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Abstract: In this article, we consider the Cauchy problem for the following time-space fractional
pseudo-parabolic equations

CDYI = mAyu + (—A)? u = uf"'u, xeRY, >0,
M(O’ X) = MO(X), X € RN,

where 0 <a<1,0<8<2, p>1, m>0, upe L9 (RN ) An estimating L” — L? for solution operator
of time-space fractional pseudo-parabolic equations is obtained. The critical exponents of this problem
are determined when u, € LY(R"). Moreover, we also obtain global existence of the mild solution when
uy € LP(RY) N L4(RY) small enough.
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1. Introduction

In this paper, we study blow-up and global existence of solutions for the following time-space
fractional pseudo-parabolic equation in RY

{ SDRU = mAu+ (=0 u =, xeRY, 1>0, (1.1)

M(O, x) = I/l()(X), X € RN7

where0<a<1,0<B8<2, p>1, m>0, uoeL‘I(RN)and

0
SDYu = EOI;_Q (u(t, x) — up(x)),
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ol!~* denotes left Riemann-Liouville fractional integrals of order 1-a and is defined by

1

O[[l—au = m L (t - S)_QM(S)dS,

where I is the Gamma function. (—A)?/? is the fractional Laplace operator, which may be defined as
=AYPv(x, 1) = ' (EPF @) (x, 1),

where ¥ denotes the Fourier transform and 7 ~! represents the inverse Fourier transform in L2(R").

As we all know, it has been seen that qualitative theory and applications of fractional derivatives
are employed to describe the nonlocal effects in time and space and it appears to have better effects
than the classical ones, like Levy flights in physics [20, 22], the physical model considering memory
effects [11] and some corresponding engineering problems [1, 5, 16, 24, 26], especially the power-
law memory (non-local effects) in time and space [5,9]. Time fractional parabolic equations have
been studied by many papers [6-8, 18, 21], many important physical models and practical problems
require us to consider pseudo-parabolic model with fractional derivative rather than classical ones.
The pseudo-parabolic equation with fractional derivatives, such as Eq (1.1), can be considered as a
model for viscoelastic fluids. More and more work has been devoted to the investigation of fractional
pseudo-parabolic equation, see [17,27-29]. Zennir et al. [28] discussed the finite time blow-up that
arise under an appropriate conditions and the nonsolvability of boundary value problem for damped
pseudo-parabolic differential equations with variable exponents. In [29], they also investigated the
global non-existence for a class of pseudo-parabolic equation with weak-viscoelasticity under suitable
conditions on the variable exponents with negative initial energy.

Ifa=1,m>0, =2, problem (1.1) becomes classical pseudo-parabolic equation. Cao et al. [4]
considered the following semilinear pseudo-parabolic equation

u; — mAu;, — Au = u”.

They investigated the existence, uniqueness for mild solutions and they also studied the large time
behavior of solutions. They obtained that if 0 < p < 1, then for any 0 < uy € C*** (R"), the classical
solution of the Cauchy problem exists globally, and if 1 < p < 1+2/n, then for any 0 < uy € C*** (R"),
the classical solution of the Cauchy problem blow-up in a finite time. Jin et al. [12] considered the
Cauchy problem of the following space-fractional pseudo-parabolic equation

u; — mAu, + (—2)u = u’.

They discussed global existence, time-decay rates and large time behavior of solutions.

If m = 0, problem (1.1) is called space-time fractional diffusion equations, which are useful to model
anomalous diffusion and Hamiltonian chaos, etc. [25]. In [14], Kirane et al. studied the following
space-time fractional evolution problem

C a A = 1+p N
{ODtu+(A)2u hCe, Dlul ™7, x€RY, >0, (1.2)

u(0, x) = up(x), x e RV,

They obtained the sufficient conditions such that problem (1.2) admits no global weak nonnegative
solution other than the trivial one.
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In [30], Zhang et al. discussed the following time-fractional diffusion equation

SDYu — Au = |ulP~'u, xeRYN, >0,

v (1.3)
(0, x) = uo(x), x € RY,

where 0 < @ < 1, p > 1, uy € Cy (RN). They proved thatif 1 < p < 1 + % every nontrivial

(®Y)

nonnegative solution blow-up in a finite time, and if p > 1 + % and ||u0||LN<p2_|> is sufficiently small,

then the problem has global solutions.
Tuan et al. [27] studied the following fractional pseudo-parabolic equations in a bounded domain

D¢ (u — mAu)(x,t) + (=A)u(x,t) = N(w), xe€Q,t>0,
u(x,t) =0, x€0Q,t>0, (1.4)
I/t(.x, O) = MO(-X)’ X € Q,

where N (u) satisfies the Lipschitz condition. They established the results of existence, uniqueness
and regularity of the local solution for problem (1.4). They also investigated global existence of the
following time fractional pseudo-parabolic equations in RY which is a special case of (1.1) with 8 = 2
D*(u — mAu)(x, 1) — Au(x,t) = N(u), xe€RN,t>0, (1.5)
u(0, x) = up(x), xRV, '

So far as is known to the authors, the study of Fujita exponent for problem (1.1) has not been carried
out. Motivated by above results, in the present paper, our purpose is to determine the Fujita exponent
of problem (1.1). By applying test function method we prove thatif 1 < p < 1 + 8 " the solutions
blow-up in a finite time, and if p > 1 + %, the solutions exist globally when u, € LY(R"). Moreover,
we also obtain global existence of solutions when uy € LP(RY) N LY(R") by using contraction mapping
principle.

Note that if m = 0, the estimating L” — L7 is available for the corresponding solution operator.
However, some estimates of the form L? — L7 is not available on the domain R" for the time-space
fractional pseudo-parabolic equations. So our main challenge is to prove L” — L7 estimates of the
solution operator. Our conclusions extend the corresponding results in [27,30] .

This paper is organized as follows: In Section 2, some preliminaries are presented; In Section 3, we
establish the local existence and uniqueness of mild solution for problem (1.1); In Section 4, we show
the blow-up and global existence of solutions to problem (1.1).

We will denote L? (R")-norm by | - |,

Fu) =) = f e u(x)dx

denotes the Fourier transform of u and .Z 'u(x) = i(x) = 2n)™ f e u(¢)dé—the inverse Fourier
transform of u. The letters a,f,y will denote multi-indices, i.e., « = (ay,...,a,), where each
component @; is a non-negative integer, and the number |a| = @ + -+ + @, is the order of the
multi-index a. C will denote generic positive constants.

AIMS Mathematics Volume 8, Issue 8, 17827—-17859.
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2. Preliminaries

In this section, we present some preliminaries that will be used in next sections.
The Mittag-Leffler function is defined for complex z € Cin [10, 15,23]

Eop(2) = ; T h @ B eC, Re(a) > 0,

and its Riemann-Liouville fractional integral satisfies
of} ™ (17 Eqq (U")) = Eqy (41") for 1€C, 0<a< 1.

We also need the following Wright type function which was considered by Mainardi [19]

(o9

(—2)F 1 i (=2)*T(a(k + 1)) sin(r(k + 1)a) @.1)
k=0

PO = 2 T Cak+ T—a) 7 Kl

for 0 < a < 1. ¢, is an entire function and has the following properties,

(i)o(6) > 0 for 6 > 0 and f ) 6o (0)d6 = 1.
0

I'(l+r)

——forr > —1.
I'(l +ar)

(i) f ) $.(0)6'd6 =
0
(iii) f bo(0)e’d6 = E, 1(~z),z € C.
0
(iv)a f 0do(0)e*dl = E, o(~2),7 € C.
0

If$DYf e L'(0,T), g € C'([0,T]) and g(T) = 0, then we have the following formula of integration
by parts

T T
ljﬁbﬁmzl:um—fmmb%m, 22)

where

« d -
tCDTg = _EII; 8

1 T
I g = —— —1)""g(s)ds.
1= e | =0 swds

We need know the Caputo fractional derivative of the following function, which will be used in next
sections. If @ € (0,1), w(t) = (1 =¢/T)J, t >0, T >0, o > 1, then

C na _(1—C¥+0')F(0'+1) e _LO'—a/
ODtITW(t) = r2-ax+o) T (l T)+ , (2.3)

AIMS Mathematics Volume 8, Issue 8, 17827-17859.
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SO
(Spgw) @y =0, (SDHw)© =CT,

where
C=(l-a+0)(c+1)/TQ2-a+o0).

In order to prove main results of this paper, we need consider the following linear problem.

B n
{ut—mAut+(—A)2u—O, x €R"1>0, 2.4)

u(0, x) = ug(x), x € R".

We know that as (—A)?/? is a self-adjoint operator with D (A) = H? (RN ) , thus,

f u(xX)(=AY?v(x)dx = f v(x) (=AY Pu(x)dx,

RN RN
for all u,v € HP (RN ) , where HP (RN ) is the homogeneous Sobolev space of order 5 defined by
HP (RY) = {u € §'\Au € L* (RV)}, if B ¢N,
H(RY) = {u e 2 (RV) | Au € L (RY)}, ifBeN,

where &’ is the space of Schwartz distributions.

Let T'(r) denote the semigroup operator generated by A = (—A)g (mA — I)~!. Taking the Fourier
transform to (2.4) with respect to x, we can write the solution of (2.4) as

u(x, 1) = T(Ouog(x) = 2m)™ | exp(t@(&) + ix&)ito(£)dE, (2.5)

er

where .
D) = ¥ (1 + miéP)

In order to obtain the behaviour of L”-norms of (2.5), we need the following two Lemmas.

Lemma 2.1. Suppose that ¢ € Cy (R") satisfies p(&) = 0 for || > max{1 } lp(&)| < 1, and denote

i) = [ E @ expuo(e + e
Then for every multi-index a and 1 < p < oo, there exists a constant C independent of t such that
|ja(., t)lp <C(+ t)(n(l/P—l)—ldl)/ﬁ’

Proof. First by using the Plancherel theorem we can estimate the L? -norm of .7, :

| 7.C, 015 = (1)

mlé|?

@ _2t|§lﬁ ) f 2|
<C 2ol ——]dé<C | 1B d
< ngk €] eXp(1 + m|E? ¢ < ot €] exp( 1l¢] ) &

AIMS Mathematics Volume 8, Issue 8, 17827-17859.
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< Ct—n/,B—Zlal/Bf el exp (_lwlﬁ) dw < CrB-2allp (2.6)
Rﬂ
where we use .
20l (1+mlel) > 1P

for |£] < k where k < ﬁ and k < 1 and the change of variables 1'/#¢ = w. Hence,

|- T2 Dy < C(1 + )78, 2.7)

Note that for all smooth rapidly decreasing functions w = w(x) defined in R” and for every integer
N > n/2,

- n/(2N)
Pl < Chwly ™V ([owl,) (2.8)
|k|=N
and
_ n/(2N)
e < Chh Y S (9], ) " (2.9)

lkl=N

Equation (2.8) was proofed in ([2], Example 2). It is obvious that (2.9) is an immediate consequence
of (2.8) if we use the fact [wl, < (27)™|W|;. Hence, using (2.9), noting that 6.7, = i*.7,,,, and
applying (2.7) we can deduce that

n n/2N)
|7 Dl < CLIGC OBV ( )

[xl=N
<C(1+ t)—(n/2ﬁ+lal/,8)(1—n/(ZN))(l + t)—ﬁ(n/2+|al+N))n/(2N)

=C( + t)—(n+|0/|)/,3.

agja/('a t)

Now we estimate the L' -norm of .Z,

—24&P
|2 0L < C (f & 1p(&)I exp (ﬂ)df))(l—n/(zw/z

1+ mlgP?
<[

k=N

—|&B
rlewoon( i)

2 n/(4N)
d . 2.10
1+ mléP f) (2.10)

The first term on the right-hand side of (2.10) decays like (1 + ¢)~®/2+al/A)1=n/CN) by an argument
similar to that in (2.6). We use the Leibnitz formula to the integrand in the second term in (2.10). It
suffices to show that for fixed || < N the L?-norm of expressions

(&) (0577) Y exp(1®(£)), 2.11)
then it can be bounded by

(1 + t)(—n/Zﬁ—(lrll—N)/ﬂ)(n/(ZN) (2.12)
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for each multi-index |y| < |{], all # > 1, and a positive constant C.

Observe that we can always assume that ({ — y); < «; for every i € {1,...,n} (if it does not hold,
then (2.11) equals 0 ). Note that considering ® instead ® allows us to postulate that 6&&)(‘5) = &0,
for some Q;(&) € C* (R").

If |y| = 0, as in (2.6), the L? -norm of (2.11) is bounded by

Cr/2-1a=0B _ Cpni28~(a~0DIB o yn/2B~(lal=N)/B
In the proof we may therefore assume that |y| > 0, and that the decay rate (2.12) is already proved for

all multi-indices ¥’ such that |[y’| < |y|.
Now let us replace y by y + ¢; in (2.11), where e¢; = (0, ..., 1,...,0). Then (2.11) takes the form

(&) (0577£") 0L (105 D(&) exp(t®(©))) = (&) (776) D €y, 0 (10:D(8)) OF exp(t®(€)).

Yi+72=y

By (2.6) with ¢ replaced by go(g)ag‘*“ci)(g), and the recurrence hypothesis (here |y,| < |y|)), we can
estimate the L>-norm of each term in the sum above by

Ct - 2B-la~Cry+ellf o o pnl2B~(al=-N)JB

because |y| > 1. Since

_(1 . M)(l _ i)_(l . |“|‘N)L _ _ld
28 B 2N 2B B 2N B’
| ZaC, Ol < C(1 + 1) VP,
Finally, using the following inequality
Il < Wl Piwly
which completes the proof. O

Lemma 2.2. (see [13], Lemma 4.2) Let k > 0 and a(t,¢) € C* (R X R") satisfy

d¢a(t,&)| < Coe™(1 + Jg) ™™ (2.13)

for each a and some positive constants C,, € independent of t and &. Then the operators

T (Ov(x) = f a(t, §)e"H(€)dé

are bounded on L” (R") for every p € [1, co]. Moreover, there exists a positive constant C, independent
of v and t such that

|7 Oul, < Cpe™ul,
foreveryv e LP (R") andt > 0.

The following Lemma describes the behaviour of the L”-norms of (2.5).

AIMS Mathematics Volume 8, Issue 8, 17827-17859.
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Lemma 2.3. Let 1 < g < p < coandn > 1. There exist positive constants C, € (independent of t and
uy) such that for every ug € L? (R") N L1 (R"),

IT(t)uol, < C(1 + )" VP~ YD ||+ Ce™ |uy|, (2.14)

forallt > 0.

Proof. We decompose T'(f)u, into two integrals using the cut-off function ¢ from Lemma 2.1 with the
additional assumption ¢(£) = 1 for |€] < 6 where § < 5 and 0 < «F

QY T (1) = f () expliD(E) + ixE)ilg(€)dE
+ f (1 = (&) exp(iD(E) + ixE)io(E)dE
=l(x,t) + L(x,1).

Observe that I(x,1) = (H(-, 1) * ug) (x), where %, is defined in Lemma 2.1 with @ = (0,...,0).
Hence, by the Young inequality and Lemma 2.1,

1L, 0], < C(1+D™PUPHD ) 1< g < p < oo

and this is the second term on right-hand side of (2.14). The estimates of L”-norms of I,(-, ¢) are based
on Lemma 2.2. We see that

I
e = [0 - s exp (S5 i anerae
1 _ 1B 2
- [a-wepe e (tw + iX§) o E)dE.
i

Note that | 5 )
1 o —IEP + €]
OE)= —— 4> >
© == T
let us denote by .Z,(¢) and .Z,(¢) the multiplier operators defined by the symbols (1 — go(f))e‘i’ and
At.€) = (1 - p(&)) (exp(t®(£)) - e ),

respectively. Since we have
To(Dug(x) =e ' f (1 — (E)e™ng(€)dE = (2n)"e ' up(x) + €' f O(&)e" g (&)dé
=(2n)"e " ug(x) + (27)"e '@ * uo(x),
by the Fourier inversion formula, we have
| To(Duol, < (2r) e (1 +1@l1) luol, = Ce™ ' |uql, (2.15)

for all p € [1, oo].

AIMS Mathematics Volume 8, Issue 8, 17827-17859.
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In order to estimate .7, (¢), we observe that

1 i~ 6P+ IeP
A O = e 7' (1 = p(&) (exp (,%) ~ 1]‘
1
< e‘%t(l —(£)) (exp [t#mlflz) _ 1]‘ ’
SURP 9L A, §)| < C,(1 + |g)) el ol glvion

where |

5=supv(1+mleP) " =v(1+mloP)

lg1>6

-1
This argument shows that A(¢, €) satisfies (2.14) with k = 1 and each € € (0,v — v(l + m|5|2) ). Now
by Lemma 2.2 we obtain

| Ta(0)vol, < Ce™ |vol, (2.16)
foreach 1 < p < coand all vy € L? (R"). Since
L(x, 1) < Z(t)vo(x) + Ta(t)vo(x),

then summing up (2.15) and (2.16) we obtain the second term on the right-hand side of (2.14). Hence,
the conclusion holds. ]

Define the operators P,(¢) and S ,(?) as
Po(Duy = f Ga(O)T (t"0) updo, t > 0, (2.17)
0
S.(Huy = ozf 0o ()T (t*0) updo, t > 0, (2.18)
0

where 7'(¢) is given by (2.5). Later on, we will use the following results.

Lemma 2.4. (See [4]) Let 4 = —~(mA—I)"", if 1 < g and f € L1(R) then there exists M > 0 such
that

”gf”Lq(]RN) = M||f||Lq(RN)~

Lemma 2.5. Foruy € L” (RN ) , we have
SDYP,(tyug = AP(Dug, t > 0.
Proof. Let X = L? (RN ) . First, we prove if uy € X, then P,(t)uy € D(A). In fact, for uy € X,
Py (Dug = f ¢o(OT (1°6) udo
0

1 1 00
= f (9a(0) — ¢o(0) T (1°6) uod6 + ¢, (0) f T (t"0) uod6 + f Pa(O)T (t70) uodo.
0 0 1

AIMS Mathematics Volume 8, Issue 8, 17827-17859.
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Clearly, fol T (1*0) updd € D(A). Note that there exists positive constant C such that

AT (£76) uolly < C%, t>0,6>0,

we get that
f G (DT (t°0) updd € D(A).
1
Next, we show that
1
f ($a(0) — pa(0)) T (1°0) ugd6 € D(A).
0

In fact, for every i > 0,
1 1 1
A [T(h) fo (¢a(0) = 9(0) T (1*6) uod6 — fo (¢e(6) — ¢o(0) T (176) uodH]

1 1
=7 L (6a(0) — ¢ (0)) (T (176 + h) — T (t°6)) uodo.

Since
C
<

S — | |U ,
Il

' (T (1°0+h) - T (1"6)) uo Pa(6) — ¢ (0)
h 0

for some constant C > 0 independent of 6 and 4, so, by Lebesuge dominated convergence theorem, we

know

<C,

X

1
j(: (0a(0) = ¢a(0) T (176) uodt) € D(A).

Note that

1 1 00
AP (Duo =ﬂf (Pa(0) — ¢o(0) T (1°0) uod6 + ¢a(0)ﬂf T (1°6) updt + ﬂf $a(O)T (1°0) uodd
0 0 1

1 a _ 00
= [ @0~ .00 AT 0yt + ELELEINZ10 [ g 00T 0 oo
0 1
Therefore
C
AP, ol < = ol 2.19)

Via dominated convergence theorem, we obtain that for uy € L? (RN ) ,

%m@%:WV&MMJ>O

Furthermore, if uy € D(A), then

d
Ehmw:tﬂ%@ﬂwt>0

AIMS Mathematics Volume 8, Issue 8, 17827-17859.
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Since

1 rose! *
L7 (1718 o = f f 06o(O)T (s*6) Auodbds,
oly ™ (1718 oD AW) = T oS Gy ) 09O (570) udsds
“ 1
Jﬂa%ﬂwuﬂmﬂ%w:—fjﬁhﬂm%u—ﬂﬂﬂ%m,
0 27 r
where I' is a path composed from two rays
. Vs , n
[ ={pep > 1, 3 <t<n}, I ={pe"p =1, 3 <7 <nm}
and a curve I'; = {#| -7 < B < 7).
o (17 Eq o (A1) = Eq g (A1),

SO,
o) (1718 (0 AUo) = Po() Pty = AP (1)t (2.20)

Therefore, we get gD?P(,(t)uo = AP,(t)ug, t > 0. Next, we prove that the conclusion also holds if
up € X.
In fact, if uy € X, then we can find {uo,} € D(A) such that uy, — 1, in X. By (2.20), we know

§DIP (Do, = AP (g, and ||Po(Duq,,

< ol -
x = ||Honllx

We denote u,, = P,(t)up,. Then, there exists u € X such that for every 7 > 0, u, — u uniformly in
Xforte[0,T]asn — co. Since
l-a

<
X= (1 -a)l(-a)

1-a
||01t Un

el Lo 0.1) ) » £ € [0, T],

we have oI'~u, — oI!"“uin X. By (2.19),

C

<= ||u0,n

Cna
||0Dtun X — 1o

X for some constant C > 0, ¢ > 0.

Hence, for every 6 > 0, there exists w € C([d, 00), X) such that g Dfu,, — wuniformly in X on t € [, 00).
Note that for € [0, 00),

d —
gD?un = - (OIt1 (Pa/(t)uo,n - uO,n)) = Au,,

dt
SO
d
w= d—toltl_" (u— up) = $Du, t € [8,00).
Since A is closed, we have w = Au, that is gD§’u = Au = AP,(t)uy, t € [J, 00). By arbitrariness of 6,
we cn conclude §Dfu = AP (Hug, 1> 0. o

AIMS Mathematics Volume 8, Issue 8, 17827-17859.
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_ B
— = <y, then

=1_1
P g

Lemma 2.6. Ifup € L’ R")NLI(R"), 1 < p< g < +coand
2.21)

_aN —ad
”Pa(t)uO”Lq rV) < Ayt B ||u0||Lp RN + Ayt ||u0||Lz1 RN) »
(&Y) (®Y) (&Y)

e T (1)
T Tl -a®)

where
_ar(i-)

Al_ 1_11N

r(1-)
Proof. By the properties of ¢,, Lemma 2.3 and the fact that e™*" < #”e~? (61*)™” for any @ € (0, 1), we

find that

foogba(G)T(t"G)uon
0 Li(RN)
<C fo $a(0) ("0) 7 |lugllp(svy O + C fo $a(@e™" Iluollo(mvy dO

+00 +00
<Crw f $a(0)077 d8 lluoll gy + CO" e 17" f $a(0)07"d0 lluoll o (v
0 0

r(1- ﬂr . Pe T (1 -9)
Mt_ﬁ’ ||u0||Lp(RN) + CWI_M ||u0||Lq(RN)

=C

aN
r(1-4)
_aN —u
=A it ||u0||Lp(RN) + Ast K ||u0||Lq(RN) .
Hence, we get it. O
Lemma 2.7. Foruy € I? (R) N L1 (R") and 1 < p < q < +oo,let = L 1 if L < 2 then
_aN o
||Sa(t)u0||Lq(RN) <Azt ||u0||Lp(RN) + Ayt ! ||u0||Lq(RN) s
where
e Cr(2-z)  cw’e're-o
T N T TA+a-ad)
F(1+a-192) (I+a-ad)
O

Proof. The proof is similar to that of Lemma 2.6.
Lemma 2.8. Assume f € L1 ((0, T),L? (RN)) , q>1.Let
t
w(t) = f(t — )78 4t = )Y f(s)ds,
0

then
ol "w = fo t P (t — )9 f(s)ds.
Furthermore, suppose 1 < p < 400,1 < g < +00 and r > p satisfy
%_%<%(1_afiq) andﬁ<1—$.

If f € L((0,T), L” (RY)), then w € C ([0, T1, L (RY)).
Volume 8, Issue 8, 17827-17859.
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Proof. Tt follows from Fubini theorem and (2.20) that

1
I'(l -a)

! f f (t—5)%s =) 'S (s — NG f(1)dsdT
—CZ) 0 Jr

-« _
OIt w =

f (t— s f S(s — )8 (s — DY f(t)drds
0 0

I'(1

(1 1— @) fo fo (= 5= IS (90 f(dsdr

= f P.(t — )9 f(r)dr.
0

Since 1 < g < 400, we can assume that f € L9 ((O, T), Wp (RN )) by using a regularizing sequence.
Thus, one obtains f € L9 ((O, T, L (RN )) . And using dominated convergence theorem, we have w €
C (10,71, L' (RY)). By Lemma 2.7,

1 1 2 1 1

———<—(1——)and0<1——,

p r N aq aq
we can get

1_1

||W||Lr(RN) <C j(: (r- S)a_l_%(; ;)”f(S)HU(RN)dS +C j(; (= S)a_l_w“f(s)”Lr(RN)ds

<C (ﬁ ([— s)[a’—l—nzN(/l?_i)]qzldS) ! ||f(s)||Lp((O,T),LP(RN))

1
! q
o ( [a- S)[a_l_amqlds) Ol ey
0
SC(T)||f||Lq((0,T),LP(RN))-
Thus, a approximate argument leads to w € C ([O, T),L (RN )) if fe L49(0,T), L? (RN )) ) i

3. Local existence

This section is dedicated to proving the local existence and uniqueness of mild solutions to
problem (1.1). First, we give the definition of mild solution foe problem (1.1).

Definition 3.1. Let uy € L1 (RN), T > 0, we call thatu € C ([0, T], L1 (RN)) is a mild solution of (1.1),
if u satisfies the following integral equation

u=P,(uy + f (t— )8 (t = D |ulP udr. (3.1)
0

Theorem 3.1. Let 0 < o < 1 and q. = N(;_l), uy € L1 (RN), aq. < q < +oo. Then there exists T > (0

such that problem (1.1) has a mild solution u in

(10,71, (R")) n ¢ (0, 71, L' (RY))
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and
sup 17]|u(r)||(zvy < 00,
1€(0,T)
where b, = “’TN (é - %) and r € (g, +o0] satisfies é - % < % This solution is unique in the class
{u e L2, (©0.7), L7 (RM)) | sup 173l any < oo}. (3.2)
1€(0,T)

Furthermore, if r satisfies pg < r < +o0 and + —1 < £ then u can be extended to a maximal
q r Npa
interval [0, T™") such that

ue C([0,77),L7(RY))n C (0,77, L (R))
and either T* = +oo or T* < +00 with ||M(t)||Lr(RN) — 4ooast— T".

Proof. For given T > 0, let

Epgr = {u € L3, (0,7, L7 (RY)) | lullg,,, < oo}, llullg,,, = Sup (0| oz

where

aN (1 1
bpg=— |- ——
B \qa prq
and b,, — a¥ > 0. Then, E,, r is a Banach space. Choose

M > A ”uO”Lq(RN) + AZprq_aﬂ ||u0||Lq(RN) ,

where A; and A, are given by Lemma 2.6, let By denote the closed ball in E,,r with center 0 and
radius K. We define the operator G on E,, r as

Gw)(t) = P,(ug + f (t — $)7'S ,(t = )G |ul"  uds.

0

It follows from Lemmas 2.6 and 2.7 that there exists a constant C > 0 such that for u € Bg and
te0,7)

GO ey
<C (A lluollaey + Aot ||l o))

t !
+CA3tbpt1 f(; (t _ S)a_lllu(s)”ipq(RN)dS + CA4[bpq j; (t - S)a_l_aﬂ“u(s)”ipq(RN)ds
<C (A lluollaqey + AT il oay)
f !
+CA;KP1"r f (t — 8)* " s7PPrads + CALK 1P f (t — 5)* 17 5 Pbrag
0 0
<C (A lttoll gy + AT ol sy

1 1
+CA3KP T Phra+beg f (1 — 8)* L s7PPrads + CALKP T Pora+bra=a? f (1 — s)* 177 sPPrag
0 0
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<CM + CA;KPT¥ Pbratbra  CA,KPT ¥ Poratbra=a?

The fact that ¢ > aq. > q. guarantees a — b,, > 0, pb,, < 1 and a — pb,, > 0. So, all the integrals
above are convergent. Choose K > 0 and T > 0 such that

CM + CA;KPT Pora*br 4+ CA,KPTY Poratbra=? < K. (3.3)

Hence, G maps By into itself. Note that

M = Ny < € (01,2 + IV = Wl

for some constant C > 0 independent of # and v. Similar calculations show that G is a strict contraction
on Bk if T 1s chosen small enough. Therefore, G possesses a unique fixed point u in B.
Note that sup,. 1 tP2ra |||u|P|| La(rY) < F00. Then we deduce from Lemma 2.7 and pb,, < a that

t _ el _ N
fo (t— 5)*'S (¢t s)lul”dseC([O,T],Lq(R ))

Thus u € C([0,T], L7 (RV))
Since r > g satisfies 1/q — 1/r < B/N, using Lemmas 2.6 and 2.7 the fact that pb,, < 1 < a, we
have

PG @) vy
<C (A1 ltollagovy + Aot lutgll (zv))
LCAL f (1 = ) M, g5 + CAst” f O
<C (A llugllary + AT llutoll ey
+CA3 K1 fo t(r— ) sPPrds + CALKP 1 fo t(r— §) 17 5T ds
<C (A llull oy + AT ol oa) )
+CA3KPT* Pt f 1(1 — 5)* " sTPPrads + CALKP T PPrathr=e? f 1(1 — )1 P
0 0

< + o0,

In addition, observe that u € E,,r and by a simple calculation we find that u € C ((O, T, L (RN ))
Consequently, u € E.; N C ((0, T\, L" (RN )) )

Next we prove the uniqueness of the solution. Let u,v € C ([0, T], L1 (RN )) N E,,r be two mild
solutions of (1.1) for some 7" > 0. Suppose u,v € Bg.. Then, we can take 7’ < T small enough such
that (3.3) holds with K replaced by K’. Thus, u(t) = v(¢) fort € [0,7’] . When T’ <t < T, we have

4 aN(p— I)

let(2) = VOl oy < C(A3 (t— 5" mi '+ A, (z 5)* " 1)||u(s) = V(S (zyds

T’ T
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for some constant C > 0 independent of u and v. Hence, Gronwall’s inequality yields u(z) = v(t) for

te[T,T].
Finally, we prove that the existence of maximal time provided r satisfies
1 1
pq <r <400 and———<i.
q r Npa
Set

T" = sup {T >0|lucE,rnC ((0, Tl,L" (RN)) 1s a mild solution} .

Assume T < +o0 and there exists M; > 0 such that sup,q 7-, | lu(@)|| Lr(ey) S M.
We claim that there exists M; > 0 such that

sup tb”"llu(t)lleq(RN) < M, and sup ()l o vy < +00. (3.4)
te(0,7) 1€(0,T*)

If r = pg, we have

b—a)
P gl )

(Ol vy <C (Iollgazy + T
+C£ (t - s)“‘lllu(s)”zp,,(RN)dS + Cj(; (t— s)(l—l—aﬂl|u(s)||ipq(RN)ds

<C (lluollagrvy + T~ luoll ey

1 1
aN(p-1) aN(p-1)
+C (T f(l — )™ s PPrads + +C (T*)* " f(l — ) Ly Pbrgs
0 0

< + 00,

For the case of pg < r < +0o0, since

we can take n € N large enough such that

1
1 Pa\" 4, _
£<7’(@);<r,—(r)p 1<ﬁand£— 1]<E.
p r Pq N r r(ﬂ)ﬁ N

1
Set y = (p—rq)" and g, =1, g = @r1x = X", k=2,3,...,n+ 1. Observing that y < 1 and

1 1 1 1 1 1
0<2- ——(3——)3 1(2——):)(—p——<£,k:1,2,...,n,
9« 1 X\r rx) x\r rxJ pqg pg N

I 1 1 1 1 1
<——— ———<i,k:1,2,...,n+1,

9 @&« g @ 4q r Npa

we know that if

sup tbqkllu(t)||qu(RN) < +00,
te(0,7*)
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there exists a constant C > 0 such that

b,
P (D)l

by—ad
<Clluollza(eyy + T Nlutol| s (v

+CtPu f (= HETT o, oy ds + O f R MO E

<Clltllyagamy + T~ gl ey

aN 1
+C1 s f(t—s) (‘”’f a1 s PPuds + CtPos f(t 5)* " g Phads
0

wb—a nN(p N
C (ltollagawy + T~ Nl oay) - + f (1 - s Flma ot

1
aN 1 1
vof B (g ) f (1 = 5)* s PPads
0
< + 00,

Thus, the assumption that sup,c 7,  [lu(?)|| r(rv) < M, implies

sup ¢ ”"||M(l)||qu(RN) < 400,
1e(0,T%)

and then sup,¢ 7+ [u(@)|| La(rN) < 0. Therefore, the claims are proved.

Next we verify that lim, 7 u(f) exists in L (RN ) N Lr (RN ) Indeed, for L <t <7 < T*, by a

similar proof of Lemma 2.8 and using Lemmas 2.6 and 2.7, there exists a /7 > 0 such that

la(t) = u(llps ey < CC = 1) (Itollzagey + Mol ey ) + CML (T = 1),

_ _ 3.5
le(t) = ()l ppagamy < €@ = 1) (Itollzagevy + s llgany) + M = 1) )

Therefore, lim,_, 7+ u(f) exists in L" (RN )OLP‘I (RN ) . Denote ur- = lim,_,7+ u(¢) and define u (T*) = uy-.
For h > 0 and § > 0O, let

Eps={ue (i7", 7"+ ], L (RY) n L7 (RY)) | u(T*) = uz-.d (u,ur-) < 8},
where

du,u*: max u(t) — ur- P + max u(t) — ur« y .
(yup) = max  [u(t) = uplly o+ max ) = urllysgey)

It follows from (3.4) and Lemma 2.8 that u € C (((), T*], LP4 (RN ) NnL (RN )) . Then we can define the
operator K on E), s as

-
K)(#) =P, (Huy + f (t = 1) 'S o (t — TG u()|Pdr
0

!
+ f (t—1)* 'S (t = DG (1)’ dT, v € E)ps.
T*

AIMS Mathematics Volume 8, Issue 8, 17827-17859.
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We can easily see that K(v) € C([T*,T*+ h], L (RN) N Lr1 (RN)) and K(v) (T*) = uz- by using (3.5),
Lemmas 2.6 and 2.7. For v € Eh’g and t € [T*,T" + h], it follows from the same arguments as above
that

IK)(E) = wrell vy SC (¢ = T) (ol agamy + Mol () + CMY (¢ = T7)"
o) (3.6)
+C (lluT*HL,.(RN) + 6)p [(t T 4 (= T

for some positive constant C. Moreover, (3.6) also holds if r is replaced by pg. So we can choose h
small enough such that d (u, uz+) < 6.
On the other hand, for every w,v € Eh,(;, there exists a positive constant C such that

||KW_KV||Lr(RN)

t -t t a-a-1 p-1 oo
SC (f]; (t - T) pr + ﬁ*(t - T) )(”WHL’(RN) +||V| L’(RN)) ||W - V”LV(RN)dT

p-1 - =l a—ad)
<C (||uT*||U(RN) + 5) W +h le[glaTchrh] [lw — vIIL,-(RN),

and

Pl () g—aNe-h) a—ad
- < x pr —
1Kw = Kollgary < € (lur-llgay +6) (1 ) max = Ve,

Thus, choosing # small enough such that
p-l p-l - =D a—a 1
C|(r-tgey + 8) ™ 4 (- llmgeny + 0) [ (57 4 =0 < 2,

we know G is a strict contraction on £ 5. So the contraction mapping principle implies G has a fixed
point v € ENh’(;. Define

() = u(t), te€[0,T7],
D=\ v, te[T. T +h].

Since
v(T)=GW(T") =u(T),

we can easily verify that
i € E;7oy N C((0,T7 +h], L (RY))

and
!
i(t) = P,(Dugs + f(t — )78 (t — )Y )u()|Pds.
0
Obverse that u € E,, 7.4, we have
ue (10,7 +h], L (RY)).
Thus, ii(¢) is a mild solution of (1.1), which contradicts the definition of 7. O
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4. Blow-up and global existence

In this section, we prove the results of blow-up and global existence of solutions for problem (1.1).
First, we give the definition of weak solution for problem (1.1).

Definition 4.1. For u, € L1 (RN ) and T > O,we call u € L? ((O, T), L1 (RN ))is a weak solution of
problem (1.1) if

T T T
f (1 — o) Dipdxdt = — f f Gu (~A)? pdxdt + f f G (lul""u) pdxdt
0 RN 0 RN 0 RN

for every ¢ € C' ([0, T\, H* (RN)) with supp, ¢ cC RN and ¢(-, T) = 0.

Lemma 4.1. Assume uy € L1 (RN), letueC ([O, T], L? (RN)) be a mild solution of (1.1), then u is also
a weak solution of (1.1).

Proof. Assume thatu € C ([0, T], L1 (RN )) is a mild solution of (1.1), we have

!
u—uy= Py(ug — ug + f(t — )Y (1 — )G |ulP uds,
0

where ¢ = —(mA — I)~!. Note that by Lemma 2.8,

u)‘“(f <t—s>a-1sa<t—s>|u|”-1%u<s>ds):f Po(t = $)lul”™'Gu(s)ds,
0 0

SO

!
o, (u = up) = o1, (Po(t)utg = uo) + f Po(t = )Y ul" u(s)ds.
0

Then, for every ¢ € C! ([0, T, H? (RN)) with supp, ¢ cC RY and ¢(-, T) = 0, we have

f of} ™ (u — up) @dx = I, (1) + L(1), 4.1)
RN
where
1) = f I Pt ~ o),
R
!
L(t) = f f Po(t — )9 ulP " udsedx.
RY Jo
By Lemma 2.5,
dIl g 1-a
— = (=02 G (P (t)uo) edx + of, " (Po(Dug — uo) ,dx. 4.2)
dt RN RN
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Forevery h > 0,1 € [0,T)and t + h < T, we have

1 1 t+h
7 (Lt + h) — I(1)) :Z f f P,(t+h- s)%lulp_luds‘p(t + h, x)dx
0 RN

1 3
—= f f Po(t — )G \ulP " udse(t, x)dx
h 0 RN

=L+ 14+ 15,

where
t+h
f f f Go(OT ((t + h — $)70) G \ul’ " u(s)dOdse(t + h, x)dx,
RV

f f f GO (T (t+h—295%0) =T ((t - 5)0)Gul”" 1u(s)a’@dsgo(t x)dx,
RV

b‘l*—‘ b‘l>—‘ b‘l'—‘

‘fR f f (T ((t + h — $)*0) G|ul” " u(s)d0ds(p(t + h, x) — (t, x))dx.
By dominated convergence theorem, we deduce that
I — N G (lul""u) pdx as h — 0,
s- [ t [ 001 @ sr0 91 tusidoispa
= V[RN fot Po(t — )G ulP u(s)dsp,dx as h — 0.
Since
Iy = - fR ) fo t fo ) fo 1 a0bo )t + Th — ) (=N G (T ((t + Th — $)*0)) DJul”~ u(s)drdodspdx
=- fR ) (—A)* fo t fo ) fo 1 @0, (0)(t + Th — ) 'GT ((t + h — $)0) G |ul’ " u(s)drdbd spdx
- fR ) fo t fo ) fo 1 0o (O)(t + Th — ) IGT ((t + Th — $)°0) D|ul’~ u(s)drdods (—A)? dx,
using dominated convergence theorem again, we know
L — - fR ) fo t(r — )G (1 — DNl u(s)ds (—A)E dx as h — 0.

Hence, the right derivative of I, on [0, T) is

!
Gul" updx — f (t = 5)'GS ot — )Gl u(s)dsA" pdx
RN RN Jo

t
+f fPa(t—s)glul”_lu(s)ds%dx
rRY Jo
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and it is continuous in [0, 7). Therefore,

A
% :f 9 (Iul”_lu) pdx — f f(t — )78 (1 — D |ulP " u(s)ds (—A)g pdx
dt R RN 0

!
+f fPa(t—s)%lul”_lu(s)dsgotdx
RN

!
= f |M|p ! godx f f(t — 9)GS (t — )G ulP u(s)ds (—A)g pdx
RN N 0

+ f 01}‘“( f (t—s)"_lSa(t—s)%lul”_lu(s)ds)cp,dx,te[0, T). (4.3)
RN 0

Combining (4.1)—(4.3), we conclude that

T T
d dls _dI,
0 :f f 7 = o) pdvdr = | —> i

T
f f (Po(Ditg) (—A)* @dxdt + f f oI}~ (Po(t)uo — o) rdxdt
RN 0 RN

T T !
+ f % |u|P-1u <pdxdt— f f f (t = $)'GS o(t — G Nul” u(s)ds (~A)? pdxdt
0 RN RN

+f f I1 “(f (t— $)77'S (t = )G |ulP~ 1u(s)ds) e dxdt
’ TR T
= f f Gu (~A)? pdxdt - f f (u — up)¢ Dpdxdt + f f |u|l" )godxdt,
0 RN 0 RN

so, we can get the following equation

T T T
- f f Gu(—A)? odxdr — f f (u — up)¢ Dpdxdt + f 7 Iulp] (,odxdt
0 RN 0 RN 0 RN

Hence, this completes the proof. O
We say the solution u of problem (1.1) blow-up in a finite time T if
lim lu(t, )l () = +00.
Now, we give a blow-up result for problem (1.1).

Theorem 4.1. Let uy € L1 (RN ), uy > 0 and uy £ 0, then
OIfp<l+ B then the mild solution of (1.1) blow-up in a finite time.

@) Ifp>1+ % and ||uol| 4 is sufficiently small, where g. = N(’;l), then the mild solution of (1.1) exists

globally.

Proof. (i) The proof is by contradiction. Suppose that u is a global mild solution of (1.1), then u is a
solution of (1.1)and u € C ([O, T], L1 (RN)) . Then, Lemma 4.1 tells us

T T T
f (1 — uo)C DSpdxdt = — f Gu (-A)* pdxdt + f f G (lul""u) pdxdt,
0 RN 0 RN 0 RN
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for all ¢ € C' ([0, T, H* (R")) with supp, ¢ cc RY and (-, T) = 0. Now we take

@(x, 1) = (¢1(x)) a(t)

with
1(x) = O (Ixl/T), @a(t) = (1 =1/ TYL,
where
t>p/(p—1), nzmax{(ap+ 1/(p-1),a+1}

and @ is a smooth nonnegative non-increasing function such that

I, ifosr<l,
(D(r):{ 0, ifr>2,

0D <1,|D(r)| < Cy/r, forall r > 0. We have,

T T T
f f uOICD%godxdt =f utCD‘T’godxdt + f f “Gu (—A)g pdxdt — f f 4 (Iulp_lu) pdxdt,
0 JRV Qr 0 JRV 0 JrV

where
Qr =[0.T]xQ for @ ={xeR"|lx| < 27"}

So, from Ju’s inequality (—A)*/? (gof) < Lot ~1 (=AY (1), we can obtain

T T T
ffuoth(;godxdt:f utCD‘%godxdt+f f %u(—A)g godxdt—f f g(luI”_lu)godxdt
0 RN Qr 0 RN 0 RN
T T
< f u D2 pdxdt + f f |§4u|‘(—A)§¢‘dxdt+ f f 19 (ulP)| o] dxdt
Qr 0 RN 0 RN

T
< f uC D pdxdt + f f G ul | (=AY 01 ()2 (1)| dxdt
Qrp 0 RN

T
+ f 1 (lul”)] lepl dxdr.
0 RN

Therefore, using Holder inequality, Lemma 2.4 and 1, > 0,

: T
f f uoC Dipdxdt < (f u”dxdt) (f |“ D3| dxdt) + f < (Jul”)] dxdt
0 JRVN Qr Qr Qr

+ ( 1 () dxdt),, ( f | (DAY 01 (s 0] dxdt)
Qr Qr

1 1
s( f u”dxdt) ( f |fo;¢|”dxdt) + M, f lulPdxdt
Qr Qr Qr
1

+M2( f Iulpdxdt)p( f |¢{—1(x)(—A)ﬂfzgol(x)goz(t)F dxdt) ., (44
Qr Qr

1
p
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where pp=p+p,p>1,p> 1.
By changing the variables: T = T7't, ¢ = T~'fx and using formulas (2.3) in the right hand-side

of (4.4), we get

Hence,

where

Tl—afuo‘pf SCT—Q+(1+%)%'
Q

fl/to(p{ < CT_(S,
Q

6=1-(1+N/B)p, C=C(l, 0],

(1€2;| stands for the measure of €;, fori = 1,2), with

Since

Q ={eRMiEI<2), Q={r20r<1).

. B
< =1+ =,
p=p N

passing to the limit in (4.5) as T — oo, we get

T
limf f uogofdxdt=0.
T=ee Jo o Jix<arive

(4.5)

Using the Lebesgue dominated convergence theorem, the continuity in time and space of u, we infer

that

Contradiction.

f f uogofdxdt:O = uy=0.
0 JRr¥

(i) We construct the global solution of (1.1) by the contraction mapping principle. As g > p > 1 + g,
then we have the possibility to take a positive constant ¢ > 0 such that

and

Let

We verify that

Assume that 1 satisfies

AIMS Mathematics

a 1 aN @

< —x
p—1 p pBg p-1

a aN
p-1 Bg’
b_a/N(l 1)_ a aN
B\g q) p-1 pBqg
N(p—1
O<pb<1, a=2MP=D 1y
Bq

su(%) tb ”Pa(t)uO”Lq(RN) =n < +oo.
>

(4.6)

4.7)

(4.8)

4.9)

(4.10)
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If uy € L (RN ), Lemma 2.6 implies (4.10) holds. Note that we can take uy(x) < C le_% instead of

ugp € L4¢ (RN ) for some constant C > 0.
Let
Y = {ue L((0,00), L7 (RV)) | llully < oo},

where

llully = supt IIM(I)lqu(RN)
>0

For u € Y, we define

Q) (1) = P, (Hug + f (t — $)77'S (t = )G |ul"  u(s)ds.
0

Denote
By ={ueY||ully <M}.

For any u,v € By, t > 0,

t
D) (t) - POV Dla(mry < t f (7= )" IS ot = Y @(5) = V' (5)llpa(ry ds- (4.11)
0
Hence, Holder inequality and Lemma 2.7 imply that there exists a constant C > 0 such that

PND)(0) = POIOla(ry)

!
<ct f (0 - oG - vl yds+CP f (t = 9L 4 = V7| any ds
0

LAz
<ct f (1= 5 FED (] 4 IV = Ve ds

+CIP M f (t = )" s dsllu = vlly
0

! aN(p-1) !
< ctmr! f(t — ) 5P| lu = vy + CEMP! f(t — 8) 1 Pl g gl — ||y
0 0

1
_5_aNp-1) _aN(p-1) _ _
= CMP~ P~ ”’f (1 =7) s " Pbgr|lu — vy

+ CMP1b-rb- aﬂmf (1- T)—m9+a 1- pde”u_v”Y

1
aN(p-1)
<cm! f (1 -1 a Py — vy + CMP™! f (1 = o)™ Ph iy — vy
0

T((p — DH)I(1 — pb) T(—a® + a)[(1 — pb)

<cm! —vlly + CMP! —ly,
where N |
9= (p— )_
Bq
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If we choose M small enough such that

oMl I'((p —Fl()iB)_F’é ; - pB) CMr] F(—aﬁr-zlail";)l - pb) < % ’
then |
1) = @Wlly < 5l = Vly.
Since

t t
PO Ol oy <n + CMPE f (t— ) 70 e grbgs  cpreb f (t— ) @ Hagrbyg
0 0
I'(—a® + a&)I'(1 — pb)

C((p - DBI(1 — pp) L omr! t € [0, +00).

M) r1-b)

Therefore, by contraction mapping principle we know @ has a fixed point u € B,.

Next, we will prove u € C ([O, T1, L4 (RN )) )

First, we claim that for 7 > 0 small enough, u € C ([0, T], L1 (RN )) . In fact, the above proof shows
that u is the unique solution in

Buyr = {u e Ly, (0, 1), L' (RY)) | sup #llu(dlly ey < M}.
0<t<T
Since uy € L1 (RN ) and r > g., we know u, € L7 (RN ) for every g € (¢q.,q) and g < n. Observe that the
assumption
p>1+ ,B—a/

aN + B - Ba

implies
aNp

aN +

Then, using Theorem 3.1, we know that (1.1) has a unique solution

B
>1+-— and g, >
p N 2nda

iieC ([0, T], L4 (RN) N L7 (RN)) ncC ((0, T], L (RN))

if T is small enough, and

aN
sup th ||u(t)||Lw(RN) < +00.
0<t<T

Note that g > ¢, and there exists a constant C > 0 such that

1-4
;
L= (=N)

q
r

A0y < IO TN o < OGO, o, 1 0,7

It follows that we can take T small enough such that

sup a0l vy < M.
0<t<T

Thus, by uniqueness, u = i for ¢ € [0, T']. Consequently, we get that

ueC ((o, T], L (RN)) nC ([o, T], L (RN) n L7 (RN)).
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Finally, we prove u € C ([T, o0), L4 (RN ) N L (RN )) . Indeed, for ¢t > T, we have

!
u— P,(Oug = f (t— $)* 'S (t — )Y |ulPds
0

T t
= f (t — $)7'S (t — )G |ul’ ds + f (t — $)77'S (t — $)G|ulPds
0 T

=15+ I.
Since
ue C (10,71, L7 (RV)) n € ((0. 71, L~ (RY))
and i
sup 191 |lu(®)ll vy < oo,
0<t<T
we obtain

Is € C(IT. ), L (RV)) n C ([T, 00), L (R"))
by an argument similar to the proof of Lemma 2.8.
For given

T, > T, |uf’ € L ((T, T)),L? (RN)).
Since r > =D

5> We can choose /m > r such that

Observing

an argument similar to that used in Lemma 2.8 shows that

Is € c([T, T.1,L" (RN) n L7 (RN)).

By the arbitrariness of 7, we know

IseC ([T, o0), L™ (RN) n L4 (RN)).

Note that the term
Po(ug € C ([T, o), L™ (RV) 0 L (RY)).
Consequently,
u e C ([T, o), L" (RY)) n C ([0, 0), L7 (RY)).
Let

ME

X =
Observe that y > 1 and

Al S R N
:8 er—l er
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Repeating the above procedures, we deduce that if
ue C([T, o), L7 (RY)),

then
ue C ([T, ), L¥ (R")).

After finite steps, we get

— < =
ry' N
Then
u e C((0,), L7 (RY)).
Therefore,
u € C ([0, +0), L1 (RV)) N C((0, 00), L (R")).
This completes the proof. m|

Lemma 4.2. (See [3]) Let w; > —1,wy > —1 such that w; + wy, > —1,h > 0and t € [0,T]. Then the
following limit holds for u > 0,

1
lim ( sup ¢ s9M(1 - s)‘“ze_”t(l_s)ds) =0.

H=0 \re[0,T] 0

Theorem 4.2. Let i <a < 1,0 <? < 1 - 5, b satisfies

l+ad—a<b<a-al, 4.12)
1 1
p > max| 1, B’ | BahD 4.13)
aN aN
and
> ( ! | (4.14)
q > MaxX| 50> 1, pasb-D |’ '
»t v bt ;N
Suppose that

uy € L7 (RY) n L1 (RY),
then if ||ul| Lo (BN )Le(RN) is sufficiently small, then the mild solution of (1.1) exists globally.

Proof. We construct the global solution of (1.1) by contraction mapping principle. First, we consider
the following function

Pu(t) :=P,(H)ug + f (t — $)7'S (t = )G |ul"  uds. (4.15)
0
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Let B be a Banach space. Define the Banach space Z#((0, T]; B) of all Bochner integrable functions
u : [0, 00) — B such that t’u are bounded continuous functions, endowed with the norm

. b
Wllzpaorysy := sup e |[v(-, D)lls < 00,5 2 0, = 0.
t€(0,T]

Since ug € L? (RN ) NL? (RN ), we know that

N

1Pa (0t agamy < AL tollp(ey + Axt™ ltollyagany (4.16)

and
IPo(Ottoll sy < At ltolloamy + Aot ol ey (4.17)

From (4.16) and (4.17) yield that

b - - b b b—ad - b—a
e || Po(Dutoll o (rv)ynza(rry <€ (Alt B+ At + Ayt )HUO”U(RN) + e At Nluoll a(r)

—ay — —
<(A TS + A T + AT ol vy + A2 ol oy -

(4.18)
It follows from (4.18) that,
Po(Oug € 27 ((0, T1; L7 (RV) n L7 (RY))
for any u > 0 and b satisfies (4.12).
Now, We show that for any
V1, vy € ZPH0 ((o, T];L? (RN) N L4 (RN))
and the constant o which is independent of ¢, there exists a y such that
vy — Tvll|Zb’ll0((O,T];LP(RN)qu(RN)) <elvi - VZ||Zb»ﬂo((O,T];LP(RN)qu(RN)) . (4.19)
Indeed, we have
!
e VL = Ballpp(enynp(ayy = e f (t = 9)*7'S ot = )G |V = V3| dsllp(eaynro (e
0
f
— bt _ el _ P _ P
=1e M| \fo (t— 95" S (t—95Y |v1 v2| dsIIL,,(RN) 4.20)

+ e M| f (1 = )" S ot = F [} = V5| dsll ey
0
= (I) + (II).
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Hence, we have

(D) < tPe ™A, fl(t — )t ||§4 |v’17 - v§|
0

|U’(RN) ds
rtena [ = Gy

< CMAstPe™ j; t(r = )" Hi(8) = V2o (ry ds

+ CMA e fo t(z =)W1 (8) = vallp(ry ds

= (1) + (IV),

and
!
(II) < e A, f (t— )"t —s) " ”g |V[1) - v12)|||Lp(RN) ds
0
t
TN KRG VR s
" ! aN
< CMA;t" e f (1 = )75 i(s) = va(S)llpo(avy ds
0
!
+ CMA e f (t — ) v (s) - Va($)lla(zny ds
0
= (V) + VD),
thanks to the following inequality

lae”~" 20 = P~ < Clu = vl (jul”™ + 7).

We treat the term (/11) as follows

!
1) = CMA3tbf e M9 57 (1 — ) sbe 5 ||y (5) — vz(s)IILp(RN) ds
0

!
< CMA;° (f e M9 g7b(r — s)“_lds) sup sPe™ |lvi(s) — vQ(s)IILp(RN)
0

0<s<T

b
= CMA?J L]#(l', a, b) ||V] - vz”Zh#((O,T];L”(RN)) .
By a similar argument, we can also obtain some following estimates

(Iv) < CMA4tbL2,N(t, @,b)|lv; — VZ”zb#((O,T];Lp(RN)) )
V) < CMA3ZbL3’#(t, a,b)|lvi — V2||zbvu((0,T];Lp(RN)) 5
VI) < CMA3tbL2,y(t’ a,b)|lv, - V2||Zb,/4((0,7‘];Lq(RN)) ,

where

!
LZ,,u(Z, , b) = f e—#(f—‘Y)s—b(l _ S)a—l—az?ds’
0

4.21)

(4.22)

(4.23)

(4.24)
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!
aN
Ly, (t,a,b) = f et — 5)* T ds.
0
Combining some above observations, we obtain

vy — ¥y, |Zb<ﬂ((o,T];LP(RN)qu(RN))

< sup e j; (7 = $)"7'S (DG (1(5) = v2(9)) sl (zr o ()

0<t<T

< 2CM (A3 + Ag) sup (Lyu(t, . b) + Loyt ,b) + 'Ly (1, @, b)) (4.25)

0<t<T
X A1 = Vallzou(o.11:00 () Lo (rYY)
< olvi = vallzpa(o.riLr (83 )nLa(r)) -
We first consider the term L, ,(t, @, b). By changing variable s = ts’, we get

1

lbLz,ﬂ(l', a, b) — tb+<x—1—m9f e—pt(l—s)s—b(l _ S)a—l—aﬁds. (426)
0

Using (4.12), we can easily verify that the following conditions hold
b+a-1-a%>0, -b>-1,a-1-ad>-1,a-1-ad-b>-1.

By Lemma 4.2, we have

1
lim Ly, (t, @, b) = lim(sup frro-i-a? f e 1705701 —s)“—l—m?ds) = 0. (4.27)
'u—>00 O

1= \se[0,7]
Noting that L, ,(t, @, b) < T*"L, ,(t, , b), we deduce that
lim L, ,(t,a,b) = 0. (4.28)
It follows from (4.12)—(4.14) that the following conditions hold
b+a—1—‘;—’rv>0, -b> -1, a—l—%—]rv>—1, a—l—‘[’g—’:’—b>—1.

By Lemma 4.2, we obtain

1
lim £’Ls ,(, @, b) = lim ( sup 7+ f e MI957h(] s)“_l_%vds) = 0. (4.29)
H—0e0 M9 \re[0,T] 0
From (4.27)-(4.29), we know that there exists a uo small enough such that
0 := 2CM (A3 + Ay) sup (£'Lu(t, . ) + Loy (1 . b) + ' La (1, @, b)) < 1. (4.30)
0<t<T

We find that ¥ is a contraction in the space
ZP((0,T1; L7 (RV) n L7 (RY))

by combining (4.25) and (4.30), it means that there exists a unique global solution u satisfies
Lemma 4.2. Hence, the proof is finished. m]
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5. Conclusions

In this work, we considered the blow-up and global existence of a class of space-time fractional
pseudo-parabolic equations. A family of solution operators is defined based on a kind of density
function and semigroup, and the L” — L7 estimate for solutions of the corresponding linear problem
is investigated and this is our main contribution. On this basis, the local existence of solutions to a
class of space-time fractional pseudo-parabolic equations is studied by using the fixed-point theorem.
The definition of weak solutions is given and it is proved that mild solutions are also weak solutions.
The global existence of solutions is proved by using the contraction mapping principle, while the
blow-up of solutions is proved by using the test function method. In this direction, we can study the
global existence and blow-up of solutions for space-time fractional pseudo-parabolic equations when
a € (1,2).
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