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Abstract: In real life, with the trend of outsourcing logistics activities, choosing a third-party logistics 

(3PL) provider has become an inevitable choice for shippers. One of the most difficult decisions 

logistics consumers are facing the selecting the 3PL provider that best meets their needs. Decision 

making (DM) is an important in dealing with such situations because it allows them to make reliable 

decisions in a short period of time, as incorrect decisions can result in huge financial losses. In this 

regard, this article provides a new multi criteria group decision making method (MCGDM) under 

Pythagorean fuzzy rough (PyFR) set. A series of new PyFR Einstein weighted averaging aggregation 

operators and their basic aspects are described in depth. To evaluate the weights of decision experts 

and criteria weights we established the PyFR entropy measure. Further, using multiple aggregation 

methods based on PyFR information, a novel algorithm is offered to solve issues with ambiguous or 

insufficient data to obtain reliable and preferable results. First, decision-experts use PyFR sets to 

represent their evaluation information on alternatives based on the criteria. Then, apply all these 

proposed PyFR Einstein aggregation lists to rank all alternatives and find the best optimal result. 

Finally, to demonstrate the feasibility of the proposed PyFR decision system, a real example of 

choosing a 3PL is given. 

Keywords: Pythagorean fuzzy rough set; fuzzy decision support systems; Einstein aggregation 

operators 
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1. Introduction 

The third-party logistics (3PL) market has expanded in recent years with the growth of e-

commerce, becoming more important as a way of adapting to the rapidly changing global competitive 

environment [1]. As a result of the growing trend toward outsourcing logistics tasks, shippers now 

inevitably need to choose the finest 3PL supplier. The third-party logistics provider can bring 

significant benefits, such as lower fees and fixed logistics assets, higher order fulfillment rates, shorter 

average order cycle lengths, and cash-to-cash cycles. If an appropriate 3PL provider is not chosen, 

serious problems, such as low-quality logistics services and contract non-fulfillment can occur. This 

can damage the shipper's reputation, image and trust. Therefore, choosing a competent 3PL supplier is 

crucial in determining how well logistics are performed. The multi-criteria decision-making (MCDM) 

problem has become more crucial for choosing the best 3PL provider as a result of the increased 

ambiguity and uncertainty of real-world data. Because traditional tools did not address these types of 

data uncertainty and ambiguity in real-world data. For this researcher have developed many types of 

mathematical theories to evaluate the hidden facts from unclear data. One of these theories is Zadeh's 

Fuzzy set (FS) theory which was created in 1965 and is based on the concept of membership degree α 

ranging from zero to one to each individual component of a set [2]. FSs are one of the most effective 

tools to deal with inaccurate and uncertain data in DM problems [3,4]. Later, Atanassov [5] generalized 

the FS to intuitionistic fuzzy set (IFS) by adding the degree of non-membership β satisfying the 

condition α+ β ≤ 1. In recent decades, IFS has been studied in a board range of important discoveries, 

involving distance and similarly measures [6,7], aggregation operators (Aops) [8–10], pattern 

recognition [11] and medical diagnosis [12]. Despite the success of IFS in wide various fields in real 

life, when experts assign a membership of 0.7 and non-membership of 0.5 for certain criteria. The 

condition of IFS does not hold i.e., α+ β > 1. In order to deal with this kind of issues, Yager [13,14] 

filled this gap and introduced the concept of Pythagorean fuzzy set (PyFS), a generalization of IFS, 

restricted to (α)2 + (β)2 ≤ 1, confirms that PyFS it can better deal with the uncertainty and 

imprecision in the information and data. Yager [14] also created a series of aggregation operators for 

aggregating the PyF information. Fei and Deng [15] gave the DM process in PyFS. In a PyF context, 

Peng and Yang [16] constructed division and subtraction operations and examined their properties in 

depth. Khan et al. [17] explored the Dombi norm based Aops in the context of PyFS in their use of in 

DM problems. Wei and Lu [18] suggested Pythagorean fuzzy power Aops to solve DM problems. 

Under PyF circumstances, Ashraf et al. [19] developed a unique technique based on the sine function. 

Zhang [20] used the idea of PyFS and established a similarity metric for DM problems. Khaista et al. [21] 

created the Einstein geometric operators for Pythagorean fuzzy set (PyFEWGA) and used them to DM 

issues utilizing the Einstein T-norm and conorm concept. Rani et al. [22] developed an advanced 

TOPSIS based on the fuzzy similarity measure of Pythagorean and solved the practical application in 

DM issues. Huang et al. [23] provided an extended version of MULTIMOORA approach for dealing 

with ambiguous data in PyF environment. 

Pawlak [24] is considered the first person to study the widely held rough set (RS) theory after a 

series of events. This research has made significant progress in application and system research in 

recent years. The theory of RS has been expanded in variety of ways by several researchers. Dubois 

and Prade [25] were the first to use fuzzy relations instead of crisp binary relations and proposed the 
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idea of fuzzy rough sets (FRS). In order to deal with the ambiguous information in DM problem, Wang 

and Zhang [26] designed a DM method based on FRS and Zhang and Zhan [27] designed a DM method 

based on fuzzy soft 𝛽-covering and FRSs. Mi et al. [28] discovered the uncertainty measure using 

partition in FRSs. Khan et al. [29] developed the idea of the probabilistic hesitant fuzzy rough set and 

discussed its application in decision-making. Zhang et al [30] summarized the structure intuitionistic 

FRS, allowing decision makers to freely choose how to deal with ambiguous data. Zhou and Wu [31] 

defined generalized approximation operators for intuitionistic FRS. Liu et al. [32] created a 

decision-making technique based on preference relations under FRS. Yun and Lee [33] developed 

some characteristics of IFR approximation operator based on IF relation by means of topology. 

Zhang et al. [34] developed the concepts of soft rough IFS and IF soft rough set based on soft 

approximation and fuzzy soft approximation space. Zhang [35] proposed the generalized IFRS based 

on IF covering. Zhang et al. [36] extended the notion of generalized IF soft rough set based on IF soft 

relation. Later Chinram et al. [37] proposed the EDAS method to solve the MAGDM with in IFRSs. 

Motivation: As we know, decision-making is a crucial aspect everyday life. High performance and 

high-quality results are only practicable if the research community concentrates on closing theoretical 

knowledge gaps and practitioners employ the newest developments in their applications to address 

contemporary problems. So, according to our knowledge, based on the above review, we analyzed that 

under all unknown weights’ information, there is still no MCGDM technique under PyFRS based on 

the Einstein averaging operator. This research's main objective is to provide the groundwork for a new 

model that excels at communicating imprecise information and closing theoretical knowledge gaps as 

represented in Figure 1. 

 

Figure 1. Graphical formation of PyFRS. 

In addition to increasing the quality of the information used to make judgements and reflecting its 

fuzziness, flexibility and applicability, it can function as a helpful tool for making trustworthy 

uncertain decisions. As a result, the current work is motivated, and we developed a new MCGDM 

based on PyFR Einstein averaging aggregation operators to solve a real world DM problems. 

In the literature, the aggregation operators are developed for PyFRS using algebraic t-norm and 

t-conorm, to extend this idea of aggregation operators using generalized t-norm and t-conorm. We 

have to defined Einstein t-norm and t-conorm for PyFRS and also aggregation operators using Einstein 
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t-norm and t-conorm. 

• We define some useful fundamental properties for aggregation operators using Einstein 

operational law and explore different types of aggregation operators. 

• The entropy and distance measures were established for finding the unknown weights of 

decision makers and criteria. 

• To develop a DM method for accumulating uncertain information in real-world DM issues by 

applying suggested Einstein aggregation operators. 

• Numerical case studies used to assess the 3PLs are being reviewed to validate the methods 

provided. 

Here are the advantages of proposed methods over existing methods are: 

• Better representation of uncertainty: In the proposed methods we can represent 

memberships and non-memberships in more flexible manners than existing methods because 

PyFRS range is greater than IFRS and it can be customized according to the problem domain. 

This flexibility enables the representation of a wide range of uncertain and vague information. 

• More flexible aggregation operators: The PyFRS approach offers more flexibility in the 

choice of aggregation operators than the IFRS approach. The PyFRS operators, for instance, 

can be used to aggregate PyFR numbers, which is not possible in the IFRS approach. 

• More efficient: This approach leads to more efficient algorithms and decision-making 

processes. It reduces the complexity of the problem and speeds up the computations. However, 

none of the existing works are up to the task of handling this kind of information supplied by 

PyFRS to a decision maker. While the suggested method is capable of handling data from pre-

existing methods as well, it has the potential to significantly improve upon them. 

The rest of this article is organized as follows: Section 2 present the basic concept, related to PyFS 

and rough set which will be used later. Section 3, contain a novel notion of PyFRSs and new score 

function. Section 4, contain Einstein operation laws for PyFRSs, as well as some Einstein averaging 

operators of PyFRS and their properties have been discussed in detail. Section 5, this section describes 

the entropy measures and distance measures for PyFRSs. Section 6, in this section, we provided a DM 

process to address the uncertainty in MCGDM situations with unknown weight information. In 

Section 7, a numerical example based on the proposed method is presented for the selection of 3PLs 

and a comparison with other methods which shows that the algorithm is reasonable. Section 8, explain 

the conclusion of the article. 

2. Basic concepts 

This section introduces a few key concepts and properties that helped to create the proposed work 

and can easily understand by the readers. We will discuss some basic concepts including crisp relation, 

rough set (RS) and Pythagorean fuzzy relation (PyF-relation). 

Definition 1. [13] Let ℱ be a non-empty set, then mathematically Pythagorean fuzzy set is defined as: 

ℌ = {(𝔣, αℌ(𝔣), βℌ
(𝔣)) : 𝔣 ∈ ℱ}.         (1) 

Such that 0 ≤ (αℌ(𝔣))
2
+ (β

ℌ
(𝔣))

2

≤ 1,  where αℌ(𝔣)  and β
ℌ
(𝔣)  represents the positive and 

negative membership degree belong to [0,1]. 

Definition 2. [31] Let ℱ be a non-empty set, and ℘ ∈ (ℱ × ℱ) be a crisp relation then, 
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1) ℘ is reflexive if (𝔣, 𝔣) ∈ ℘, for all 𝔣 ∈ ℱ; 

2) ℘ is symmetric if for all 𝔣, 𝔤 ∈ ℱ, if (𝔣, 𝔤) ∈ ℘, there exists (𝔤, 𝔣) ∈ ℘; 

3) ℘ is transitive if for all 𝔣, 𝔤, 𝔥 ∈ ℱ, if (𝔣, 𝔤) ∈ ℘ and (𝔤, 𝔥) ∈ ℘, then (𝔣, 𝔥) ∈ ℘. 

Definition 3. [31] let ℱ be a non-empty set, and ℘ ∈ (ℱ× ℱ) be any relation. Now for all 𝔣 ∈ ℱ 

defined a mapping ℘∗:ℱ → 𝑃(ℱ) is given as. 

℘∗(𝔣) = {𝔤 ∈ ℱ ∶ (𝔣, 𝔤) ∈ ℘}, 

where ℘∗(𝔣) is the successor neighborhood of an object 𝔣 w.r.t ℘. The pair (ℱ,℘) is said to be 

approximation space. Now for any  ℳ ⊆ ℱ , the lower and upper approximation of ℳ  w.r.t 

approximation space (ℱ,℘) is denoted and defined as: 

℘(ℳ) = {𝔣 ∈ ℱ|℘∗(𝔣) ∩ℳ ≠ ∅}, 

℘(ℳ) = {𝔣 ∈ ℱ|℘∗(𝔣) ⊆ ℳ}. 

Therefore, ℘ = (℘(ℳ),℘(ℳ)) is known as a rough set and ℘(ℳ),℘(ℳ): P(ℱ) → P(ℱ) are 

the upper and lower approximation operators. 

Definition 4. [38] Let ℱ ≠ 0 and ℘ ∈ PyF(ℱ× ℱ) be a PyF relation. Then, 

1) ℘ is reflexive if α℘(𝔣, 𝔣) = 1 and β
℘
(𝔣, 𝔣) = 0, ∀ 𝔣 ∈ ℱ; 

2) ∀ (𝔣, 𝔤) ∈ ℱ × ℱ, then ℘ is symmetric if, α℘(𝔣, 𝔤) = α℘(𝔤, 𝔣) and β
℘
(𝔣, 𝔤) = β

℘
(𝔤, 𝔣); 

3) ð is transitive if (𝔣, 𝔥) ∈ ℱ × ℱ, 

α℘(𝔣, 𝔥) ≥∨𝔤∈ℱ [α℘(𝔣, 𝔤) ∧ α℘(𝔤, 𝔥)] and β
℘
(𝔣, 𝔥) =∧𝔤∈ℱ [β℘

(𝔣, 𝔤) ∧ β
℘
(𝔤, 𝔥)]. 

3. Formation of Pythagorean fuzzy rough sets (PyFRSs) 

In this section, we will develop the concept of Pythagorean fuzzy rough set (PyFRS) with the 

degree of hesitancy. We will also develop the score function and accuracy function whose purpose is 

to overcome various comparability issues. 

Definition 5. Let ℱ be a non-empty universe and for any subset ℘ ∈ PyFS(ℱ× ℱ) be a PyF relation 

on  ℱ . Then (ℱ,℘)  is PyF approximation space. Then the lower ℘(ℳ)  and upper ℘(ℳ) 

approximations for any ℳ ⊆ PyFS(ℱ) in term of (ℱ,℘) are two PyFSs mathematically defined as: 

℘(ℳ) = {(𝔣, 〈α℘(ℳ)(𝔣), β℘(ℳ)
(𝔣)〉) : 𝔣 ∈ ℱ}.     (2) 

℘(ℳ) = {𝔣, 〈α℘(ℳ)(𝔣), β℘(ℳ)
(𝔣)〉 : 𝔣 ∈ ℱ}.      (3) 

Where 

α℘(ℳ)(𝔣) = ∧
g∈ℱ

[α℘(𝔣, 𝔤) ∧ αℳ(𝔤)], 
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β
℘(ℳ)

(𝔣) = ⋁
g∈ℱ

[β
℘
(𝔣, 𝔤)⋁β

ℳ
(𝔤)] 

and 

α℘(ℳ)(𝔣) = ⋁
g∈ℱ
[α℘(𝔣, 𝔤)⋁αℳ(𝔤)], α℘(ℳ)(𝔣) = ∧

g∈ℱ
[α℘(𝔣, 𝔤) ∧ αℳ(𝔤)], 

i.e., 

0 ≤ (α℘(ℳ)(𝔣))
2

+ (β
℘(ℳ)

(𝔣))

2

≤ 1 

and 

0 ≤ (α℘(ℳ)(𝔣))
2

+ (𝛽℘(ℳ)(𝔣))
2

≤ 1. 

Hence, ℘(ℳ)  and ℘(ℳ)  are PyFSs, therefore ℘(ℳ),℘(ℳ): PyFS(ℱ) → PyFS(ℱ)  reperesnts 

upper and lower approximation operators respectively. Hence, the combination of ℘(ℳ) =

(℘(ℳ),℘(ℳ)) is known as PyFRSs defined as: 

℘(ℳ) = {𝔣, 〈(α℘(ℳ)(𝔣), β℘(ℳ)
(𝔣)) , (α℘(ℳ)(𝔣), β℘(ℳ)

(𝔣))〉 : 𝔣 ∈ ℱ}.   (4) 

Simply it is denoted by ℘(ℳ) = ((α, β) , (α, β)). The degree of hesitancy for PyFRSs are determined 

as: 

℘
ℏ
(ℳ) = (℘

ℏ
(ℳ),℘

ℏ
(ℳ)). 

Where ℘
ℏ
(ℳ) = √1 − α2 − β

2
 and ℘

ℏ
(ℳ) = √1 − α

2
− β

2
. 

Definition 6. The score and accuracy function for PyFRSs collection ℘(ℳ𝕚) = ((α
𝕚
, β
𝕚
) , (α𝕚, β𝕚)) 

is mathematically given by 

𝑆𝑐(℘(ℳ𝕚)) =
2+α

𝕚
2+α

2
𝕚−β

2
𝕚−β

2

𝕚

4
,       (5) 

𝐴𝑐(℘(ℳ𝕚)) =
2+α

𝕚
2+α

2
𝕚+β

2
𝕚+β

2

𝕚

4
.       (6) 

Where Sc(℘(ℳ𝕚)) and 𝐴𝑐(℘(ℳ𝕚)) belong [0,1]. 

4. Einstein operations for Pythagorean fuzzy rough sets 

This section provides union, intersection and detail description of the operational laws of PyFR 

Einstein aggregation operational laws and their generators. These operational laws shall be used in 
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development of aggregation operators (AOs) of PyFRSs and we also discuss their fundamental 

properties such as idempotency, boundedness and monotonicity etc. 

Definition 7. [39] Let ℘(ℳ1) and ℘(ℳ2) two PyFR numbers. Then the generalized intersection 

and union of two PyFR numbers is given by 

℘(ℳ1)⋀℘(ℳ2) =

{
 
 

 
 
𝔣, (𝕊ℇ (α

1
(𝔣),α

2
(𝔣)) , 𝕋ℇ (β

1
(𝔣), β

2
(𝔣))) ,

(𝕊ℇ(α1(𝔣),α2(𝔣)), 𝕋ℇ (β
1
(𝔣), β

2
(𝔣))) |𝔣 ∈ ℱ

}
 
 

 
 

,   (7) 

℘(ℳ1)⋁℘(ℳ2) =

{
 
 

 
 
𝔣, (𝕋ℇ (α

1
(𝔣),α

2
(𝔣)) , 𝕊ℇ (β

1
(𝔣), β

2
(𝔣))) ,

(𝕋ℇ(α1(𝔣),α2(𝔣)), 𝕊ℇ (β
1
(𝔣), β

2
(𝔣))) |𝔣 ∈ ℱ

}
 
 

 
 

.   (8) 

If 𝕋 and 𝕊 denotes T-norm and T-conorm respectively. Then 𝕋ℇ, 𝕊ℇ represent Einstein product and 

sum which are the generalized union and intersection of two PyFRSs as described below. 

𝕊ℇ(℘(ℳ1),℘(ℳ2)) = √
℘2(ℳ1)+ℇ℘2(ℳ2)

1+℘2(ℳ1).ℇ℘2(ℳ2)
.      (9) 

𝕋ℇ(℘(ℳ1),℘(ℳ2)) =
℘(ℳ1).ℇ℘(ℳ2)

√1+(1−℘2(ℳ1)).ℇ(1−℘2(ℳ2))
.     (10) 

Definition 8. Let ℘(ℳ𝕚) = (℘(ℳ𝕚),℘(ℳ𝕚)) ∈ PyFS(ℱ)(𝕚 ∈ ℕ).  Then the Einstein operational 

laws for PyFRNs are defined as follows. 

℘(ℳ1) ⊕℘(ℳ2) = {(
√α

1
2+α

2
2

√1+α
1
2.α

2
2
,

β
1
.β
2

√1+(1−β
1

2).(1−β
2

2)
) ,(

√α1
2
+α2

2

√1+α1
2
.α2

2
, β1.β2

√1+(1−β1
2
).(1−β2

2
)

)}.  (11) 

℘(ℳ1) ⊕℘(ℳ2) = {(
α
1
.α
2

√1+(1−α
1
2).(1−α

2
2)

,
√β

1

2+β
2

2

√1+β
1

2.β
2

2
) , (

α1.α2

√1+(1−α1
2
).(1−α2

2
)

,
√β

2

1+β
2

2

√1+β
2

1.β
2

2

)}. (12) 

k ⋅ ℘(ℳ1) =

{
 
 

 
 

(

 
 
√(1+α

1
2)
k
−(1−α

1
2)
k

√(1+α
1
2)
k
+(1−α

1
2)
k
,

√2(β
1
)
k

√(2−β
1

2)
k
+(β

1

2)
k

)

 
 
,

(

 
 
√(1+α1

2
)
k
−(1−α1

2
)
k

√(1+α1
2
)
k
+(1−α1

2
)
k
,

√2(β1)
k

√(2−β1
2
)
k

+(β1
2
)
k

)

 
 

}
 
 

 
 

.(13) 
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(℘(ℳ1))
k
=

{
 
 

 
 

(

  
 √2(α

1
)
k

√(2−α
1
2)
k
+(α

1
2)
k
,

√(1+β
1

2)
k
−(1−β

1

2)
k

√(1+β
1

2)
k
+(1−β

1

2)
k

)

  
 
,

(

  
 √2(α1)

k

√(2−α1
2
)
k
+(α1

2
)
k
,

√(1+β1
2
)
k

−(1−β1
2
)
k

√(1+β1
22

)

k

+(1−β1
2
)
k

)

  
 

}
 
 

 
 

.(14) 

(℘(ℳ1))
c
= (β

1
, α
1
) , (β

1
, α1).       (15) 

Here is a detailed analysis of the PyFR Einstein aggregation operators such as Pythagorean fuzzy rough 

Einstein weighted averaging (PyFREWA) operator, Pythagorean fuzzy rough Einstein ordered 

weighted averaging (PyFREOWA) operator, and Pythagorean fuzzy rough Einstein hybrid averaging 

(PyFRHA) operators, and their required properties for instance, Idempotency, boundedness and 

monotonicity. 

Definition 9. Let a collection 

℘(ℳ𝕚) = (℘(ℳ𝕚),℘(ℳ𝕚)) ∈ PyFS(ℱ)(𝕚 ∈ ℕ) 

and (mg1, mg2, . . . mgn)
T represent the weight vectors of the given collection such that ∑n𝕚=1 mg𝕚 =

1. Then from operational laws (11) and (13) of Definition 8, the Einstein weighted averaging operators 

for PyFRSs are defined as 

PyFREWA(℘(ℳ1),℘(ℳ2),… ,℘(ℳn)) 

= (⨁𝕚=1
n mg𝕚 (℘(ℳ𝕚)) ,⨁𝕚=1

n mg𝕚(℘(ℳ𝕚))) 

=

(

 
 
 
 

(

 
 
 

√∏ (1+α
𝕚
2)
mg𝕚n

𝕚=1 −∏ (1−α
𝕚
2)
mg𝕚n

𝕚=1

√∏ (1+α
𝕚
2)
mg𝕚n

𝕚=1 −∏ (1−α
𝕚
2)
mg𝕚n

𝕚=1

,

√2∏ (β
𝕚
)
mg𝕚n

𝕚=1

√∏ (2−β
𝕚

2)
mg𝕚n

𝕚=1 +∏ (β
𝕚

2)
mg𝕚n

𝕚=1 )

 
 
 

,

(

 
 
 

√∏ (1+α𝕚
2
)
mg𝕚n

𝕚=1 −∏ (1−α𝕚
2
)
mg𝕚n

𝕚=1

√∏ (1+α𝕚
2
)
mg𝕚n

𝕚=1 −∏ (1−α𝕚
2
)
mg𝕚n

𝕚=1

,

√2∏ (β𝕚)
mg𝕚n

𝕚=1

√∏ (2−β𝕚

2
)
mg𝕚n

𝕚=1 +∏ (β𝕚

2
)
mg𝕚n

𝕚=1 )

 
 
 

)

 
 
 
 

. (16) 

Theorem 1. Let a collection 

℘(ℳ𝕚) = (℘(ℳ𝕚),℘(ℳ𝕚)) ∈ PyFS(ℱ)(𝕚 ∈ ℕ) 

and (mg1, mg2, . . . mgn)
T represent the weight vectors of the given collection such that ∑n𝕚=1 mg𝕚 =

1. Then, the fundamental properties of Einstein weighted averaging aggregation operators for PyFRSs 

are described as: 

1) Idempotency. If 

℘(ℳ𝕚) = ℘(ℳ) = (℘(ℳ),℘(ℳ))∀𝕚 ∈ ℕ. 
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Then 

PyFREWA(℘(ℳ1),℘(ℳ2),… ,℘(ℳn)) = ℘(ℳ). 

2) Boundedness. Let 

(℘(ℳ))
−
= (min

𝕚
℘(ℳ𝕚),max

𝕚
℘(ℳ𝕚)) 

and 

(℘(ℳ))
+
= (max

𝕚
℘(ℳ𝕚),min

𝕚
℘(ℳ𝕚)). 

Then, 

(℘(ℳ))
−
≤ PyFREWA(℘(ℳ1),℘(ℳ2),… ,℘(ℳn)) ≤  (℘(ℳ))

+
. 

3) Monotonicity. Let 

𝔏(ℳ𝕚)  = (𝔏(ℳ𝕚), 𝔏(ℳ𝕚)) ∈ PyFS(ℱ)(𝕚 ∈ ℕ), 

such that 𝔏(ℳ𝕚) ≤ ℘(ℳ𝕚) and 𝔏(ℳ𝕚) ≤ ℘(ℳ𝕚). Then 

PyFREWA(℘(ℳ1),℘(ℳ2),… ,℘(ℳn)) ≥ PyFREWA(𝔏(ℳ1), 𝔏(ℳ2),… , 𝔏(ℳn) ). 

Definition 10. Let a collection 

℘(ℳ𝕚) = (℘(ℳ𝕚),℘(ℳ𝕚)) ∈ PyFS(ℱ)(𝕚 ∈ ℕ) 

and (mg1, mg2, . . . mgn)
T represent the weight vectors of the given collection such that ∑n𝕚=1 mg𝕚 =

1. Then from operational laws (11) and (13) of Definition 8, the Einstein ordered weighted averaging 

operators for PyFRSs are defined as: 

PyFREOWA(℘(ℳ1),℘(ℳ2),… ,℘(ℳn)) 

= (⨁𝕚=1
n mg𝕚 (℘

𝓆
(ℳ𝕚)) ,⨁𝕚=1

n mg𝕚 (℘
𝓆
(ℳ𝕚))) 

=

(

 
 
 
 
 

(

 
 
 
 
√∏ (1+α𝓆𝕚

2)
mg𝕚n

𝕚=1 −∏ (1−α𝓆𝕚
2)
mg𝕚n

𝕚=1

√∏ (1+α𝓆𝕚
2)
mg𝕚n

𝕚=1 +∏ (1−α𝓆𝕚
2)
mg𝕚n

𝕚=1

,

√2∏ (β
𝓆𝕚
)

mg𝕚
n
𝕚=1

√∏ (2−β
𝓆𝕚

2)

mg𝕚
n
𝕚=1 +∏ (β

𝓆𝕚

2)

mg𝕚
n
𝕚=1 )

 
 
 
 

,

(

 
 
 
 
√∏ (1+α𝓆𝕚

2
)
mg𝕚n

𝕚=1 −∏ (1−α𝓆𝕚
2
)
mg𝕚n

𝕚=1

√∏ (1+α𝓆𝕚
2
)
mg𝕚n

𝕚=1 +∏ (1−α𝓆𝕚
2
)
mg𝕚n

𝕚=1

,

√2∏ (β𝓆𝕚
)
mg𝕚n

𝕚=1

√∏ (2−β𝓆𝕚

2
)
mg𝕚n

𝕚=1 +∏ (β𝓆𝕚

2
)
mg𝕚n

𝕚=1 )

 
 
 
 

)

 
 
 
 
 

. (17) 

Where (℘
𝓆
(ℳ𝕚),℘𝓆

(ℳ𝕚)) represents the largest value of permutation from the collection of PyFSs. 

Theorem 2. Let a collection 
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℘(ℳ𝕚) = (℘(ℳ𝕚),℘(ℳ𝕚)) ∈ PyFS(ℱ)(𝕚 ∈ ℕ) 

and (mg1, mg2, . . . mgn)
T represent the weight vectors of the given collection such that ∑n𝕚=1 mg𝕚 =

1. Then, the basic properties of Einstein weighted ordered averaging aggregation operators for PyFRSs 

are described as: 

1) Idempotency. If 

℘(ℳ𝕚) = ℘(ℳ) = (℘(ℳ),℘(ℳ))∀𝕚 ∈ ℕ. 

Then 

PyFREOWA(℘(ℳ1),℘(ℳ2),… ,℘(ℳn)) = ℘(ℳ). 

2) Boundedness. Let 

(℘(ℳ))
−
= (min

𝕚
℘(ℳ𝕚),max

𝕚
℘(ℳ𝕚)) 

and 

(℘(ℳ))
+
= (max

𝕚
℘(ℳ𝕚),min

𝕚
℘(ℳ𝕚)). 

Then, 

(℘(ℳ))
−
≤ PyFREOWA(℘(ℳ1),℘(ℳ2),… ,℘(ℳn)) ≤ (℘(ℳ))

+
. 

3) Monotonicity. Let 

𝔏(ℳ𝕚) = (𝔏(ℳ𝕚), 𝔏(ℳ𝕚)) ∈ PyFS(ℱ)(𝕚 ∈ ℕ), 

such that 𝔏(ℳ𝕚) ≤ ℘(ℳ𝕚) and 𝔏(ℳ𝕚) ≤ ℘(ℳ𝕚). Then 

PyFREOWA(℘(ℳ1),℘(ℳ2),… ,℘(ℳn)) ≥ PyFREOWA(𝔏(ℳ1), 𝔏(ℳ2), … , 𝔏(ℳn)). 

Definition 11. Let a collection 

℘(ℳ𝕚) = (℘(ℳ𝕚),℘(ℳ𝕚)) ∈ PyFS(ℱ)(𝕚 ∈ ℕ) 

and (τ1, τ2, . . . τn)
T  represent the weight vectors of the given collection such that ∑n𝕚=1 τ𝕚 = 1 . 

Suppose (mg
1
,mg

2
, . . .mg

n
)

T
  be the associated weight information of the given family such that 

∑n𝕚=1 mg𝕚 = 1.  Then from operational laws (11) and (13) of Definition 8, the Einstein hybrid 

averaging operators for PyFRSs are defined as:  
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PyFREHA(℘(ℳ1),℘(ℳ2),… ,℘(ℳn)) 

= (⨁𝕚=1
n mg𝕚 (℘̈

𝓆
(ℳ𝕚)) ,⨁𝕚=1

n mg𝕚 (℘̈
𝓆
(ℳ𝕚))) 

=

(

 
 
 
 
 

(

 
 
 
 
√∏ (1+α𝓆𝕚

̈ 2)
mg𝕚n

𝕚=1 −∏ (1−α𝓆𝕚
̈ 2)

mg𝕚n
𝕚=1

√∏ (1+α𝓆𝕚
̈ 2)

mg𝕚n
𝕚=1 +∏ (1−α𝓆𝕚

̈ 2)
mg𝕚n

𝕚=1

,

√2∏ (β
𝓆𝕚

̈ )

mg𝕚
n
𝕚=1

√∏ (2−β
𝓆𝕚

̈ 2)

mg𝕚
n
𝕚=1 +∏ (β

𝓆𝕚

̈ 2)

mg𝕚
n
𝕚=1 )

 
 
 
 

,

(

 
 
 
 
√∏ (1+α𝓆𝕚

̈ 2)
mg𝕚n

𝕚=1 −∏ (1−α𝓆𝕚
̈ 2)

mg𝕚n
𝕚=1

√∏ (1+α𝓆𝕚
̈ 2)

mg𝕚n
𝕚=1 +∏ (1−α𝓆𝕚

̈ 2)
mg𝕚n

𝕚=1

,

√2∏ (β𝓆𝕚

̈
)
mg𝕚n

𝕚=1

√∏ (2−β𝓆𝕚

̈ 2
)

mg𝕚
n
𝕚=1 +∏ (β𝓆𝕚

̈ 2
)

mg𝕚
n
𝕚=1 )

 
 
 
 

)

 
 
 
 
 

. (18) 

where n is balancing coefficient and ℘̈
𝓆
(ℳ𝕚) = nτ𝕚℘(ℳ𝕚) = (nτ𝕚℘(ℳ𝕚), nτ𝕚℘(ℳ𝕚)) denotes the 

highest permutation. 

Theorem 3. Let a collection 

℘(ℳ𝕚) = (℘(ℳ𝕚),℘(ℳ𝕚)) ∈ PyFS(ℱ)(𝕚 ∈ ℕ) 

and (τ1, τ2, . . . τn)
T represent the weight vectors of the given collection such that ∑n𝕚=1 τ𝕚 = 1 . 

Suppose (mg1, mg2, . . . mgn)
T be the associated weight information of the given family such that 

∑n𝕚=1 mg𝕚 = 1   Then, the main properties of Einstein hybrid averaging aggregation operators for 

PyFRSs are described as: 

1) Idempotency. If 

℘(ℳ𝕚) = ℘(ℳ) = (℘(ℳ),℘(ℳ))∀𝕚 ∈ ℕ. 

Then 

PyFREHA(℘(ℳ1),℘(ℳ2),… ,℘(ℳn)) = ℘(ℳ). 

2) Boundedness. Let 

(℘(ℳ))
−
= (min

𝕚
℘(ℳ𝕚),max

𝕚
℘(ℳ𝕚)) 

and 

(℘(ℳ))
+
= (max

𝕚
℘(ℳ𝕚),min

𝕚
℘(ℳ𝕚)). 

Then, 

(℘(ℳ))
−
≤ PyFREHA(℘(ℳ1),℘(ℳ2),… ,℘(ℳn)) ≤ (℘(ℳ))

+
. 

3) Monotonicity. Let 

𝔏(ℳ𝕚) = (𝔏(ℳ𝕚), 𝔏(ℳ𝕚)) ∈ PyFS(ℱ)(𝕚 ∈ ℕ), 
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such that 𝔏(ℳ𝕚) ≤ ℘(ℳ𝕚) and 𝔏(ℳ𝕚) ≤ ℘(ℳ𝕚). Then 

PyFREHA(℘(ℳ1),℘(ℳ2),… ,℘(ℳn)) ≥ PyFREHA(𝔏(ℳ1), 𝔏(ℳ2),… , 𝔏(ℳn)). 

Proof  Same as Theorem 1. 

5. Distance measure for Pythagorean fuzzy rough set 

This section provides generalized distance measures and weighted generalized distance measures 

based on distance model [40,41] to determine the difference between two PyFRSs. We also suggest 

novel entropy measure by applying generalized distance to measure fuzziness of PyFRSs in this section. 

Definition 12. Let 

℘(ℳ𝕚) = (℘(ℳ1),℘(ℳ2),… ,℘(ℳn)) and ℘∗(ℳ𝕚) = (℘
∗(ℳ1),℘

∗(ℳ2),… ,℘
∗(ℳn)) 

be a two collection of PyFRSs, then the generalized distance measure between any two PyFRSs for 

any ∆> 0(∈ ℝ) are defined as follows: 

dG(℘(ℳ𝕚),℘
∗(ℳ𝕚)) = (

1

4
∑n𝕚=1 (|α𝕚

2 − α𝕚
∗2|

∆
+ |β𝕚

2
− β𝕚

∗2
|
∆

+ |α𝕚
2
− α𝕚

∗2
|
∆

+ |β
𝕚

2

− β
𝕚

∗2

|
∆

))

1

∆

(19) 

where 

℘(ℳ𝕚) = ((α𝕚, β𝕚) , (α𝕚, β𝕚)) and ℘∗(ℳ𝕚) = ((α𝕚
∗, β𝕚

∗) , (α𝕚
∗
, β
𝕚

∗
)) (𝕚 ∈ ℕ), 

and dG(℘(ℳ𝕚),℘
∗(ℳ𝕚)) ∈ [0,1]. 

Definition 13. Let 

℘(ℳ𝕚) = (℘(ℳ1),℘(ℳ2),… ,℘(ℳn)) and ℘∗(ℳ𝕚) = (℘
∗(ℳ1),℘

∗(ℳ2),… ,℘
∗(ℳn)) 

be a two collection of PyFRSs, and (mg
1
,mg

2
, . . .mg

n
)

T
  be the weights informations, then the 

weighted generalized distance measure are defined as follows: 

dWG(℘(ℳ𝕚),℘
∗(ℳ𝕚)) = (

1

4
∑n𝕚=1 mg𝕚 (|α𝕚

2 − α
𝕚
∗2
|
∆
+ |β

𝕚

2
− β

𝕚

∗2
|
∆

+ |α𝕚
2
− α𝕚

∗2
|
∆

+ |β𝕚
2

− β𝕚
∗2

|

∆

))

1

∆

.(20) 

Definition 14. [40] Let ℘(ℳ) = (℘(ℳ1),℘(ℳ2),… ,℘(ℳn))  be the collection of PyFRSs, the 

PyFR entropy measure are defined as: 

E(℘(ℳ𝕚)) =
1

n
∑n𝕚=1 [{1− d(℘(ℳ𝕚),℘(ℳ𝕚)

c)} (
1+℘

ℏ
(ℳ𝕚)+℘ℏ

(ℳ𝕚)

3
)].  (21) 
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6. MCGDM approach for Pythagorean fuzzy rough set 

In this section, we will develop an algorithm to solve the MCGDM problem utilizing the 

suggested PyFR Einstein aggregation operators. We will also provide the graphical representation of 

this method which will visually communicate information, data, or ideas in a clear and concise manner. 

Algorithm: Here we propose a technique for dealing with uncertainty in DM under PyFR information. 

Let there are m number of alternatives {𝒜1, 𝒜2, … ,𝒜m}  represented by row with n number of 

attributes (criteria’s) denoted by {Ψ1, Ψ2, … ,Ψn}  having unknown weights information. Let h 

number of experts denoted by a set {𝒫1, 𝒫2, … , 𝒫h} are gathered having unknown weight vector to 

provide evaluation reports for each alternative based on attributes (criteria’s). Assume PyFR decision 

matrix is symbolically denoted by ℑ
l = [℘(ℳl

𝕚)]m×n (l = 1,2, … , h) and described as: 

ℑl =

[
 
 
 
 
 
 
 
 (℘ (ℳ

l
𝕚))

11

(℘ (ℳ
l
𝕚))

12

(℘ (ℳ
l
𝕚))

12

(℘ (ℳ
l
𝕚))

22

⋯ (℘ (ℳ
l
𝕚))

1n

⋯ (℘ (ℳ
l
𝕚))

2n

(℘ (ℳ
l
𝕚))

31

(℘ (ℳ
l
𝕚))

32

⋮

(℘ (ℳ
l
𝕚))

m1

⋮

(℘ (ℳ
l
𝕚))

m2

⋯ (℘ (ℳ
l
𝕚))

3n

⋮
⋯

⋮

(℘ (ℳ
l
𝕚))

mn]
 
 
 
 
 
 
 
 

 

where ℘(ℳl
ij) = ((αl

ij
, βl

ij
) , (αij

l
, β

ij

l
)). The stepwise details are as follows: 

Note: The weights information of expert and criteria are both unknown. First it is necessary to find the 

weights of experts and criteria which is calculated by the following steps as: 

Step 1: Construct the normalize decision matrix denoted by ℵij
l
 as follows: 

ℵij
l =

{
 
 

 
 ((αl

ij
, βl

ij
) , (αij

l
, β

ij

l
))    for benifit criteria

((β
l

ij
,αl

ij
) , (β

ij

l
,αij

l
))    for cost criteria

. 

Step 2: Find the weights of expert’s matrix, because it is very difficult for DM to make an accurate 

result when the weight of experts is hidden. So to calculate the expert weights it is most important to 

first identify the ideal opinion 𝔒IM, by considering the same decision experts' weights and proposed 

PyFREWA operator. Next, calculate the right ideal opinion 𝔒RM and left ideal opinion 𝔒LM and 

determine the distance from each decision expert to 𝔒IM, 𝔒RM and 𝔒LM denoted by 𝔒dGIM, 𝔒dGRM 

and 𝔒dGLM respectively. At last, determined the closeness indices and calculate the weights of each 

decision expert as follows. 

(a) Construct the ideal opinion matrix 𝔒IM of normalized decision matrix ℵij
l
 that is closer to 

all opinions of each DMs' is determined by applying the PyFREWA operator. 
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𝔒IM =

[
 
 
 
 

IM11 IM12

IM12 IM22

⋯ IM1n

⋯ IM2n

IM31 IM32

⋮
IMm1

⋮
IMm2

⋯ IM3n

⋮
⋯

⋮
IMmn]

 
 
 
 

 

where 

IMij = ∑
1

h
ℵij
lh

l=1 =

(

 
 
 
 
 

(

 
 
 
 
√∏ (1+α𝕚

2)

1
hn

𝕚=1 −∏ (1−α𝕚
2)

1
hn

𝕚=1

√∏ (1+α𝕚
2)

1
hn

𝕚=1 −∏ (1−α𝕚
2)

1
hn

𝕚=1

,

√2∏ (β𝕚)

1
hn

𝕚=1

√∏ (2−β𝕚
2)

1
hn

𝕚=1 +∏ (β𝕚
2)

1
hn

𝕚=1 )

 
 
 
 

,

(

 
 
 
 
√
∏ (1+α𝕚

2
)

1
hn

𝕚=1 −∏ (1−α𝕚
2
)

1
hn

𝕚=1

√
∏ (1+α𝕚

2
)

1
hn

𝕚=1 −∏ (1−α𝕚
2
)

1
hn

𝕚=1

,

√2∏ (β𝕚)

1
hn

𝕚=1

√
∏ (2−β𝕚

2
)

1
hn

𝕚=1 +∏ (β𝕚
2
)

1
hn

𝕚=1 )

 
 
 
 

)

 
 
 
 
 

. 

b) Construct the right and left ideal opinion matrix denoted by 𝔒RM, 𝔒LM defined as: 

𝔒RM =

[
 
 
 
 

RM11 RM12

RM12 RM22

⋯ RM1n

⋯ RM2n

RM31 RM32

⋮

RMm1

⋮

RMm2

⋯ RM3n

⋮

⋯

⋮

RMmn]
 
 
 
 

 

and 

𝔒LM =

[
 
 
 
 
LM11 LM12

LM12 LM22

⋯ LM1n

⋯ LM2n

LM31 LM32

⋮

LMm1

⋮

LMm2

⋯ LM3n

⋮

⋯

⋮

LMmn]
 
 
 
 

 

where 

RMij = {max
l
[𝑆𝑐(ℵij

l )]} and LMij = {(ℵij
l ):min

l
[𝑆𝑐(ℵij

l )]}.   (22) 

c) By using Eqs (23)–(25) calculate the distance measures denoted by 𝔒dGIM
l, 𝔒dGRM

l
  and 

𝔒dGLM
l
 of each normalized matrix ℵ

l
 to 𝔒IM, 𝔒RM and 𝔒LM. 

𝔒dGIM
l

𝕚
= (

1

4
∑n𝕚=1 (|(α

ℵij
l )

2

− (α
IMij
)

2

|

∆

+ |(β
ℵij

l
)

2

− (β
IMij

)

2

|

∆

+ |(α
ℵij

l )
2

− (αIMij
)

2

|
∆

+ |(β
ℵij

l )
2

− (β
IMij
)

2

|
∆

))

1

∆

.  (23) 

𝔒dGRM
l

𝕚
= (

1

4
∑n𝕚=1 (|(α

ℵij
l )

2

− (α
RMij

)
2

|

∆

+ |(β
ℵij

l
)

2

− (β
RMij

)

2

|

∆

+ |(α
ℵij

l )
2

− (αRMij
)

2

|
∆

+ |(β
ℵij

l )
2

− (β
RMij

)
2

|
∆

))

1

∆

.  (24) 

𝔒dGLM
l

𝕚
= ((

1

4
∑n𝕚=1 (|(α

ℵij
l )

2

− (α
LMij

)
2

|

∆

+ |(β
ℵij

l
)

2

− (β
LMij

)

2

|

∆

) + |(α
ℵij

l )
2

− (αLMij
)

2

|
∆

+ |(β
ℵij

l )
2

− (β
LMij

)
2

|
∆

))

1

∆

. (25) 
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For i = 1,2, … ,m and l = 1,2, … , h. 

d) Calculate closeness index ℭI
l
 with help of proposed model [42], as follows: 

ℭI
l =

∑m
I=1𝔒dGRM

l

𝕚
+∑m

I=1𝔒dGLM
l

𝕚

∑m
I=1𝔒dGIM

l

𝕚
+∑m

I=1𝔒dGRM
l

𝕚
+∑m

I=1𝔒dGLM
l

𝕚

.     (26) 

For l = 1,2, … , h. 

e) Calculate the decision expert weight by the following formula as: 

γl =
ℭI

l

∑ ℭI
lh

l=1

.         (27) 

Step 3: Construct the revised ideal matrix ℛIM by Eq (28) and weight of decision experts. 

ℛIMij
= ⨁l=1

h (γl.ℵij
l ) =

(

 
 
 
 
 

(

 
 
 
 
√∏ (1+α𝕚

2)
γl

n
𝕚=1 −∏ (1−α𝕚

2)
γl

n
𝕚=1

√∏ (1+α𝕚
2)

γl
n
𝕚=1 −∏ (1−α𝕚

2)
γl

n
𝕚=1

,

√2∏ (β𝕚)
γl

n
𝕚=1

√∏ (2−β𝕚
2)

γl
n
𝕚=1 +∏ (β𝕚

2)
γl

n
𝕚=1 )

 
 
 
 

,

(

 
 
 
 
√∏ (1+α𝕚

2
)
γl

n
𝕚=1 −∏ (1−α𝕚

2
)
γl

n
𝕚=1

√∏ (1+α𝕚
2
)
γl

n
𝕚=1 −∏ (1−α𝕚

2
)
γl

n
𝕚=1

,

√2∏ (β𝕚)
γl

n
𝕚=1

√∏ (2−β𝕚
2
)

γl
n
𝕚=1 +∏ (β𝕚

2
)
γl

n
𝕚=1 )

 
 
 
 

)

 
 
 
 
 

. (28) 

Step 4: We will calculate the entropy measure (𝔼𝔸) associated to each attribute by using Eq (21) as 

follows: 

𝔼𝔸j = (ℛIM1j
,ℛIM2j

, … ,ℛIMmj
) , j = 1,2, … , n.     (29) 

Step 5: Evaluate the criteria weight as follows: 

𝒦gj
=

1−𝔼𝔸j

n−∑ 𝔼𝔸j
n
j=1

, j = 1,2, … , n.      (30) 

Step 6: Calculate the collective preference value of each alternative in the revised ideal matrix based 

on the developed aggregation operator. 

Step 7: Evaluate the score of the alternatives by using Definition 6 and arrange all the alternatives in 

decreasing order. 

Step 8: Rank the alternative. The alternative having highest score value is our best choice. 

The graphically presentation of the proposed algorithm is shown in Figure 2 which will visually 

communicate information, data, or ideas in a clear and concise manner. 
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Figure 2. Graphical representation of proposed method. 

Based on the results mentioned above, we propose a novel MCGDM method in the environment 

of PyFRSs. As shown in Figure 2, the description of the proposed method is given in the following 

short steps: 

Step 1: On the basis of the practical context, we determine the elements of the PyFRS information 

system including alternatives and criteria. 

Step 2: According to the distance measure of ideal opinion, left ideal opinion, and right ideal opinion, 

and the closeness indices the decision expert’s weights are attained. 

Step 3: Determine the revised ideal opinion by using the weights of the decision expert weight and the 

proposed PyFREWA operator. 

Step (4-5): Based on Eq (21) the entropy measure, of each corresponding criteria of the revised 

ideal opinion matrix can be determined. Thus the weights of the criteria can be evaluated by Eq (30). 

Step (6-7): By utilizing the weight of criteria, and the developed Einstein aggregation operator, the 

collective preference value of each alternative in the revised ideal matrix can be calculated. 

Step 8: By using the score function determine the score of the collective preference value of each 

alternative in the revised ideal matrix. Arrange the score value in descending order and rank the 

alternatives. 
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7. Application of proposed method 

This section takes a practical DM problem involving the selection of 3PLs as an example to 

demonstrate the applicability and feasibility of the proposed method. We also developed the 

comparative and sensitive analysis of this study with the existing study to show the efficacy of this 

work. 

7 1  Real life case study 

The e-commerce phenomena is currently expanding in today's competitive world and has a 

significant effect on global supply chains [43,44]. Hence, virtually every organization that moves 

physical goods has increased the significance of logistics management activities. In today's diverse 

and rapidly evolving world, there are several ways in which businesses can gain comparative 

advantage by externalizing logistics management processes. Using a 3PL provider is beneficial for 

distributors, organizations with distribution networks and exporters. 3PL refers to the technique 

through which organizations outsource their warehouse and shipping operational processes. 

Businesses that offer 3PL services can provide packaging materials, cross-docking, and home delivery. 

The growth rate of the 3PL services market is accelerating due to the development of e-commerce and 

the increase in reverse logistics processes. The e-commerce trend comprises commodities staged in 

forwarding facilities close to customers, faster, more reliable deliveries, and more inventory turnover. 

In order to help maintain this highly complex supply chain, a significant increase in 3PL companies 

has been observed. 3PL commonly receive requests for help with storage, delivery, and e-commerce 

fulfilment services, and they invest in technology for both internal and client-facing uses. 

The presence of multiple statistical, interpersonal, etc. aspects in the natural DM phase, the 

selection of 3PLs is likely to be viewed as a complex MCGDM problem due to the character of the 

multidimensional decision-making challenge. Due to the importance of sustainable 3PL providers, 

there is little research on 3PL selection difficulties in emerging economies. The 3PL industry is 

expanding rapidly due to the expansion of e-commerce. The need for 3PL services is expected to 

increase as brands and distributors try to concentrate exclusively on their primary sectors. As a result, 

logistical services are often outsourced. In a word, identifying and selecting the best 3PS is an essential 

aspect of any company's long-term objectives. Following pre-screening, four 3PLs as alternative 

{𝒜1, 𝒜2, 𝒜3, 𝒜4} have been identified. Then three experts 𝒫l with unknown weights γl are invited 

to evaluate the 3PLs according to the following five criteria Ψj = {Ψ1,Ψ2,Ψ3,Ψ4,Ψ5}  having 

unknown weight vectors 𝒦gj
 which are given as under: (1) Ψ1 financial stability; (2) Ψ2 reputation; 

(3) Ψ3 delivery time and reliability; (4) Ψ4 green operation and (5) Ψ5 IT capabilities. 

Note: All criteria are benefits. 

Then, for selecting 3PLs, we will use the generated aggregation operators in the form of PyFRVs, 

the decision experts evaluated each 𝒜i evaluation report with in PyFRV against the associated criteria, 

where i=1,2,3,4. The evaluations given by all the three experts 𝒫1, 𝒫2, 𝒫3 are given in the following 

Tables 1–3 respectively. 
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Table 1. Evalaution information of expert expert 𝒫1. 

 𝚿𝟏 𝚿𝟐 𝚿𝟑 𝚿𝟒 𝚿𝟓 

𝓐𝟏 ((. 4, .8), (. 7, .4)) ((. 8, .5), (. 2, .8)) ((. 4, .6), (. 6, .7)) ((. 5, .5), (. 9, .1)) ((. 7, .4), (. 8, .2)) 

𝓐𝟐 ((. 5, .7), (. 6, .5)) ((. 6, .7), (. 4, .5)) ((. 1, .9), (. 6, .5)) ((. 2, .9), (. 5, .6)) ((. 4, .5), (. 6, .1)) 

𝓐𝟑 ((. 4, .5), (. 4, .2)) ((. 7, .1), (. 3, .9)) ((. 3, .8), (. 6, .8)) ((. 9, .3), (. 3, .7)) ((. 9, .4), (. 6, .2)) 

𝓐𝟒 ((. 6, .6), (. 6, .5)) ((. 9, .2), (. 5, .5)) ((. 2, .5), (. 3, .6)) ((. 7, .1), (. 4, .8)) ((. 5, .6), (. 4, .3)) 

Table 2. Evalaution information of expert expert 𝒫2. 

 𝚿𝟏 𝚿𝟐 𝚿𝟑 𝚿𝟒 𝚿𝟓 

𝓐𝟏 ((. 4, .8), (. 8, .4)) ((. 9, .1), (. 8, .6)) ((. 4, .3), (. 2, .9)) ((. 9, .4), (. 4, .9)) ((. 2, .9), (. 5, .4)) 

𝓐𝟐 ((. 5, .7), (. 9, .4)) ((. 8, .2), (. 6, .5)) ((. 8, .1), (. 5, .4)) ((. 1, .5), (. 6, .4)) ((. 3, .7), (. 6, .3)) 

𝓐𝟑 ((. 2, .5), (. 5, .5)) ((. 6, .5), (. 8, .6)) ((. 4, .9), (. 4, .6)) ((. 7, .2), (. 8, .5)) ((. 3, .4), (. 4, .8)) 

𝓐𝟒 ((. 5, .6), (. 4, .5)) ((. 7, .6), (. 3, .7)) ((. 5, .2), (. 7, .2)) ((. 3, .9), (. 4, .7)) ((. 2, .5), (. 5, .2)) 

Table 3. Evalaution information of expert expert 𝒫3. 

 𝚿𝟏 𝚿𝟐 𝚿𝟑 𝚿𝟒 𝚿𝟓 

𝓐𝟏 ((. 2, .7), (. 9, .2)) ((. 4, .6), (. 5, .3)) ((. 6, .8), (. 5, .6)) ((. 4, .4), (. 2, .9)) ((. 5, .3), (. 1, .9)) 

𝓐𝟐 ((. 1, .4), (. 4, .3)) ((. 3, .5), (. 5, .8)) ((. 4, .6), (. 7, .4)) ((. 5, .7), (. 7, .4)) ((. 4, .7), (. 2, .4)) 

𝓐𝟑 ((. 2, .9), (. 5, .7)) ((. 1, .6), (. 4, .6)) ((. 5, .7), (. 1, .9)) ((. 2, .2), (. 3, .5)) ((. 4, .3), (. 4, .6)) 

𝓐𝟒 ((. 3, .5), (. 7, .2)) ((. 1, .7), (. 7, .7)) ((. 3, .9), (. 2, .8)) ((. 4, .7), (. 1, .7)) ((. 8, .2), (. 4, .2)) 

Step1: In DM problem, there are two types of criteria like cost criteria and benefit criteria, for this we 

normalize all cost criteria to benefit criteria. Here in this example all the criteria are of the same type 

i.e. the benefit criteria, so no normalization is required and all evaluations of expert’s matrix are 

considered to be normalized. 

Step 2: Next we find the weights of expert’s matrix, because it is very difficult to make an accurate 

result when the weight of experts is hidden. So the weighs of decision experts are evaluated in the 

following steps (a)–(e): 

a) Calculate the ideal opinion matrix 𝔒IM of normalized decision matrix ℵij
l  that is closer to all 

opinions of each decision experts by considering the same decision experts’ weight and applying the 

PyFREWA operator which is represented in the Table 4. 

Table 4. The ideal opinion matrix 𝔒IM. 

 𝚿𝟏 𝚿𝟐 𝚿𝟑 𝚿𝟒 𝚿𝟓 

𝓐𝟏 (
(. 345, .767),
(. 817, .292)

) (
(. 770, .321),
(. 664, .539)

) (
(. 487, .539),
(. 469, .731)

) (
(. 688, .432),
(. 664, .484)

) (
(. 520, .497),
(. 573, .439)

) 

𝓐𝟐 (
(. 414, .589),
(. 710, .393)

) (
(. 622, .423),
(. 508, .592)

) (
(. 548, .409),
(. 609, .432)

) (
(. 318, .693),
(. 609, .461)

) (
(. 370, .630),
(. 508, .231)

) 

𝓐𝟑 (
(. 283, .623),
(. 469, .423)

) (
(. 546, .321),
(. 569, .697)

) (
(. 409, .799),
(. 424, .765)

) (
(. 716, .230),
(. 550, .563)

) (
(. 655, .364),
(. 478, .477)

) 

𝓐𝟒 (
(. 486, .566),
(. 586, .2373)

) (
(. 711, .452),
(. 534, .630)

) (
(. 357, .473),
(. 467, .477)

) (
(. 534, .434),
(. 332, .733)

) (
(. 581, .399),
(. 436, .230)

) 
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b) According to Eq (22), the right and left ideal opinion matrixes are calculated in Tables 5 and 

6 as: 

Table 5. The right ideal opinion 𝔒RM. 

 𝚿𝟏 𝚿𝟐 𝚿𝟑 𝚿𝟒 𝚿𝟓 

𝓐𝟏 ((. 2, .7), (. 9, .2)) ((. 9, .1), (. 9, .6)) ((. 4, .6), (. 6, .7)) ((. 4, .4), (. 2, .9)) ((. 5, .5), (. 9, .1)) 

𝓐𝟐 ((. 5, .7), (. 9, .4)) ((. 8, .2), (. 6, .5)) ((. 8, .1), (. 5, .4)) ((. 5, .7), (. 7, .4)) ((. 5, .7), (. 7, .4)) 

𝓐𝟑 ((. 4, .5), (. 4, .2)) ((. 6, .5), (. 8, .6)) ((. 3, .8), (. 6, .8)) ((. 2, .2), (. 3, .5)) ((. 7, .2), (. 8, .5)) 

𝓐𝟒 ((. 3, .5), (. 7, .2)) ((. 9, .2), (. 5, .5)) ((. 5, .2), (. 7, .2)) ((. 4, .7), (. 1, .7)) ((. 7, .1), (. 4, .8)) 

Table 6. The right ideal opinion 𝔒LM. 

 𝚿𝟏 𝚿𝟐 𝚿𝟑 𝚿𝟒 𝚿𝟓 

𝓐𝟏 ((. 4, .8), (. 8, .7)) ((. 4, .6), (. 5, .3)) ((. 4, .3), (. 2, .9)) ((. 4, .4), (. 2, .9)) ((. 2, .9), (. 5, .4)) 

𝓐𝟐 ((. 5, .7), (. 6, .5)) ((. 3, .5), (. 5, .8)) ((. 1, .9), (. 6, .5)) ((. 2, .9), (. 5, .6)) ((. 4, .7), (. 2, .4)) 

𝓐𝟑 ((. 2, .9), (. 5, .7)) ((. 1, .6), (. 4, .6)) ((. 5, .7), (. 1, .9)) ((. 2, .2), (. 3, .5)) ((. 3, .4), (. 4, .8)) 

𝓐𝟒 ((. 5, .6), (. 4, .5)) ((. 1, .7), (. 7, .7)) ((. 3, .9), (. 2, .8)) ((. 3, .9), (. 4, .7)) ((. 5, .6), (. 4, .3)) 

c) After calculating the Ideal opinion 𝔒IM, right ideal opinion 𝔒RM and left ideal opinion 𝔒LM 

determine the distance from each decision expert matrixes to 𝔒IM, 𝔒RM and 𝔒LM by Eqs (23)–(25) 

as represented in Table 7. 

Table 7. Distance from ℵ
l
 to 𝔒IM,𝔒RM,𝔒LM. 

𝕺𝐝𝐆𝑰𝐌 𝓐𝟏 𝓐𝟐 𝓐𝟑 𝓐𝟒 

𝓟𝟏 0.1988 0.2071 0.1814 0.1324 

𝓟𝟐 0.2575 0.1527 0.1812 0.2008 

𝓟𝟑 0.2870 0.1642 0.2177 0.2444 

𝕺𝐝𝐆𝑳𝐌 𝓐𝟏 𝓐𝟐 𝓐𝟑 𝓐𝟒 

𝓟𝟏 0.2134 0.3027 0.2285 0.1941 

𝓟𝟐 0.3614 0.1002 0.2384 0.2926 

𝓟𝟑 0.4111 0.2913 0.3299 0.3515 

𝕺𝐝𝐆𝑹𝐌 𝓐𝟏 𝓐𝟐 𝓐𝟑 𝓐𝟒 

𝓟𝟏 0.3897 0.1538 0.3788 0.3338 

𝓟𝟐 0.2643 0.3359 0.2807 0.2876 

𝓟𝟑 0.3082 0.1905 0.0664 0.1729 

d) The closeness index is evaluated by Eq (26) as. 

ℭI
1 = 0.7530,ℭI

2 = 0.7306,ℭI
2 = 0.6988,ℭI

3 = 0.7530. 

e) The weights of each decision experts are computed by Eq (27) as 

γ1 = 0.35, γ2 = 0.33, γ3 = 0.32. 
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Step 3: Applying the weights of decision experts as we calculated in above step 2 of Algorithm, 

compute the Revised ideal matrix ℛIM by using Eq (28) of Algorithm, as given in Table 8. 

Table 8. Revised ideal opinion matrix ℛIM. 

 𝚿𝟏 𝚿𝟐 𝚿𝟑 𝚿𝟒 𝚿𝟓 

𝓐𝟏 
(
(. 349, .767),
(. 814, .394)

) (
(. 772, .321),
(. 660, .546)

) (
(. 475, .537),
(. 472, .731)

) (
(. 687, .433),
(. 674, .466)

) (
(. 524, .497),
(. 582, .428)

) 

𝓐𝟐 
(
(. 418, .592),
(. 710, .395)

) (
(. 623, .426),
(. 507, .588)

) (
(. 544, .414),
(. 607, .433)

) (
(. 314, .696),
(. 606, .463)

) (
(. 370, .625),
(. 512, .225)

) 

𝓐𝟑 
(
(. 286, .617),
(. 467, .414)

) (
(. 552, .310),
(. 567, .701)

) (
(. 406, .800),
(. 431, .763)

) (
(. 725, .230),
(. 548, .565)

) (
(. 665, .365),
(. 482, .467)

) 

𝓐𝟒 
(
(. 490, .566),
(. 585, .377)

) (
(. 720, .442),
(. 531, .625)

) (
(. 355, .469),
(. 466, .476)

) (
(. 538, .419),
(. 335, .734)

) (
(. 576, .404),
(. 435, .230)

) 

Step 4: Evaluate the entropy measure (𝔼𝔸) associated to each attribute by using Eq (21) as follows: 

𝔼𝔸1 = 0.4506, 𝔼𝔸2 = 0.4332, 𝔼𝔸3 = 0.4888, 𝔼𝔸4 = 0.6988, 𝔼𝔸5 = 0.5702. 

Step 5: Evaluate the weights of criteria’s by using Step 5 of Algorithm. 

𝒦g1
= 0.2082, 𝒦g2

= 0.2147,𝒦g3
= 0.1937, 𝒦g4

= 0.2206, 𝒦g5
= 0.1628. 

Step 6: Calculate the collective preference value of each alternative in the revised ideal matrix based 

on the developed aggregation operator. 

a) Applying PyFREWA operators. 

According to PyFREWA operator using Eq (16), the collective preference value of each 

alternative is calculated in Table 9. 

Table 9. Preference value based on PyFREWA. 

𝓐𝟏 ((. 𝟔𝟎𝟐𝟕, . 𝟒𝟗𝟒𝟒), (. 𝟔𝟔𝟓𝟖, . 𝟓𝟎𝟓𝟔)) 

𝓐𝟐 ((. 4760, .5429), (. 5993, .4175)) 

𝓐𝟑 ((. 5603, .4249), (. 5056, .5767)) 

𝓐𝟒 ((. 5597, .4596), (. 4811, .4793)) 

b) Applying PyFREOWA operators. 

According to PyFREOWA operator using Eq (17) the collective overall preference value of each 

alternative is calculated in Table 10. 

Table 10. Preference value based on PyFREOWA. 

𝓐𝟏 ((. 𝟓𝟗𝟕𝟎, . 𝟒𝟗𝟕𝟗), (. 𝟔𝟕𝟎𝟓, . 𝟒𝟗𝟓𝟒)) 

𝓐𝟐 ((. 4731, .5401), (. 5971, .3980)) 

𝓐𝟑 ((. 5645, .4202), (. 5041, .5608)) 

𝓐𝟒 ((. 5558, .4583), (. 4840, .4535)) 
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c) Applying PyFREHA operators. 

According to PyFRHA operator using Eq (18) the collective overall preference value of each 

alternative is calculated in Table 11. 

Table 11. Preference value based on PyFRHA. 

𝓐𝟏 ((. 𝟓𝟒𝟓𝟒, . 𝟓𝟖𝟒𝟏), (. 𝟔𝟏𝟐𝟕, . 𝟓𝟗𝟑𝟔)) 

𝓐𝟐 ((. 4270, .6195), (. 5425, .5138)) 

𝓐𝟑 ((. 5151, .5044), (. 4557, .6252)) 

𝓐𝟒 ((. 5050, .5475), (. 4394, .5937)) 

Step 7: Calculate the score value of collective preference value of each alternative in the revised ideal 

matrix by using Definition 6, as represented in Table 12 as follows. 

Table 12. Score values of overall collective preference. 

Operators 𝓐𝟏 𝓐𝟐 𝓐𝟑 𝓐𝟑 

PyFREWA .5766 .5291 .5140 .5259 

PyFREOWA .5782 .5325 .5203 .5318 

PyFRHA .4948 .4572 .4489 .4569 

Step 8: Evaluate the ranking of each alternative based on score function, as represented in Table 13. 

Table 13. Ranking of alternative. 

Operators Score values 𝐁𝐞𝐬𝐭 

PyFREWA 𝒜1 > 𝒜2 > 𝒜3 > 𝒜4 𝒜1 

PyFREOWA 𝒜1 > 𝒜2 > 𝒜3 > 𝒜4 𝒜1 

PyFRHA 𝒜1 > 𝒜2 > 𝒜3 > 𝒜4 𝒜1 

The graphically representation of all the alternatives based on PyFREWA operator, PyFREOWA 

operator, and PyFRHA operator is given in Figure 3. 

 

Figure 3. Graphical representation of alternative ranking. 
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7 2  Sensitive and comparative analysis 

Pythagorean fuzzy rough set theory can handle complex, uncertain, and imprecise information as 

well as can approximate the lower and upper bounds of a set with greater accuracy than traditional 

rough set theory or IFRS theory. It is sensitive to changes in the data set because it is designed to adapt 

to different types of uncertainty and imprecision. This approach can handle data sets that are 

incomplete, inconsistent or contain missing values. It is also able to identify dependencies and 

relationships between objects in a set, even when the data is uncertain or imprecise. 

The comparison between proposed Pythagorean Fuzzy Rough Einstein aggregation operators with 

several other existing aggregation operators shows the effectiveness and advantages of proposed 

methodology. This comparison was made by analyzing the characteristics of many decision-making 

techniques and aggregation operators proposed in the literature. The selected existing approach is IFR 

EDAS and q- Rung Orthopair fuzzy Einstein aggregation operators presented by [37,45] respectively. 

We applied the above-developed operators within the IFR setting and the existing q-Rung Orthopair 

fuzzy rough setting in which all weights are unknown. The final results after implying the complete 

procedure of Algorithm are shown in Table 14 and the graphical raking of alternatives is given in 

Figure 4. Hence 𝒜1 is best, the results obtained by using proposed Einstein aggregations operators 

are the same as those obtained by using existing methods [37,45]. Thus, the decision-making process 

suggested in this study has been found to be more stable and practical. While none of the works in 

existence are capable of processing the type of data that PyFRS provides to a decision-maker. While 

the suggested approach has the potential to greatly outperform existing ones, even it can also handle 

data from such methods. This ultimately reaches the conclusion that our suggested study is better and 

more trustworthy than those already in use. 

Table 14. Ranking of alternative with existence method. 

Existence operators 
Score values 

𝓐𝟏  𝓐𝟐  𝓐𝟑  𝓐𝟒 
Ranking 

Best 

Alternative 

IFFRWA-EDAS [37] 1.000, .482, .223, .007 𝒜1 > 𝒜2 > 𝒜3 > 𝒜4 𝒜1 

IFFROWA-EDAS [37] 1.000, .5351, .235, .000 𝒜1 > 𝒜2 > 𝒜3 > 𝒜4 𝒜1 

IFFRHA-EDAS [37] 1.000, .618, .255, .000 𝒜1 > 𝒜2 > 𝒜3 > 𝒜4 𝒜1 

IFFRWG-EDAS [37] 1.000, .386, .038, .020 𝒜1 > 𝒜2 > 𝒜3 > 𝒜4 𝒜1 

IFFROWG-EDAS [37] 1.000, .533, .268, .000 𝒜1 > 𝒜2 > 𝒜3 > 𝒜4 𝒜1 

IFFRHG-EDAS [37] 1.000, .432, .228, .000 𝒜1 > 𝒜2 > 𝒜3 > 𝒜4 𝒜1 

q-ROFREWA [45] .999, .489, .201, .011 𝒜1 > 𝒜2 > 𝒜3 > 𝒜4 𝒜1 

q-ROFREOWA [45] .999, .492, .162, .001 𝒜1 > 𝒜2 > 𝒜3 > 𝒜4 𝒜1 

q-ROFREHA [45] .999, .478, .234, .012 𝒜1 > 𝒜2 > 𝒜3 > 𝒜4 𝒜1 

q-ROFREWG [45] .999, .510, .075, .025 𝒜1 > 𝒜2 > 𝒜3 > 𝒜4 𝒜1 

q-ROFREOWG [45] .999, .481, .001, .017 𝒜1 > 𝒜2 > 𝒜3 > 𝒜4 𝒜1 

q-ROFREHG [45] .999, .598, .088, .205 𝒜1 > 𝒜2 > 𝒜4 > 𝒜3 𝒜1 

Proposed-PyFREWA .576, .529, .514, .525 𝒜1 > 𝒜2 > 𝒜4 > 𝒜3 𝒜1 

Proposed-PyFREOWA .578, .532, .520, .531 𝒜1 > 𝒜2 > 𝒜4 > 𝒜3 𝒜1 

Proposed-PyFREHA .494, .457, .448, .456 𝒜1 > 𝒜2 > 𝒜4 > 𝒜3 𝒜1 
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Figure 4. Graphical view of different ranking of alternatives. 

8. Conclusions 

MCGDM is a technique for determining and evaluating criteria that conflict with all aspects of 

DM to achieve more acceptable and accurate DM outcomes. In DM problems, the most efficient way 

to learn a given fact is sometimes hidden, making the decision-making process more complex and 

dynamic. Pythagorean fuzzy rough sets is mathematical methods for dealing with ambiguous and 

imprecise data. In this paper, a novel method is proposed to solve MCGDM problems with PyFRSs 

which is based on Einstein operators, in which the weights of criteria and DMs are not known. For this, 

we developed a series of Einstein aggregation operators for PyFRSs like PyFREWA, PyFREOWA and 

PyFREHA on the base of Einstein T-norm and co-norm to deal multi-criteria group decision making 

problems. Further, a novel PyFR entropy measure is presented to determine the weights of DM's and 

criteria with in PyFRSs. To minimize the knowledge base loss in this method, aggregation is performed 

by applying determine (DM's) and criterion weights to obtain the result ranking. Lastly, we applied 

our suggested approach to real-life 3PLs problems and compare the results to those of the existing DM 

method to show that our proposed DM method is effective and useful. 

In future work, the proposed work can be extended to neural networking, three-way decision 

making, and various fuzzy extensions such as Fermatean fuzzy rough set, Spherical fuzzy rough set, 

Neutrosophic fuzzy rough set, complex Fermatean fuzzy rough set, and various aggregation operators, 

such as Yager, Dombi, Hamacher aggregation operators to solve various MCGDM problems. 
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