x)ψ (x, y, t) , (2.4)

The governing convective wave equation for ψ (x, y, t) is expressed as

∆ψ −

(
1
cs
∂t + M∂x

)2

ψ = 0, (2.5)

with ∆ as 2D Laplacian operator and M = U/cs.
A gust with ki incident at θi to the vibrating plane is described by velocity potential

ψi = ϕi exp [−iωit] , 0 < θi < π, (2.6)

with ωi = cski.
The total field is described as

ψtot (x, y, t) = ψi (x, y, t) + ψs (x, y, t) , (2.7)

where ψs (x, y, t) satisfies the wave Eq (2.5) .
The completely impermeable body does not let the incoming wave penetrate its surface,

consequently, the wave incident on the surface is entirely reflected. Therefore, the nature of vibrating
plate is specified by the following boundary conditions continuous across the region y = 0, p < x < q:

ψs (x, y, t) + ψi (x, y, t) = u0 f (t), y = 0, p < x < q. (2.8)
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The continuity of ψs and ∂yψs (can be denoted by ψ′s) across y = 0 is required and is given by

ψs (x, 0+, t) = ψs (x, 0−, t) ,
∂yψs (x, 0+, t) = ∂yψs (x, 0−, t) ,

y = 0, x < p, x > q. (2.9)

It is required for ψs to obey the radiation condition for outgoing waves

lim
r→∞

r−1/2 (∂rψs − ikiψs) = 0, where r =
√

x2 + y2, (2.10)

and the conditions near the edges of plate are here as in [10].

ψs (x, 0)→ c1, as x→ p−,
ψs (x, 0)→ c2, as x→ q−,

∂yψs (x, 0)→ c3x−1/2, as x→ p+,
∂yψs (x, 0)→ c4x−1/2, as x→ q+,

(2.11)

with ci as constants.

3. Transformation of the problem

Let ϕs (x, y, ω) be the temporal Fourier transform,

ϕs (x, y, ω) =
∫ ∞

−∞

ψs (x, y, t) eiωtdt. (3.1)

Applying the temporal Fourier transform to Eqs (2.5), (2.8) and (2.9) yields[(
1 − M2

)
∂2

x + ∂
2
y + 2iM∂x + k2

]
ϕs = 0, (3.2)

with k = ω/cs = kR + ikI , kI > 0.

ϕs (x, y, ω) + 2πδ (ω − ωi) ϕi (x, y) = u0F (ω) , (3.3)

with

F(ω) = 2π
∞∑
−∞

Cnδ(ω − nω0). (3.4)

and
ϕs (x, 0+, ω) = ϕs (x, 0−, ω) ,

∂yϕs (x, 0+, ω) = ∂yϕs (x, 0−, ω) ,
y = 0. (3.5)

While having the subsonic flow assumption (|M| < 1), the transformation is made such that

x =
√

1 − M2X, y = Y, k =
√

1 − M2K , (3.6)

along with
ϕs (x, y, ω) = Φs (X,Y, ω) e−iKMX. (3.7)

Employing substitution (3.7) together with Eq (3.2) to (3.6), the equation reduces to

∂2
XΦs + ∂

2
YΦs +K

2Φs = 0. (3.8)
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Using same substitution with ϕi (x, y) = Φi (X,Y) e−iKMX, we have

Φs (X, 0, ω) + 2πδ (ω − ωi)Φi (X, 0) = u0F (ω) eiKMX, (3.9)

where Φi (X,Y) is the incident on the vibrating plane and is expressed as [29]:

Φi (X,Y) = e−iKi(X cosΘi+Y sinΘi). (3.10)

After use of substitution (3.7) along with (3.6) in Eq (3.3), we have the result as follows:

Φs (X, 0, ω) + 2πδ (ω − ωi) e−iKi cosΘi = u0F (ω) eiKMX, (3.11)

and similarly Eq (2.9) transforms to

Φs (X, 0+, ω) = Φs (X, 0−, ω) ,
∂YΦs (X, 0+, ω) = ∂YΦs (X, 0−, ω) ,

Y = 0. (3.12)

Let the spatial Fourier transform with respect to X be defined as

Φ̃s (α,Y, ω) =
∫ ∞

−∞

Φs (X,Y, ω) eiαXdX, (3.13)

with
Φ̃s (α,Y, ω) = eiαqΦ̃+ (α,Y, ω) + Φ̃L (α,Y, ω) + eiαpΦ̃− (α,Y, ω) , (3.14)

where
Φ̃+ (α,Y, ω) =

∫ ∞

q
Φs (X,Y, ω) eiα(X−q)dX, (3.15)

Φ̃− (α,Y, ω) =
∫ p

−∞

Φs (X,Y, ω) eiα(X−p)dX, (3.16)

Φ̃L (α,Y, ω) =
∫ q

p
Φs (X,Y, ω) eiαXdX. (3.17)

The spatial Fourier transformation of (3.8), (3.9) and (3.12) yields[
∂2

Y − γ
2 (α)

]
Φ̃s = 0, (3.18)

with γ (α) =
√
α2 − K2.

Φ̃L (α, 0, ω) − 2πiδ (ω − ωi) Φ̃i (α,Y)

= u0F (ω)
[
e−i(α+Ki M)q − e−i(α+Ki M)p

i (α +KiM)

]
,

(3.19)

where

Φ̃i (α,Y) =
e−i(α−Ki cosΘi)q − e−i(α−Ki cosΘi)p

i (α − Ki cosΘi)
(3.20)

Φ̃s (α, 0+, ω) = Φ̃s (α, 0−, ω) ,
∂YΦ̃s (α, 0+, ω) = ∂YΦ̃s (α, 0−, ω) ,

Y = 0. (3.21)
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4. Wiener-Hopf analysis

4.1. Formulation of Wiener-Hopf equation

The governing equation possesses the solution of the form

Φ̃s (α,Y, ω) = sgn (Y) A (α, ω) e−γ|Y |, (4.1)

Now the combination of (3.14) and (4.1) , results into

∓A (α, ω) γ (α) = eiαqΦ̃′+ (α, 0±, ω) + Φ̃′L (α, 0±, ω) + eiαpΦ̃′− (α, 0±, ω) , (4.2)

After basic algebraic operations (addition and subtraction) for the pair of Eq (4.2) along with the
use of condition (3.21), the outcome is

eiαqΦ̃′+ (α, 0, ω) +J1 (α, 0, ω) + eiαpΦ̃′− (α, 0, ω) = 0, (4.3)

and
A (α, ω) = −

1
γ (α)

J2 (α, 0, ω) , (4.4)

where
J1,2(α, 0, ω) =

1
2

[
Φ̃′L (α, 0+, ω) ± Φ̃′L (α, 0−, ω)

]
. (4.5)

The following Wiener-Hopf equation is computed through Eqs (3.14), (3.19) and (4.1):

eiαqΦ̃+ (α, 0, ω) + S (α)J2 (α, 0, ω) + eiαpΦ̃− (α, 0, ω) = AG (α) + iu0F (ω)V (α) , (4.6)

where
A = −2πiδ (ω − ωi) , (4.7)

S (α) =
1

γ (α)
, (4.8)

G (α) =
e−i(α−Ki cosΘi)q − e−i(α−Ki cosΘi)p

(α − Ki cosΘi)
. (4.9)

V (α) =
ei(α+KM)q − ei(α+KM)p

(α +KM)
. (4.10)

4.2. Wiener-Hopf factorization

Equations (4.3) and (4.6) represent the Wiener-Hopf equations of standard form. To compute the
problem, we must address Eq (4.6) using the Wiener-Hopf procedure [10]. To do this, we require the
decomposition of the kernel, which can be accomplished using the following theorem, as elaborated
in [10, 11]:
Theorem: “Suppose that F̃ (α) is a function that is analytic in the strip τ− < Imα > τ+, and F̃ (α)
approaches zero uniformly in the strip as |α| → ∞. Then, we can factorize F̃ (α) as

F̃ (α) = F̃+ (α) F̃− (α) , (4.11)
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where F̃+ (−α) = F̃− (α), F+(α) is analytic in the domain Im{α} > τ−, and F̃− (α) is analytic in the
domain Im{α} < τ+, as shown in Figure 2.”

o



𝜏−

𝜏+

= +i 

𝐹+  analytic

𝐹−  analytic

Figure 2. Common strip of analyticity in complex α-plane.

The kernel function S (α), which is defined by Eq (4.8), can be factorized using the above theorem
into two parts:

S (α) =
1

γ+ (α) γ− (α)
= S+ (α)S− (α) , (4.12)

where S+ (α) is regular in the upper half plane (Im (α) > −Im (K)) and S− (α) is regular in the lower
half plane (Im (α) < Im (K)). This factorization is plugged in Eq (4.6) to obtain the following form
of Wiener-Hopf equation:

eiαqΦ̃+ (α, 0, ω) + S+ (α)S− (α)J2 (α, 0, ω) + eiαpΦ̃− (α, 0, ω) = AG (α) + iu0F (ω)V (α) , (4.13)

4.3. Solution of Wiener-Hopf equation

Equation of the form (4.6) has been devised through Wiener-Hopf theory [10] and we need to
introduce a polynomial function P (α) such that the parts of Eq (4.13) analytic in the upper and lower
region are equated to this entire polynomial function. P (α) is evaluated through the extension of
Liouville’s theorem [10] and analytic continuation [10, 11] which are stated as follows:
Liouville’s Theorem: “This remarks that any function f (ζ) that is bounded by M|ζ |p as |ζ | → ∞,
where M and p are constants, must be a polynomial of degree no greater than

[
p
]
. In other words, if a

function grows no faster than a polynomial, then it must be a polynomial of a certain degree or less.”
And
Analytic Continuation: “The principle of analytic continuation states that if two analytic functions,
f1 and f2, defined on domains Ω1 and Ω2, respectively, agree on the intersection Ω1 ∩Ω2, then f2 is an
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analytic continuation of f1 to Ω2, and vice versa. Furthermore, if such an analytic continuation of f1

to Ω2 exists, it is unique.”
By applying Liouville’s theorem and the process of analytic continuation process (as depicted in

Figure 2), we establish that J (α) = 0. As a result, we earn the subsequent outcomes.

Φ̃± (α, 0, ω) = AS+ (±α) [G1 (±α) + T (±α)S+(K)C1]
+ iu0F (ω)S+ (±α)

[
H1,2 (±α) + T (±α)S+ (K)D

]
,

(4.14)

and where

A = −2πiδ (ω − ωi) (4.15)

G1 (α) =
e−i(Ki cosΘi)q

(α − Ki cosΘi)

[
1

S+ (α)
−

1
S+ (Ki cosΘi)

]
− ei(Ki cosΘi)pR1 (α) , (4.16)

G2 (α) =
e−i(Ki cosΘi)p

(α +Ki cosΘi)

[
1

S+ (α)
−

1
S+ (−Ki cosΘi)

]
− ei(Ki cosΘi)qR2 (α) , (4.17)

C1,2 =

[
G2,1 (K) + S+ (K)G1,2 (K)T (K)

1 − S2
+ (K)T 2 (K)

]
, (4.18)

and

H1,2 (α) =
1

(±α +KM)

[
1

S+ (±α)
−

1
S+ (−KM)

]
(4.19)

D =
T (K)

K
[
1 − S2

+ (K)T 2 (K)
] [

1
S+ (K)

−
1

S+ (−KM)

]
−

T (K)

K
[
1 − S2

+ (K)T 2 (K)
] , (4.20)

R1,2 (α) =
[W−1{−i (K ±Ki cosΘi) (q − p)} −W−1{−i (K + α) (q − p)}]E−1

2πi(α ∓ Ki cosΘi)
, (4.21)

T (α) =
1

2πi
E−1W−1{−i (K + α) (q − p)}, (4.22)

E−1 = 2ei π4 eiK(q−p) (q − p)
−1

(i)
−1
2 h−1, (4.23)

where h−1 = ei π4

Wn− 1
2

(z) =
∫ ∞

0

une−u

u + z
du = Γ (n + 1) e

z
2 z

n
2−

1
2W− 1

2 (n+1), n
2
(z), (4.24)

where z = −i (K + α) (q − p).
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Substituting Eq (4.14) along with Eqs (4.16)–(4.20) in Eq (4.6), we get

A (α, ω) = −
1
S (α)



AS+(−α) exp[−i(α−Ki cosΘi)p]
S+(−Ki cosΘi)(α−Ki cosΘi)

−
AS+(α) exp[−i(α−Ki cosΘi)q]
S−(Ki cosΘi)(α−Ki cosΘi)

+
iu0F(ω) exp[iαq]

(α+KM) −
iu0F(ω) exp[iαp]

(α−KM)

−
iu0F(ω) exp[iαp]

(α−KM)

(
exp

[
i (α +KM) q

]
− exp

[
i (α +KM) p

])
−

iu0F(ω)S+(α) exp[iαq]
(α+KM)S+(−KM) +

iu0F(ω)S+(α) exp[iαp]
(α−KM)S+(−KM)



−
1
S (α)



AT (α)S+ (α)S+ (K)C1 exp
[
iαq

]
−AS+ (α) exp

[
iαq − i (Ki cosΘi) p

]
R1 (α)

+
T (α)T (K)S+(K)S+(α)iu0F(ω) exp[iαq]

K[1−S2
+(K)T 2(K)]

[
1

S+(K) −
1

S+(−KM)

]
−
T (α)T (K)S+(K)S+(α)iu0F(ω) exp[iαq]

K[1−S2
+(K)T 2(K)]

+AT (−α)S+(−α)S+ (K)C2 exp
[
iαp

]
−AS+ (−α) exp

[
iαp − i (Ki cosΘi) q

]
R2 (−α)

+
T (−α)T (K)S+(K)S+(−α)iu0F(ω) exp[iαp]

K[1−S2
+(K)T 2(K)]

[
1

S+(K) −
1

S+(−KM)

]
−
T (−α)T (K)S+(K)S+(−α)iu0F(ω) exp[iαp]

K[1−S2
+(K)T 2(K)]



(4.25)

Here, Φs(X,Y, ω) can be sorted out while employing the inverse of the Fourier transform to Eq (4.1),
i.e.,

Φs (X,Y, ω) =
1

2π

∞∫
−∞

Φ̃s (α,Y, ω) e−iαXdα =
1

2π

∞∫
−∞

A (α, ω) e−γ|Y |−iαXdα. (4.26)

Now, Φs (X,Y, ω) is separated as

Φs (X,Y, ω) = Φsep (X,Y, ω) + Φint (X,Y, ω) , (4.27)

where Φsep (X,Y, ω) and Φint (X,Y, ω) are as follows:

Φsep (X,Y, ω) =
1

2π

∞∫
−∞

Asep (α, ω) e−γ|Y |−iαXdα. (4.28)

Φint (X,Y, ω) =
1

2π

∞∫
−∞

Aint (α, ω) e−γ|Y |−iαXdα, (4.29)

where Asep (α, ω) and Aint (α, ω) can be extracted from the result (4.25) as:

Asep (α, ω) = −
1
S (α)



AS+(−α) exp[−i(α−Ki cosΘi)p]
S+(−Ki cosΘi)(α−Ki cosΘi)

−
AS+(α) exp[−i(α−Ki cosΘi)q]
S−(Ki cosΘi)(α−Ki cosΘi)

+
iu0F(ω) exp[iαq]

(α+KM) −
iu0F(ω) exp[iαp]

(α−KM)

−
iu0F(ω) exp[iαp]

(α−KM)

(
exp

[
i (α +KM) q

]
− exp

[
i (α +KM) p

])
−

iu0F(ω)S+(α) exp[iαq]
(α+KM)S+(−KM) +

iu0F(ω)S+(α) exp[iαp]
(α−KM)S+(−KM)


(4.30)
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Aint (α, ω) = −
1
S (α)



AT (α)S+ (α)S+ (K)C1 exp
[
iαq

]
−AS+ (α) exp

[
iαq − i (Ki cosΘi) p

]
R1 (α)

+
T (α)T (K)S+(K)S+(α)iu0F(ω) exp[iαq]

K[1−S2
+(K)T 2(K)]

[
1

S+(K) −
1

S+(−KM)

]
−
T (α)T (K)S+(K)S+(α)iu0F(ω) exp[iαq]

K[1−S2
+(K)T 2(K)]

+AT (−α)S+(−α)S+ (K)C2 exp
[
iαp

]
−AS+ (−α) exp

[
iαp − i (Ki cosΘi) q

]
R2 (−α)

+
T (−α)T (K)S+(K)S+(−α)iu0F(ω) exp[iαp]

K[1−S2
+(K)T 2(K)]

[
1

S+(K) −
1

S+(−KM)

]
−
T (−α)T (K)S+(K)S+(−α)iu0F(ω) exp[iαp]

K[1−S2
+(K)T 2(K)]



(4.31)

Both edges x = p and x = q of the plate generate scattering in subsonic flow which is presented by
Φs (X,Y, ω) in the frequency domain.

5. Asymptotic results of far field

To compute the far field, we can use the integral expression (4.26) and evaluate it asymptotically. In
order to do this, we first make a substitution of variables, namely X = R cosΘ and |Y | = R sinΘ. Next,
we deform the contour of integration by applying a transformation to a new variable α, which takes the
form α = −K cos(Θ + iξ), where Θ ranges from 0 to π and ξ from −∞ to∞.

As we takeKR to be large, the expression (4.26) asymptotically simplifies, allowing us to obtain the
far field. Specifically, we can evaluate the integral by using a stationary phase approximation [30] and
the resulting expression provides a good approximation of the far field. This method is commonly used
in various fields of physics, such as electromagnetism, optics, and acoustics, to study the propagation
of waves and radiation.

Φs (X,Y, ω) ∼
iK
2π

√
2π
KR

A (−K cosΘ, ω) sinΘeiKR+i π4 . (5.1)

Similarly,

Φsep (X,Y, ω) ∼
iK
2π

√
2π
KR

Asep (−K cosΘ, ω) sinΘeiKR+i π4 , (5.2)

and

Φint (X,Y, ω) ∼
iK
2π

√
2π
KR

Aint (−K cosΘ, ω) sinΘeiKR+i π4 . (5.3)

The desired outcome of the scattered field with frequency domain can be obtained by plugging
Eq (5.1) in Eq (3.7) as follows:

ϕs (x, y, ω) ∼
iK
2π

√
2π
KR

A (−K cosΘ, ω) sinΘeiKR(1−M cosΘ)+i π4 . (5.4)

The scattered field with time domain ψs (x, y, t) is computed after operating the inverse temporal
transform

ψs (x, y, t) =
1

2π

∫ ∞

−∞

ϕs (x, y, ω) e−iωtdt. (5.5)
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ψs (x, y, t) ∼
iK
2π

√
2π
KR

ζ (−K cosΘ) sinΘeiKR(1−M cosΘ)+i π4−iωit

+
iK
2π

√
2π
KR

η (−K cosΘ) sinΘ
∞∑
−∞

CneiKR(1−M cosΘ)+i π4−inω0t,

(5.6)

where

ζ (−K cosΘ) = −
Ki sinΘi

S (−K cosΘ)



−
S+(K cosΘ) exp[−i(−K cosΘ−Ki cosΘi)p]
S+(−Ki cosΘi)(−K cosΘ−Ki cosΘi)

+
S+(−K cosΘ) exp[−i(−K cosΘ−Ki cosΘi)q]

S−(Ki cosΘi)(−K cosΘ−Ki cosΘi)

−S+ (K)T (K cosΘ)S+ (K cosΘ)C2 exp
[
−i (K cosΘ) p

]
−S+ (K)T (−K cosΘ)S+ (−K cosΘ)C1 exp

[
−i (K cosΘ) q

]
+S+ (K cosΘ) exp

[
−i (K cosΘ) p − i (Ki cosΘi) q

]
R2 (K cosΘ)

+S+ (−K cosΘ) exp
[
−i (K cosΘ) q − i (Ki cosΘi) p

]
R1 (−K cosΘ) ,


(5.7)

η (−K cosΘ) = −
iu0

S (−K cosΘ)



(
exp[−i(K cosΘ)q]
(−K cosΘ+KM) −

exp[−i(K cosΘ)p]
(−K cosΘ−KM)

)
+

(
exp[i(−K cosΘ+KM)p]−exp[i(−K cosΘ+KM)q]

(−K cosΘ−KM)

)
−

(
S+(−K cosΘ) exp[−i(K cosΘ)p]

(α+KM)S+(−KM) +
S+(−K cosΘ) exp[−i(K cosΘ)q]

(−K cosΘ−KM)S+(−KM)

)
+
T (−K cosΘ)T (K)S+(K)S+(−K cosΘ) exp[−i(K cosΘ)q]

K[1−S2
+(K)T 2(K)]

[
1

γ+(K) −
1

S+(−KM)

]
−

(
T (α)T (K)S+(K)S+(−K cosΘ) exp[−i(K cosΘ)q]

K[1−S2
+(K)T 2(K)]

)
+
T (K cosΘ)T (K)S+(K)S+(K cosΘ) exp[−i(K cosΘ)p]

K[1−S2
+(K)T 2(K)]

[
1

S+(K) −
1

S+(−KM)

]
−
T (K cosΘ)T (K)S+(K)S+(K cosΘ) exp[−i(K cosΘ)p]

K[1−S2
+(K)T 2(K)] ,



(5.8)

with

R = r

√
1 − M2 sin2 θ

1 − M2 , cosΘ =
cos θ√

1 − M2 sin2 θ
,

sinΘ =

√
1 − M2 sin θ√
1 − M2 sin2 θ

, K =
k

√
1 − M2

.

(5.9)

The desired outcome ψs (x, y, t) in Eq (5.6) presents the scattered field in time domain with ζ and η,
as given in Eq (5.7) and Eq (5.8), respectively, being the coefficient functions of scattered field. One
corresponds to the incident wave field and other to the vibration of plate.
Remarks: Mathematically, the current study is the extended version of finite oscillating strip
problem [25] and scattering coefficient A (α, ω) corresponding to the geometrical structure of [25] can
be recovered by setting M = 0, p = −l and q = 0 as follows:
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A (α, ω) = −
1
S (α)


AS+(−α) exp[i(α−ki cos θi)l]
S+(−ki cos θi)(α−ki cos θi)

−
AS+(α)

S−(ki cos θi)(α−ki cos θi)

+
iu0F(ω)

α
−

iu0F(ω) exp[−iαl]
α

−
iu0F(ω)

α

(
1 − exp [−iαl]

)
−

iu0F(ω)S+(α)
αS+(0) +

iu0F(ω)S+(α) exp[−iαl]
αS+(0)



−
1
S (α)



AT (α)S+ (α)S+ (k)C1

−AS+ (α) exp [i (ki cos θi) l]R1 (α)
+
T (α)T (k)γ+(k)S+(α)iu0F(ω)

k[1−S2
+(k)T 2(k)]

[
1
S+(k) −

1
S+(0)

]
−
T (α)T (k)S+(k)S+(α)iu0F(ω)

k[1−S2
+(k)T 2(k)]

+AT (−α)S+(−α)S+ (k)C2 exp [−iαl]
−AS+ (−α) exp [−iαl]R2 (−α)

+
T (−α)T (k)S+(k)S+(−α)iu0F(ω) exp[−iαl]

k[1−S2
+(k)T 2(k)]

[
1
S+(k) −

1
S+(0)

]
−
T (−α)T (k)S+(k)S+(−α)iu0F(ω) exp[−iαl]

k[1−S2
+(k)T 2(k)]



(5.10)

Which is the diffraction coefficient function for the finite non-symmetric oscillating strip [25].

6. Graphical results and discussion

The scattered potential function is strongly dependent on the physical parameters θi, M, ω0t, ωit,
and corresponding results are sketched. When a sound wave encounters an oscillating object in a fluid,
it can create a pressure gradient around the object, which generates a net force on the object. The
magnitude and direction of this force depend on the frequency, amplitude, and phase of the sound
wave as well as the geometry and material properties of the object. The incident angle of the sound
wave can also affect the direction of the resulting force, as it can change the distribution of pressure
around the object. To see this effect, the scattered potential for θi = π/6, π/4, π/3 are plotted under
different cases of flow. Three sharp peaks of scattered potential at θ = 5π/6, 3π/4, 2π/3 for respective
incident acoustic show the reflected shadow boundary as portrayed by Figures 3 and 4. One noticeable
thing is that sharp peaks, coinciding near θ = π/3 in Figure 3(a), appear in the case of mean flow
(M=0.5) whereas the same effect appears between θ = π/6 and θ = π/3 for M=0.9, this happens due
to the interaction of subsonic flow with scattered potential. But no such effect is seen in the case of
no fluid flow (M=0.0) as pictured in Figures 3(a) and 4(a). Moreover, the scattered potential has more
oscillatory behavior in the high subsonic flow as pictured in Figures 3(c) and 4(c) as compared to that of
with mean flow Figures 3(b) and 4(b) and no fluid flow Figures 3(a) and 4(a). Figures 5 and 6 elaborate
the scattered potential for variation of M for different frequencies of vibrating plate. In this study, the
types of vibrations of plate are considered here as in [26–28]. The outcomes reveal that the amplitude of
the scattered potential exhibits an incremental trend in the case of a larger frequency of vibrating plate
as pictured in Figures 5(c) and 6(c). In the mean flow, the scattered potential seems to be attenuated.
The impact of the vibrating plate on the scattered potential is portrayed in Figures 7 and 8. The results
explore that the scattered sound gets amplified by enhancing the vibrations of the plate. Moreover,
the scattered sound gets more vibrated in high subsonic flow Figures 7(c) and 8(c) as compared to
the scattered sound in the mean flow Figures 7(b) and 8(b) and in no fluid flow Figures 7(a) and 8(a).
The common factor of the scattered potential is nullity around θ = 0, π. In the case of nullity at
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θ = 0, the interference is likely constructive, meaning that the scattered waves reinforce each other
and lead to a strong increase in amplitude. However, at the same time, this interference can result in
a significant decrease in the scattered field at other angles, leading to the observed nullity. Similarly,
at θ = π, the interference is likely destructive, meaning that the scattered waves cancel each other
out, resulting in a significant decrease in amplitude. As a result, the scattered field is significantly
reduced in magnitude, leading to the observed nullity. Therefore, we can relate these interference
effects to the physical properties of the oscillating plate, such as its size, shape, and material properties.
We can also discuss the potential implications of these interference effects for applications such as
acoustic imaging or sensing. For example, in some cases, nullity may be desirable, as it can lead to a
reduction in unwanted reflections or noise in the measured signal. Overall, the presence of nullity in
the scattered field of acoustic waves by a soft oscillating plate of finite length highlights the complex
wave-structure interactions that occur in acoustic systems and the importance of accurately modeling
and understanding these interactions for a wide range of applications.

From above observations, it is noticed that scattering of acoustic waves incident on a soft oscillating
plate of finite length in a moving fluid has many practical applications. For example, it can be used to
design acoustic filters and resonators, where the plate is used to selectively transmit or reflect certain
frequencies of the incident wave. It can also be used in the field of acoustophoresis, where the plate is
used to manipulate particles or cells suspended in the fluid by inducing acoustic radiation forces.
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Figure 3. Rectangular plot: measure of scattered field for θi with p = −5, q = 5, ω0t = i,
ωit = i, when (a) M = 0.0 (no fluid flow), (b) M = 0.5 (mean flow) and (c) M = 0.9.

AIMS Mathematics Volume 8, Issue 8, 18066–18087.



18080

-60 -40 -20 20 40 60

50

100

θi 
π

6

θi 
π

4

θi 
π

3

(a)

-50 50

-50

50

100

θi 
π

6

θi 
π

4

θi 
π

3

(b)

-100 -50 50

-50

50

100

θi 
π

6

θi 
π

4

θi 
π

3

(c)

Figure 4. Polar plot: measure of scattered field for θi with p = −5, q = 5, ω0t = i, ωit = i,
when (a) M = 0.0 (no fluid flow), (b) M = 0.5 (mean flow) and (c) M = 0.9.

AIMS Mathematics Volume 8, Issue 8, 18066–18087.



18081

0 π

6

π

3

π

2

2π

3

5π

6

π
-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

θ

ψ
s M  0

M  0.5

M  0.9

(a)

0 π

6

π

3

π

2

2π

3

5π

6

π
-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

θ

ψ
s M  0

M  0.5

M  0.9

(b)

0 π

6

π

3

π

2

2π

3

5π

6

π
-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

θ

ψ
s M  0

M  0.5

M  0.9

(c)

Figure 5. Rectangular plot: measure of scattered field for M with θi =
π
3 , p = −5, q = 5,

ωit = i, when (a) ω0t = i, (b) ω0t = 3i and (c) ω0t = 5i.
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Figure 6. Polar plot: measure of scattered field for M with θi =
π
3 , p = −5, q = 5, ωit = i,

when (a) ω0t = i, (b) ω0t = 3i and (c) ω0t = 5i.
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Figure 7. Rectangular plot: measure of scattered field for ω0t with θi =
π
3 , p = −5, q = 5,

ωit = i, when (a) M = 0.0 (no fluid flow), (b) M = 0.5 (mean flow) and (c) M = 0.9.
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Figure 8. Polar plot: measure of scattered field for ω0t with θi =
π
3 , p = −5, q = 5, ωit = i,

when (a) M = 0.0 (no fluid flow), (b) M = 0.5 (mean flow) and (c) M = 0.9.
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7. Conclusions

The analytical study of acoustic scattering by a limited size soft oscillating plate in a flowing
fluid has revealed important insights into the behavior of sound waves and their interaction with fluid
and solid structures. The findings of this study indicated that the scattering of sound by a plate is
significantly influenced by the physical characteristics of the plate, such as its size, shape, and material
properties, as well as the properties of the surrounding fluid.

The mathematical models developed in this research have provided a valuable framework for
understanding and predicting sound scattering phenomena in a broad range of practical applications.
Specifically, these models can be used to better understand underwater acoustics, sonar systems, and
medical imaging, among other fields. Moreover, this research suggests that further exploration of this
topic could innovate the new materials and techniques for controlling and manipulating sound waves.
Such advancements could have a wide range of potential applications, including noise reduction,
acoustic cloaking, and ultrasonic imaging.

In summary, this research offers a comprehensive examination of sound scattering by a finite soft
oscillating plate for a fluid in motion. The results provided valuable insights into the behavior of sound
waves, which have practical applications across various fields. The mathematical models developed
in this study also offer a useful framework for predicting sound scattering phenomena and potentially
unlocking new techniques for controlling sound waves.
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