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Abstract: In this article, we consider the Cauchy problem for the following time-space fractional
pseudo-parabolic equations C

0 Dαt (I − m∆)u + (−∆)
β
2 u = |u|p−1u, x ∈ RN , t > 0,

u(0, x) = u0(x), x ∈ RN ,

where 0 < α < 1, 0 < β < 2, p > 1, m > 0, u0 ∈ Lq
(
RN

)
. An estimating Lp − Lq for solution operator

of time-space fractional pseudo-parabolic equations is obtained. The critical exponents of this problem
are determined when u0 ∈ Lq(RN).Moreover, we also obtain global existence of the mild solution when
u0 ∈ Lp(RN) ∩ Lq(RN) small enough.
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1. Introduction

In this paper, we study blow-up and global existence of solutions for the following time-space
fractional pseudo-parabolic equation in RN C

0 Dαt (I − m∆)u + (−∆)
β
2 u = |u|p−1u, x ∈ RN , t > 0,

u(0, x) = u0(x), x ∈ RN ,
(1.1)

where 0 < α < 1, 0 < β ≤ 2, p > 1, m > 0, u0 ∈ Lq
(
RN

)
and

C
0 Dαt u =

∂

∂t 0I1−α
t (u(t, x) − u0(x)) ,
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0I1−α
t denotes left Riemann-Liouville fractional integrals of order 1–α and is defined by

0I1−α
t u =

1
Γ(1 − α)

∫ t

0
(t − s)−αu(s)ds,

where Γ is the Gamma function. (−∆)β/2 is the fractional Laplace operator, which may be defined as

(−∆)β/2v(x, t) = F −1
(
|ξ|βF (v)(ξ)

)
(x, t),

where F denotes the Fourier transform and F −1 represents the inverse Fourier transform in L2(RN).
As we all know, it has been seen that qualitative theory and applications of fractional derivatives

are employed to describe the nonlocal effects in time and space and it appears to have better effects
than the classical ones, like Levy flights in physics [20, 22], the physical model considering memory
effects [11] and some corresponding engineering problems [1, 5, 16, 24, 26], especially the power-
law memory (non-local effects) in time and space [5, 9]. Time fractional parabolic equations have
been studied by many papers [6–8, 18, 21], many important physical models and practical problems
require us to consider pseudo-parabolic model with fractional derivative rather than classical ones.
The pseudo-parabolic equation with fractional derivatives, such as Eq (1.1), can be considered as a
model for viscoelastic fluids. More and more work has been devoted to the investigation of fractional
pseudo-parabolic equation, see [17, 27–29]. Zennir et al. [28] discussed the finite time blow-up that
arise under an appropriate conditions and the nonsolvability of boundary value problem for damped
pseudo-parabolic differential equations with variable exponents. In [29], they also investigated the
global non-existence for a class of pseudo-parabolic equation with weak-viscoelasticity under suitable
conditions on the variable exponents with negative initial energy.

If α = 1, m > 0, β = 2, problem (1.1) becomes classical pseudo-parabolic equation. Cao et al. [4]
considered the following semilinear pseudo-parabolic equation

ut − m△ut − △u = up.

They investigated the existence, uniqueness for mild solutions and they also studied the large time
behavior of solutions. They obtained that if 0 < p ⩽ 1, then for any 0 ⩽ u0 ∈ C2+α (Rn) , the classical
solution of the Cauchy problem exists globally, and if 1 < p ⩽ 1+2/n, then for any 0 ⩽ u0 ∈ C2+α (Rn) ,
the classical solution of the Cauchy problem blow-up in a finite time. Jin et al. [12] considered the
Cauchy problem of the following space-fractional pseudo-parabolic equation

ut − m△ut + (−△)σu = up.

They discussed global existence, time-decay rates and large time behavior of solutions.
If m = 0, problem (1.1) is called space-time fractional diffusion equations, which are useful to model

anomalous diffusion and Hamiltonian chaos, etc. [25]. In [14], Kirane et al. studied the following
space-time fractional evolution problem{

C
0 Dαt u + (−∆)

β
2 u = h(x, t)|u|1+ p̃, x ∈ RN , t > 0,

u(0, x) = u0(x), x ∈ RN .
(1.2)

They obtained the sufficient conditions such that problem (1.2) admits no global weak nonnegative
solution other than the trivial one.
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In [30], Zhang et al. discussed the following time-fractional diffusion equation{
C
0 Dαt u − △u = |u|p−1u, x ∈ RN , t > 0,
u(0, x) = u0(x), x ∈ RN ,

(1.3)

where 0 < α < 1, p > 1, u0 ∈ C0

(
RN

)
. They proved that if 1 < p < 1 + 2

N , every nontrivial
nonnegative solution blow-up in a finite time, and if p ≥ 1 + 2

N and ∥u0∥
L

N(p−1)
2 (RN)

is sufficiently small,

then the problem has global solutions.
Tuan et al. [27] studied the following fractional pseudo-parabolic equations in a bounded domain

Dαt (u − m∆u)(x, t) + (−∆)σu(x, t) = N(u), x ∈ Ω, t > 0,
u(x, t) = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), x ∈ Ω,

(1.4)

where N(u) satisfies the Lipschitz condition. They established the results of existence, uniqueness
and regularity of the local solution for problem (1.4). They also investigated global existence of the
following time fractional pseudo-parabolic equations in RN which is a special case of (1.1) with β = 2{

Dαt (u − m∆u)(x, t) − ∆u(x, t) = N(u), x ∈ RN , t > 0,
u(0, x) = u0(x), x ∈ RN .

(1.5)

So far as is known to the authors, the study of Fujita exponent for problem (1.1) has not been carried
out. Motivated by above results, in the present paper, our purpose is to determine the Fujita exponent
of problem (1.1). By applying test function method we prove that if 1 < p < 1 + β

N , the solutions
blow-up in a finite time, and if p ≥ 1 + βN , the solutions exist globally when u0 ∈ Lq(RN). Moreover,
we also obtain global existence of solutions when u0 ∈ Lp(RN)∩ Lq(RN) by using contraction mapping
principle.

Note that if m = 0, the estimating Lp − Lq is available for the corresponding solution operator.
However, some estimates of the form Lp − Lq is not available on the domain RN for the time-space
fractional pseudo-parabolic equations. So our main challenge is to prove Lp − Lq estimates of the
solution operator. Our conclusions extend the corresponding results in [27, 30] .

This paper is organized as follows: In Section 2, some preliminaries are presented; In Section 3, we
establish the local existence and uniqueness of mild solution for problem (1.1); In Section 4, we show
the blow-up and global existence of solutions to problem (1.1).

We will denote Lp (Rn)-norm by | · |p,

Fu(ξ) = û(ξ) ≡
∫

e−ixξu(x)dx

denotes the Fourier transform of u and F −1u(x) = ǔ(x) ≡ (2π)−n
∫

eixξu(ξ)dξ−the inverse Fourier
transform of u. The letters α, β, γ will denote multi-indices, i.e., α = (α1, . . . , αn) , where each
component αi is a non-negative integer, and the number |α| ≡ α1 + · · · + αn is the order of the
multi-index α. C will denote generic positive constants.
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2. Preliminaries

In this section, we present some preliminaries that will be used in next sections.
The Mittag-Leffler function is defined for complex z ∈ C in [10, 15, 23]

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
, α, β ∈ C, Re(α) > 0,

and its Riemann-Liouville fractional integral satisfies

0I1−α
t

(
tα−1Eα,α (λtα)

)
= Eα,1 (λtα) for λ ∈ C, 0 < α < 1.

We also need the following Wright type function which was considered by Mainardi [19]

ϕα(z) =
∞∑

k=0

(−z)k

k!Γ(−αk + 1 − α)
=

1
π

∞∑
k=0

(−z)kΓ(α(k + 1)) sin(π(k + 1)α)
k!

, (2.1)

for 0 < α < 1. ϕα is an entire function and has the following properties,

(i)ϕα(θ) ≥ 0 for θ ≥ 0 and
∫ ∞

0
ϕα(θ)dθ = 1.

(ii)
∫ ∞

0
ϕα(θ)θrdθ =

Γ(1 + r)
Γ(1 + αr)

for r > −1.

(iii)
∫ ∞

0
ϕα(θ)e−zθdθ = Eα,1(−z), z ∈ C.

(iv)α
∫ ∞

0
θϕα(θ)e−zθdθ = Eα,α(−z), z ∈ C.

If C
0 Dαt f ∈ L1(0,T ), g ∈ C1([0,T ]) and g(T ) = 0, then we have the following formula of integration

by parts ∫ T

0
gC

0 Dαt f dt =
∫ T

0
( f (t) − f (0))C

t DαT gdt, (2.2)

where
C
t DαT g = −

d
dt tI1−α

T g,

tI1−α
T g =

1
Γ(1 − α)

∫ T

t
(s − t)−αg(s)ds.

We need know the Caputo fractional derivative of the following function, which will be used in next
sections. If α ∈ (0, 1), w(t) = (1 − t/T )σ+, t ≥ 0, T > 0, σ ≫ 1, then

C
0 Dαt|T w(t) =

(1 − α + σ)Γ(σ + 1)
Γ(2 − α + σ)

T−α
(
1 −

t
T

)σ−α
+
, (2.3)
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so (
C
0 Dαt|T w

)
(T ) = 0,

(
C
0 Dαt|T w

)
(0) = CT−α,

where
C = (1 − α + σ)Γ(σ + 1)/Γ(2 − α + σ).

In order to prove main results of this paper, we need consider the following linear problem.{
ut − m∆ut + (−∆)

β
2 u = 0, x ∈ Rn, t > 0,

u(0, x) = u0(x), x ∈ Rn.
(2.4)

We know that as (−∆)β/2 is a self-adjoint operator with D (A) = Hβ
(
RN

)
, thus,∫

RN
u(x)(−∆)β/2v(x)dx =

∫
RN

v(x)(−∆)β/2u(x)dx,

for all u, v ∈ Hβ
(
RN

)
, where Hβ

(
RN

)
is the homogeneous Sobolev space of order β defined by

Hβ
(
RN

)
=

{
u ∈ S′|Au ∈ L2

(
RN

)}
, if β < N,

Hβ
(
RN

)
=

{
u ∈ L2

(
RN

)
|Au ∈ L2

(
RN

)}
, if β ∈ N,

where S′ is the space of Schwartz distributions.
Let T (t) denote the semigroup operator generated by A = (−∆)

β
2 (m∆ − I)−1. Taking the Fourier

transform to (2.4) with respect to x, we can write the solution of (2.4) as

u(x, t) = T (t)u0(x) = (2π)−n
∫
Rn

exp(tΦ(ξ) + ixξ)û0(ξ)dξ, (2.5)

where
Φ(ξ) = −|ξ|β

(
1 + m|ξ|2

)−1
.

In order to obtain the behaviour of Lp-norms of (2.5), we need the following two Lemmas.

Lemma 2.1. Suppose that φ ∈ C∞0 (Rn) satisfies φ(ξ) = 0 for |ξ| ⩾ max{1, 1
√

m }, |φ(ξ)| ⩽ 1, and denote

Iα(x, t) =
∫
ξαφ(ξ) exp(tΦ(ξ) + ixξ)dξ.

Then for every multi-index α and 1 ⩽ p ⩽ ∞, there exists a constant C independent of t such that

|Iα(·, t)|p ⩽ C(1 + t)(n(1/p−1)−|α|)/β.

Proof. First by using the Plancherel theorem we can estimate the L2 -norm of Iα :

|Iα(·, t)|22 = (2π)n
∣∣∣Îα(·, t)∣∣∣22 = (2π)n

∫
|ξα|2 |φ(ξ)|2 exp

(
−2t|ξ|β

1 + m|ξ|2

)
dξ

⩽ C
∫
|ξ|⩽k
|ξ|2|α| exp

(
−2t|ξ|β

1 + m|ξ|2

)
dξ ⩽ C

∫
|ξ|⩽k
|ξ|2|α| exp

(
−t|ξ|β

)
dξ
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⩽ Ct−n/β−2|α|/β
∫
Rn
|w|2|α| exp

(
−|w|β

)
dw ⩽ Ct−n/β−2|α|/β, (2.6)

where we use
2|ξ|β

(
1 + m|ξ|2

)−1
⩾ |ξ|β

for |ξ| ⩽ k where k ⩽ 1
√

m and k ⩽ 1 and the change of variables t1/βξ = w. Hence,

|Iα(·, t)|2 ⩽ C(1 + t)−n/2β−|α|/β. (2.7)

Note that for all smooth rapidly decreasing functions w = w(x) defined in Rn and for every integer
N > n/2,

|ŵ|1 ⩽ C|w|1−n/(2N)
2

∑
|κ|=N

(∣∣∣∂κxw∣∣∣
2

)n/(2N)
(2.8)

and

|w|∞ ⩽ C|w|1−n/(2N)
2

∑
|κ|=N

(∣∣∣∂κxw∣∣∣
2

)n/(2N)
. (2.9)

Equation (2.8) was proofed in ([2], Example 2). It is obvious that (2.9) is an immediate consequence
of (2.8) if we use the fact |w|∞ ⩽ (2π)−n|ŵ|1. Hence, using (2.9), noting that ∂κxIα = i|κ|Iκ+α, and
applying (2.7) we can deduce that

|Iα(·, t)|∞ ⩽ C |Iα(·, t)|
1−n/(2N)
2

∑
|κ|=N

(∣∣∣∂κxIα(·, t)∣∣∣2)n/(2N)

⩽ C(1 + t)−(n/2β+|α|/β)(1−n/(2N))(1 + t)−
1
β (n/2+|α|+N))n/(2N)

= C(1 + t)−(n+|α|)/β.

Now we estimate the L1 -norm of Iα

|Iα(·, t)|1 ⩽ C
(∫
|ξα|2 |φ(ξ)|2 exp

(
−2t|ξ|β

1 + m|ξ|2

)
dξ

)
)(1−n/(2N))/2

×
∑
|κ|=N

∫ ∣∣∣∣∣∣∂κξ
(
ξαφ(ξ) exp

(
−|ξ|β

1 + m|ξ|2
t
))∣∣∣∣∣∣2 dξ

n/(4N)

. (2.10)

The first term on the right-hand side of (2.10) decays like (1 + t)−(n/2β+|α|/β)(1−n/(2N)) by an argument
similar to that in (2.6). We use the Leibnitz formula to the integrand in the second term in (2.10). It
suffices to show that for fixed |ζ | ⩽ N the L2-norm of expressions

φ(ξ)
(
∂
ζ−γ
ξ ξ

α
)
∂
γ
ξ exp(tΦ̃(ξ)), (2.11)

then it can be bounded by

(1 + t)(−n/2β−(|α|−N)/β)(n/(2N) (2.12)
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for each multi-index |γ| ⩽ |ζ |, all t ⩾ 1, and a positive constant C.
Observe that we can always assume that (ζ − γ)i ⩽ αi for every i ∈ {1, . . . , n} (if it does not hold,

then (2.11) equals 0 ). Note that considering Φ̃ instead Φ allows us to postulate that ∂ξiΦ̃(ξ) = ξiΘi(ξ)
for some Θi(ξ) ∈ C∞ (Rn) .

If |γ| = 0, as in (2.6), the L2 -norm of (2.11) is bounded by

Ct−n/2β−|α−ζ |/β = Ct−n/2β−(|α−ζ |)/β ⩽ Ct−n/2β−(|α|−N)/β.

In the proof we may therefore assume that |γ| > 0, and that the decay rate (2.12) is already proved for
all multi-indices γ′ such that |γ′| < |γ|.

Now let us replace γ by γ + ei in (2.11), where ei = (0, . . . , 1, . . . , 0). Then (2.11) takes the form

φ(ξ)
(
∂
ζ−γ−ei
ξ ξα

)
∂
γ
ξ

(
t∂ξiΦ̃(ξ) exp(tΦ̃(ξ))

)
= φ(ξ)

(
∂
ζ−γ−ei
ξ ξα

) ∑
γ1+γ2=γ

Cγ1γ2
∂
γ1
ξ

(
t∂ξiΦ̃(ξ)

)
∂
γ2
ξ exp(tΦ̃(ξ)).

By (2.6) with φ replaced by φ(ξ)∂γ1+ei
ξ Φ̃(ξ), and the recurrence hypothesis (here |γ2| < |γ|)) , we can

estimate the L2-norm of each term in the sum above by

Ct · t−n/2β−|α−ζ+γ+ei |/β ⩽ Ct−n/2β−(|α|−N)/β,

because |γ| ⩾ 1. Since

−

(
n

2β
+
|α|

β

) (
1 −

n
2N

)
−

(
n

2β
+
|α| − N
β

)
n

2N
= −
|α|

β
,

|Fα(·, t)|1 ⩽ C(1 + t)−|α|/β.

Finally, using the following inequality

|w|p ⩽ |w|1−1/p
∞ |w|1/p1 ,

which completes the proof. □

Lemma 2.2. (see [13], Lemma 4.2) Let k > 0 and a(t, ξ) ∈ C∞ (R × Rn) satisfy∣∣∣∂αξa(t, ξ)
∣∣∣ ⩽ Cαe−εt(1 + |ξ|)−k−|α| (2.13)

for each α and some positive constants Cα, ε independent of t and ξ. Then the operators

T (t)v(x) =
∫

a(t, ξ)eixv̂(ξ)dξ

are bounded on Lp (Rn) for every p ∈ [1,∞].Moreover, there exists a positive constant Cp independent
of v and t such that

|T (t)u|p ⩽ Cpe−εt|u|p

for every v ∈ Lp (Rn) and t ⩾ 0.

The following Lemma describes the behaviour of the Lp-norms of (2.5).
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Lemma 2.3. Let 1 ⩽ q ⩽ p ⩽ ∞ and n ⩾ 1. There exist positive constants C, ε (independent of t and
u0) such that for every u0 ∈ Lp (Rn) ∩ Lq (Rn) ,

|T (t)u0|p ⩽ C(1 + t)n(1/p−1/q)/β |u0|q +Ce−εt |u0|p (2.14)

for all t ⩾ 0.

Proof. We decompose T (t)u0 into two integrals using the cut-off function φ from Lemma 2.1 with the
additional assumption φ(ξ) ≡ 1 for |ξ| ⩽ δ where δ ⩽ 1

2 and δ ⩽ 1
√

m

(2π)nT (t)u0(x) =
∫
φ(ξ) exp(tΦ(ξ) + ixξ)û0(ξ)dξ

+

∫
(1 − φ(ξ)) exp(tΦ(ξ) + ixξ)û0(ξ)dξ

≡I1(x, t) + I2(x, t).

Observe that I1(x, t) = (I0(·, t) ∗ u0) (x), where I0 is defined in Lemma 2.1 with α = (0, . . . , 0).
Hence, by the Young inequality and Lemma 2.1,

|I1(·, t)|p ⩽ C(1 + t)(n/β)(1/p−1/q) |u0|q , 1 ⩽ q ⩽ p ⩽ ∞

and this is the second term on right-hand side of (2.14). The estimates of Lp-norms of I2(·, t) are based
on Lemma 2.2. We see that

I2(x, t) =
∫

(1 − φ(ξ)) exp
(
−t|ξ|β

1 + m|ξ|2
+ ixξ

)
û0(ξ)dξ

=

∫
(1 − φ(ξ))e−

1
m t exp

t 1
m − |ξ|

β + |ξ|2

1 + m|ξ|2
+ ixξ

 û0(ξ)dξ.

Note that

Φ(ξ) = −
1
m
+

1
m − |ξ|

β + |ξ|2

1 + m|ξ|2
,

let us denote by T0(t) and TA(t) the multiplier operators defined by the symbols (1 − φ(ξ))e−
1
m t and

A(t, ξ) = (1 − φ(ξ))
(
exp(tΦ(ξ)) − e−

1
m t
)
,

respectively. Since we have

T0(t)u0(x) =e−
1
m t

∫
(1 − φ(ξ))eixξû0(ξ)dξ = (2π)ne−

1
m tu0(x) + e−

1
m t

∫
φ(ξ)eixξû0(ξ)dξ

=(2π)ne−
1
m tu0(x) + (2π)ne−

1
m tφ̌ ∗ u0(x),

by the Fourier inversion formula, we have

|T0(t)u0|p ⩽ (2π)ne−
1
m t (1 + |φ̌|1) |u0|p = Ce−

1
m t |u0|p (2.15)

for all p ∈ [1,∞].
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In order to estimate TA(t), we observe that

|A(t, ξ)| =

∣∣∣∣∣∣e− 1
m t(1 − φ(ξ))

exp
t 1

m − |ξ|
β + |ξ|2

1 + m|ξ|2

 − 1
∣∣∣∣∣∣

≤

∣∣∣∣∣∣e− 1
m t(1 − φ(ξ))

exp
t 1

m

1 + m|ξ|2

 − 1
∣∣∣∣∣∣ ,

sup
ξ∈Rn

∣∣∣∂αξA(t, ξ)
∣∣∣ ⩽ Cα(1 + |ξ|)−1−|α|t|α|e(−v+δ)t,

where
δ = sup

|ξ|⩾δ
v
(
1 + m|ξ|2

)−1
= v

(
1 + m|δ|2

)−1
.

This argument shows that A(t, ξ) satisfies (2.14) with k = 1 and each ε ∈ (0, v − v
(
1 + m|δ|2

)−1
). Now

by Lemma 2.2 we obtain

|TA(t)v0|p ⩽ Ce−εt |v0|p (2.16)

for each 1 ⩽ p ⩽ ∞ and all v0 ∈ Lp (Rn) . Since

I2(x, t) ⩽ T0(t)v0(x) +TA(t)v0(x),

then summing up (2.15) and (2.16) we obtain the second term on the right-hand side of (2.14). Hence,
the conclusion holds. □

Define the operators Pα(t) and S α(t) as

Pα(t)u0 =

∫ ∞

0
ϕα(θ)T (tαθ) u0dθ, t ≥ 0, (2.17)

S α(t)u0 = α

∫ ∞

0
θϕα(θ)T (tαθ) u0dθ, t ≥ 0, (2.18)

where T (t) is given by (2.5). Later on, we will use the following results.

Lemma 2.4. (See [4]) Let G = −(m∆ − I)−1, if 1 ≤ q and f ∈ Lq
(
RN

)
then there exists M > 0 such

that
∥G f ∥Lq(RN) ≤ M∥ f ∥Lq(RN).

Lemma 2.5. For u0 ∈ Lp
(
RN

)
, we have

C
0 Dαt Pα(t)u0 = APα(t)u0, t > 0.

Proof. Let X = Lp
(
RN

)
. First, we prove if u0 ∈ X, then Pα(t)u0 ∈ D(A). In fact, for u0 ∈ X,

Pα(t)u0 =

∫ ∞

0
ϕα(θ)T (tαθ) u0dθ

=

∫ 1

0
(ϕα(θ) − ϕα(0)) T (tαθ) u0dθ + ϕα(0)

∫ 1

0
T (tαθ) u0dθ +

∫ ∞

1
ϕα(θ)T (tαθ) u0dθ.
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Clearly,
∫ 1

0
T (tαθ) u0dθ ∈ D(A). Note that there exists positive constant C such that

∥AT (tαθ) u0∥X ≤ C
∥u0∥X

tαθ
, t > 0, θ > 0,

we get that ∫ ∞

1
ϕα(θ)T (tαθ) u0dθ ∈ D(A).

Next, we show that ∫ 1

0
(ϕα(θ) − ϕα(0)) T (tαθ) u0dθ ∈ D(A).

In fact, for every h > 0,

1
h

[
T (h)

∫ 1

0
(ϕα(θ) − ϕα(0)) T (tαθ) u0dθ −

∫ 1

0
(ϕα(θ) − ϕα(0)) T (tαθ) u0dθ

]
=

1
h

∫ 1

0
(ϕα(θ) − ϕα(0)) (T (tαθ + h) − T (tαθ)) u0dθ.

Since ∥∥∥∥∥ (T (tαθ + h) − T (tαθ)) u0

h

∥∥∥∥∥
X
≤

C
tαθ
∥u0∥X ,

∣∣∣∣∣ϕα(θ) − ϕα(0)
θ

∣∣∣∣∣ ≤ C,

for some constant C > 0 independent of θ and h, so, by Lebesuge dominated convergence theorem, we
know ∫ 1

0
(ϕα(θ) − ϕα(0)) T (tαθ) u0dθ ∈ D(A).

Note that

APα(t)u0 =A

∫ 1

0
(ϕα(θ) − ϕα(0)) T (tαθ) u0dθ + ϕα(0)A

∫ 1

0
T (tαθ) u0dθ +A

∫ ∞

1
ϕα(θ)T (tαθ) u0dθ

=

∫ 1

0
(ϕα(θ) − ϕα(0))AT (tαθ) u0dθ +

ϕα(0) (T (tα) u0 − u0)
tα

+

∫ ∞

1
ϕα(θ)AT (tαθ) u0dθ.

Therefore

∥APα(t)u0∥X ≤
C
tα
∥u0∥X . (2.19)

Via dominated convergence theorem, we obtain that for u0 ∈ Lp
(
RN

)
,

d
dt

Pα(t)u0 = tα−1AS α(t)u0, t > 0.

Furthermore, if u0 ∈ D(A), then

d
dt

Pα(t)u0 = tα−1S α(t)Au0, t > 0.
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Since

0I1−α
t

(
tα−1S α(t)Au0

)
=

1
Γ(1 − α)

∫ t

0

sα−1

(t − s)α

∫ ∞

0
αθϕα(θ)T (sαθ)Au0dθds,∫ ∞

0
αθϕα(θ)T (sαθ)Au0dθ =

1
2πi

∫
Γ

Eα,α (λsα) (λ −A)−1Au0dλ,

where Γ is a path composed from two rays

Γ1 = {ρeiτ|ρ ≥ 1,
π

2
< τ < π}, Γ2 = {ρe−iτ|ρ ≥ 1,

π

2
< τ < π}

and a curve Γ3 = {eiβ| − τ ≤ β ≤ τ}.

0I1−α
t

(
tα−1Eα,α (λtα)

)
= Eα,1 (λtα) ,

so,

0I1−α
t

(
tα−1S α(t)Au0

)
= Pα(t)Au0 = APα(t)u0. (2.20)

Therefore, we get C
0 Dαt Pα(t)u0 = APα(t)u0, t > 0. Next, we prove that the conclusion also holds if

u0 ∈ X.
In fact, if u0 ∈ X, then we can find

{
u0,n

}
⊂ D(A) such that u0,n → u0 in X. By (2.20), we know

C
0 Dαt Pα(t)u0,n = APα(t)u0,n and

∥∥∥Pα(t)u0,n

∥∥∥
X
≤

∥∥∥u0,n

∥∥∥
X
.

We denote un = Pα(t)u0,n. Then, there exists u ∈ X such that for every T > 0, un → u uniformly in
X for t ∈ [0,T ] as n→ ∞. Since

∥∥∥0I1−α
t un

∥∥∥
X
≤

T 1−α

(1 − α)Γ(1 − α)
∥un∥L∞((0,T ),X) , t ∈ [0,T ],

we have 0I1−α
t un → 0I1−α

t u in X. By (2.19),

∥∥∥C
0 Dαt un

∥∥∥
X
≤

C
tα

∥∥∥u0,n

∥∥∥
X

, for some constant C > 0, t > 0.

Hence, for every δ > 0, there exists w ∈ C([δ,∞), X) such that C
0 Dαt un → w uniformly in X on t ∈ [δ,∞).

Note that for t ∈ [δ,∞),

C
0 Dαt un =

d
dt

(
0I1−α

t
(
Pα(t)u0,n − u0,n

))
= Aun,

so

w =
d
dt 0I1−α

t (u − u0) = C
0 Dαt u, t ∈ [δ,∞).

Since A is closed, we have w = Au, that is C
0 Dαt u = Au = APα(t)u0, t ∈ [δ,∞). By arbitrariness of δ,

we cn conclude C
0 Dαt u = APα(t)u0, t > 0. □
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Lemma 2.6. If u0 ∈ Lp (Rn) ∩ Lq (Rn), 1 ≤ p ≤ q ≤ +∞ and 1
r =

1
p −

1
q <

β

N , then

∥Pα(t)u0∥Lq(RN) ≤ A1t−
αN
βr ∥u0∥Lp(RN) + A2t−αϑ ∥u0∥Lq(RN) , (2.21)

where

A1 =
C1Γ

(
1 − N

βr

)
Γ
(
1 − αN

βr

) , A2 =
C2ϑ

ϑe−ϑΓ (1 − ϑ)
Γ (1 − αϑ)

.

Proof. By the properties of ϕα, Lemma 2.3 and the fact that e−θt
α
≤ ϑϑe−ϑ (θtα)−ϑ for any ϑ ∈ (0, 1), we

find that ∥∥∥∥∥∥
∫ +∞

0
ϕα(θ)T (tαθ) u0dθ

∥∥∥∥∥∥
Lq(RN)

≤C
∫ +∞

0
ϕα(θ) (tαθ)−

N
βr ∥u0∥Lp(RN) dθ +C

∫ +∞

0
ϕα(θ)e−θt

α

∥u0∥Lq(RN) dθ

≤Ct−
αN
βr

∫ +∞

0
ϕα(θ)θ−

N
βr dθ ∥u0∥Lp(RN) +Cϑϑe−ϑt−αϑ

∫ +∞

0
ϕα(θ)θ−ϑdθ ∥u0∥Lq(RN)

=C
Γ
(
1 − N

βr

)
Γ
(
1 − αN

βr

) t−
αN
βr ∥u0∥Lp(RN) +C

ϑϑe−ϑΓ (1 − ϑ)
Γ (1 − αϑ)

t−αϑ ∥u0∥Lq(RN)

=A1t−
αN
βr ∥u0∥Lp(RN) + A2t−αϑ ∥u0∥Lq(RN) .

Hence, we get it. □

Lemma 2.7. For u0 ∈ Lp (Rn) ∩ Lq (Rn) and 1 ≤ p ≤ q ≤ +∞, let 1
r =

1
p −

1
q , if

1
r <

2β
N , then

∥S α(t)u0∥Lq(RN) ≤ A3t−
αN
βr ∥u0∥Lp(RN) + A4t−αϑ ∥u0∥Lq(RN) ,

where

A3 =
C1Γ

(
2 − N

βr

)
Γ
(
1 + α − αN

βr

) , A4 =
C2ϑ

ϑe−ϑΓ (2 − ϑ)
Γ (1 + α − αϑ)

.

Proof. The proof is similar to that of Lemma 2.6. □

Lemma 2.8. Assume f ∈ Lq
(
(0,T ), Lp

(
RN

))
, q > 1. Let

w(t) =
∫ t

0
(t − s)α−1S α(t − s)G f (s)ds,

then

0I1−α
t w =

∫ t

0
Pα(t − s)G f (s)ds.

Furthermore, suppose 1 < p < +∞, 1 < q ≤ +∞ and r ≥ p satisfy

1
p
−

1
r
<

2
N

(
1 −

1
αq

)
and ϑ < 1 −

1
αq
.

If f ∈ Lq
(
(0,T ), Lp

(
RN

))
, then w ∈ C

(
[0,T ], Lr

(
RN

))
.
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Proof. It follows from Fubini theorem and (2.20) that

0I1−α
t w =

1
Γ(1 − α)

∫ t

0
(t − s)−α

∫ s

0
(s − τ)α−1S α(s − τ)G f (τ)dτds

=
1

Γ(1 − α)

∫ t

0

∫ t

τ

(t − s)−α(s − τ)α−1S α(s − τ)G f (τ)dsdτ

=
1

Γ(1 − α)

∫ t

0

∫ t−τ

0
(t − s − τ)−αsα−1S α(s)G f (τ)dsdτ

=

∫ t

0
Pα(t − τ)G f (τ)dτ.

Since 1 < q < +∞, we can assume that f ∈ Lq
(
(0,T ),W2,p

(
RN

))
by using a regularizing sequence.

Thus, one obtains f ∈ Lq
(
(0,T ), Lr

(
RN

))
. And using dominated convergence theorem, we have w ∈

C
(
[0,T ], Lr

(
RN

))
. By Lemma 2.7,

1
p
−

1
r
<

2
N

(
1 −

1
αq

)
and ϑ < 1 −

1
αq
,

we can get

∥w∥Lr(RN) ≤C
∫ t

0
(t − s)α−1− αN

2

(
1
p−

1
r

)
∥ f (s)∥Lp(RN)ds +C

∫ t

0
(t − s)α−1−αϑ∥ f (s)∥Lr(RN)ds

≤C
(∫ t

0
(t − s)

[
α−1− αN

2

(
1
p−

1
r

)] q
q−1 ds

) q−1
q

∥ f (s)∥Lp((0,T ),Lp(RN))

+C
(∫ t

0
(t − s)[α−1−αϑ] q

q−1 ds
) q−1

q

∥ f (s)∥Lp((0,T ),Lr(RN))

≤C(T )∥ f ∥Lq((0,T ),Lp(RN)).

Thus, a approximate argument leads to w ∈ C
(
[0,T ], Lr

(
RN

))
if f ∈ Lq((0,T ), Lp

(
RN

))
. □

3. Local existence

This section is dedicated to proving the local existence and uniqueness of mild solutions to
problem (1.1). First, we give the definition of mild solution foe problem (1.1).

Definition 3.1. Let u0 ∈ Lq
(
RN

)
, T > 0, we call that u ∈ C

(
[0,T ], Lq

(
RN

))
is a mild solution of (1.1),

if u satisfies the following integral equation

u = Pα(t)u0 +

∫ t

0
(t − s)α−1S α(t − s)G |u|p−1udτ. (3.1)

Theorem 3.1. Let 0 < α < 1 and qc =
N(p−1)
β
, u0 ∈ Lq

(
RN

)
, αqc < q < +∞. Then there exists T > 0

such that problem (1.1) has a mild solution u in

C
(
[0,T ], Lq

(
RN

))
∩C

(
(0,T ], Lr

(
RN

))
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and
sup

t∈(0,T )
tbr∥u(t)∥Lr(RN) < ∞,

where br =
αN
β

(
1
q −

1
r

)
and r ∈ (q,+∞] satisfies 1

q −
1
r <

β

N . This solution is unique in the class{
u ∈ L∞loc

(
(0,T ), Lpq

(
RN

))
| sup

t∈(0,T )
t

Nα
β

(
1
q−

1
pq

)
∥u∥Lpq(RN) < ∞

}
. (3.2)

Furthermore, if r satisfies pq ≤ r ≤ +∞ and 1
q −

1
r <

β

N pα , then u can be extended to a maximal
interval [0,T ∗) such that

u ∈ C
(
[0,T ∗) , Lq

(
RN

))
∩C

(
(0,T ∗) , Lr

(
RN

))
and either T ∗ = +∞ or T ∗ < +∞ with ∥u(t)∥Lr(RN) → +∞ as t → T ∗−.

Proof. For given T > 0, let

Epq,T =
{
u ∈ L∞loc

(
(0,T ), Lpq

(
RN

))
| ∥u∥Epq,T < ∞

}
, ∥u∥Epq,T = sup

t∈(0,T )
tbpq∥u(t)∥Lpq(RN),

where

bpq =
αN
β

(
1
q
−

1
pq

)
and bpq − αϑ > 0. Then, Epq,T is a Banach space. Choose

M > A1 ∥u0∥Lq(RN) + A2T bpq−αϑ ∥u0∥Lq(RN) ,

where A1 and A2 are given by Lemma 2.6, let BK denote the closed ball in Epq,T with center 0 and
radius K.We define the operator G on Epq,T as

G(u)(t) = Pα(t)u0 +

∫ t

0
(t − s)α−1S α(t − s)G |u|p−1uds.

It follows from Lemmas 2.6 and 2.7 that there exists a constant C > 0 such that for u ∈ BK and
t ∈ (0,T )

tbpq∥G(u)(t)∥Lpq(RN)
≤C

(
A1 ∥u0∥Lq(RN) + A2tbpq−αϑ ∥u0∥Lpq(RN)

)
+CA3tbpq

∫ t

0
(t − s)α−1∥u(s)∥p

Lpq(RN)ds +CA4tbpq

∫ t

0
(t − s)α−1−αϑ∥u(s)∥p

Lpq(RN)ds

≤C
(
A1 ∥u0∥Lq(RN) + A2T bpq−αϑ ∥u0∥Lq(RN)

)
+CA3K ptbpq

∫ t

0
(t − s)α−1s−pbpqds +CA4K ptbpq

∫ t

0
(t − s)α−1−αϑs−pbpqds

≤C
(
A1 ∥u0∥Lq(RN) + A2T bpq−αϑ ∥u0∥Lq(RN)

)
+CA3K pTα−pbpq+bpq

∫ 1

0
(1 − s)α−1s−pbpqds +CA4K pTα−pbpq+bpq−αϑ

∫ 1

0
(1 − s)α−1−αϑs−pbpqds
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≤CM +CA3K pTα−pbpq+bpq +CA4K pTα−pbpq+bpq−αϑ.

The fact that q > αqc > qc guarantees α − bpq > 0, pbpq < 1 and α − pbpq > 0. So, all the integrals
above are convergent. Choose K > 0 and T > 0 such that

CM +CA3K pTα−pbpq+bpq +CA4K pTα−pbpq+bpq−αϑ ≤ K. (3.3)

Hence, G maps BK into itself. Note that

∥|u|p − |v|p∥Lq(RN) ≤ C
(
∥u∥p−1

Lpq(RN) + ∥v∥
p−1
Lpq(RN)

)
∥u − v∥Lpq(RN)

for some constant C > 0 independent of u and v. Similar calculations show that G is a strict contraction
on BK if T is chosen small enough. Therefore, G possesses a unique fixed point u in BK .

Note that supt∈(0,T ) tpbpq ∥|u|p∥Lq(RN) < +∞. Then we deduce from Lemma 2.7 and pbpq < α that∫ t

0
(t − s)α−1S α(t − s)|u|pds ∈ C

(
[0,T ], Lq

(
RN

))
.

Thus u ∈ C
(
[0,T ], Lq

(
RN

))
.

Since r > q satisfies 1/q − 1/r < β/N, using Lemmas 2.6 and 2.7 the fact that pbpq < 1 < α, we
have

tbr∥G(u)(t)∥Lr(RN)
≤C

(
A1 ∥u0∥Lq(RN) + A2tbr−αϑ ∥u0∥Lr(RN)

)
+CA3tbr

∫ t

0
(t − s)α−1∥u(s)∥p

Lpq(RN)ds +CA4tbr

∫ t

0
(t − s)α−1−αϑ∥u(s)∥p

Lpq(RN)ds

≤C
(
A1 ∥u0∥Lq(RN) + A2T br−αϑ ∥u0∥Lr(RN)

)
+CA3K ptbr

∫ t

0
(t − s)α−1s−pbpqds +CA4K ptbr

∫ t

0
(t − s)α−1−αϑs−pbpqds

≤C
(
A1 ∥u0∥Lq(RN) + A2T bpq−αϑ ∥u0∥Lq(RN)

)
+CA3K pTα−pbpq+br

∫ 1

0
(1 − s)α−1s−pbpqds +CA4K pTα−pbpq+br−αϑ

∫ 1

0
(1 − s)α−1−αϑs−pβpqds

≤ +∞.

In addition, observe that u ∈ Epq,T and by a simple calculation we find that u ∈ C
(
(0,T ], Lr

(
RN

))
.

Consequently, u ∈ Er,T ∩C
(
(0,T ], Lr

(
RN

))
.

Next we prove the uniqueness of the solution. Let u, v ∈ C
(
[0,T ], Lq

(
RN

))
∩ Epq,T be two mild

solutions of (1.1) for some T > 0. Suppose u, v ∈ BK′ . Then, we can take T ′ < T small enough such
that (3.3) holds with K replaced by K′. Thus, u(t) = v(t) for t ∈ [0,T ′] .When T ′ ≤ t ≤ T, we have

∥u(t) − v(t)∥Lpq(RN) ≤ C
(
A3

∫ t

T ′
(t − s)α−

αN(p−1)
βpq −1 + A4

∫ t

T ′
(t − s)α−αϑ−1

)
∥u(s) − v(s)∥Lpq(RN)ds
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for some constant C > 0 independent of u and v. Hence, Gronwall’s inequality yields u(t) = v(t) for
t ∈ [T ′,T ] .

Finally, we prove that the existence of maximal time provided r satisfies

pq ≤ r ≤ +∞ and
1
q
−

1
r
<
β

N pα
.

Set
T ∗ = sup

{
T > 0 | u ∈ Er,T ∩C

(
(0,T ], Lr

(
RN

))
is a mild solution

}
.

Assume T ∗ < +∞ and there exists M1 > 0 such that supt∈(0,T ∗) tbr∥u(t)∥Lr(RN) ≤ M1.

We claim that there exists M̃1 > 0 such that

sup
t∈(0,T ∗)

tbpq∥u(t)∥Lpq(RN) < M̃1 and sup
t∈(0,T ∗)

∥u(t)∥Lq(RN) < +∞. (3.4)

If r = pq, we have

∥u(t)∥Lq(RN) ≤C
(
∥u0∥Lq(RN) + T ∗br−αϑ ∥u0∥Lq(RN)

)
+C

∫ t

0
(t − s)α−1∥u(s)∥p

Lpq(RN)ds +C
∫ t

0
(t − s)α−1−αϑ∥u(s)∥p

Lpq(RN)ds

≤C
(
∥u0∥Lq(RN) + T ∗br−αϑ ∥u0∥Lq(RN)

)
+C (T ∗)α−

αN(p−1)
βpq

∫ 1

0
(1 − s)α−1s−pbpqds + +C (T ∗)α−αϑ−

αN(p−1)
βpq

∫ 1

0
(1 − s)α−1s−pbpqds

< +∞.

For the case of pq < r < +∞, since

p
r
−

1
r
<
β

N
,

1
q
−

1
r
<
β

N pα
and

1
q
−

1
pq
<
β

N
,

we can take n ∈ N large enough such that

r
p
< r

( pq
r

) 1
n
< r,

(
pq
r

) 1
n p − 1

pq
<
β

N
and

p
r
−

1

r
(

pq
r

) 1
n

<
β

N
.

Set χ =
(

pq
r

) 1
n and q1 = r, qk = qk−1χ = q1χ

k−1, k = 2, 3, . . . , n + 1. Observing that χ < 1 and

0 <
p
qk
−

1
qk+1
=

1
χk−1

(
p
r
−

1
rχ

)
≤

1
χn−1

(
p
r
−

1
rχ

)
=
χp
pq
−

1
pq
<
β

N
, k = 1, 2, . . . , n,

1
q
−

1
qk
≤

1
q
−

1
q1
=

1
q
−

1
r
<
β

N pα
, k = 1, 2, . . . , n + 1,

we know that if
sup

t∈(0,T ∗)
tbqk ∥u(t)∥Lqk(RN) < +∞,
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there exists a constant C > 0 such that

tbqk+1 ∥u(t)∥Lqk+1(RN)
≤C ∥u0∥Lq(RN) +CT ∗br−αϑ ∥u0∥Lqk+1(RN)

+Ctbqk+1

∫ t

0
(t − s)α−

αN
β

(
p

qk
− 1

qk+1

)
−1
∥u(s)∥p

Lqk(RN)ds +Ctbqk+1

∫ t

0
(t − s)α−αϑ−1∥u(s)∥p

Lqk(RN)ds

≤C ∥u0∥Lq(RN) +CT ∗br−αϑ ∥u0∥Lq(RN)

+Ctbqk+1

∫ t

0
(t − s)α−

αN
β

(
p

qqk
− 1

qk+1

)
−1s−pbqk ds +Ctbqk+1

∫ t

0
(t − s)α−αϑ−1s−pbqk ds

≤C
(
∥u0∥Lq(RN) + T ∗br−αϑ ∥u0∥Lq(RN)

)
+Ctα−

αN(p−1)
βq

∫ 1

0
(1 − s)α−

αN
β

(
p

qk
− 1

qk+1

)
−1s−pbqk ds

+Ctα−
αN
βq

(
1−p

q −
1

qk+1
1

qk

)
−αϑ

∫ 1

0
(1 − s)α−αϑ−1s−pbqk ds

< +∞.

Thus, the assumption that supt∈(0,T ∗) tbr∥u(t)∥Lr(RN) ≤ M1 implies

sup
t∈(0,T ∗)

tbpq∥u(t)∥Lpq(RN) < +∞,

and then supt∈(0,T ∗) ∥u(t)∥Lq(RN) < +∞. Therefore, the claims are proved.

Next we verify that limt→T ∗− u(t) exists in Lr
(
RN

)
∩ Lpq

(
RN

)
. Indeed, for T ∗

2 < t < τ < T ∗, by a
similar proof of Lemma 2.8 and using Lemmas 2.6 and 2.7, there exists a m̃ > 0 such that

∥u(t) − u(τ)∥Lr(RN) ≤ C(τ − t)
(
∥u0∥Lq(RN) + ∥u0∥Lr(RN)

)
+CMp

1 (τ − t)m̃,

∥u(t) − u(τ)∥Lpq(RN) ≤ C(τ − t)
(
∥u0∥Lq(RN) + ∥u1∥Lpq(RN)

)
+CM̃p

1 (τ − t)m̃.
(3.5)

Therefore, limt→T ∗− u(t) exists in Lr
(
RN

)
∩Lpq

(
RN

)
.Denote uT ∗ = limt→T ∗− u(t) and define u (T ∗) = uT ∗ .

For h > 0 and δ > 0, let

Ẽh,δ =
{
u ∈ C

(
[T ∗,T ∗ + h] , Lr

(
RN

)
∩ Lpq

(
RN

))
| u (T ∗) = uT ∗ , d (u, uT ∗) ≤ δ

}
,

where

d (u, uT ∗) = max
t∈[T ∗,T ∗+h]

∥u(t) − uT ∗∥Lr(RN) + max
t∈[T ∗,T ∗+h]

∥u(t) − uT ∗∥Lpq(RN) .

It follows from (3.4) and Lemma 2.8 that u ∈ C
(
(0,T ∗] , Lpq

(
RN

)
∩ Lr

(
RN

))
. Then we can define the

operator K on Ẽh,δ as

K(v)(t) =Pα(t)u0 +

∫ T ∗

0
(t − τ)α−1S α(t − τ)G |u(τ)|pdτ

+

∫ t

T ∗
(t − τ)α−1S α(t − τ)G |v(τ)|pdτ, v ∈ Ẽh,δ.
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We can easily see that K(v) ∈ C ([T ∗,T ∗+ h], Lr
(
RN

)
∩ Lpq

(
RN

))
and K(v) (T ∗) = uT ∗ by using (3.5),

Lemmas 2.6 and 2.7. For v ∈ Ẽh,δ and t ∈ [T ∗,T ∗ + h] , it follows from the same arguments as above
that

∥K(v)(t) − uT ∗∥Lr(RN) ≤C (t − T ∗)
(
∥u0∥Lq(RN) + ∥u0∥Lr(RN)

)
+CMp

1 (t − T ∗)m̃

+C
(
∥uT ∗∥Lr(RN) + δ

)p
[
(t − T ∗)α−

αN(p−1)
βr + (t − T ∗)α−αϑ

] (3.6)

for some positive constant C. Moreover, (3.6) also holds if r is replaced by pq. So we can choose h
small enough such that d (u, uT ∗) ≤ δ.

On the other hand, for every w, v ∈ Ẽh,δ, there exists a positive constant C such that

∥Kw−Kv∥Lr(RN)

≤C
(∫ t

T ∗
(t − τ)α−

αN(p−1)
βr −1 +

∫ t

T ∗
(t − τ)α−αϑ−1

) (
∥w∥p−1

Lr(RN) +∥v∥
p−1
Lr(RN)

)
∥w − v∥Lr(RN)dτ

≤C
(
∥uT ∗∥Lr(RN) + δ

)p−1
(
hα−

αN(p−1)
βr + hα−αϑ

)
max

t∈[T ∗,T ∗+h]
∥w − v∥Lr(RN),

and

∥Kw − Kv∥Lpq(RN) ≤ C
(
∥uT ∗∥Lpq(RN) + δ

)p−1
(
hα−

αN(p−1)
βr + hα−αϑ

)
max

t∈[T ∗,T ∗+h]
∥w − v∥Lpq(RN).

Thus, choosing h small enough such that

C
[(
∥uT ∗∥Lr(RN) + δ

)p−1
+

(
∥uT ∗∥Lpq(RN) + δ

)p−1
] (

hα−
αN(p−1)
βr + hα−αϑ

)
≤

1
2
,

we know G is a strict contraction on Ẽh,δ. So the contraction mapping principle implies G has a fixed
point v ∈ Ẽh,δ. Define

ũ(t) =
{

u(t), t ∈ [0,T ∗] ,
v(t), t ∈ [T ∗,T ∗ + h] .

Since
v (T ∗) = G (v (T ∗)) = u (T ∗) ,

we can easily verify that
ũ ∈ Er,T ∗+h ∩C

(
(0,T ∗ + h] , Lr

(
RN

))
and

ũ(t) = Pα(t)u0s +
∫ t

0
(t − s)α−1S α(t − s)G |ũ(τ)|pds.

Obverse that u ∈ Epq,T ∗+h, we have

u ∈ C
(
[0,T ∗ + h] , Lq

(
RN

))
.

Thus, ũ(t) is a mild solution of (1.1), which contradicts the definition of T ∗. □
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4. Blow-up and global existence

In this section, we prove the results of blow-up and global existence of solutions for problem (1.1).
First, we give the definition of weak solution for problem (1.1).

Definition 4.1. For u0 ∈ Lq
(
RN

)
and T > 0,we call u ∈ Lp

(
(0,T ), Lq

(
RN

))
is a weak solution of

problem (1.1) if∫ T

0

∫
RN

(u − u0)C
t DαTφdxdt = −

∫ T

0

∫
RN

G u (−∆)
β
2 φdxdt +

∫ T

0

∫
RN

G
(
|u|p−1u

)
φdxdt

for every φ ∈ C1
(
[0,T ],Hβ

(
RN

))
with suppx φ ⊂⊂ R

N and φ(·,T ) = 0.

Lemma 4.1. Assume u0 ∈ Lq
(
RN

)
, let u ∈ C

(
[0,T ], Lq

(
RN

))
be a mild solution of (1.1), then u is also

a weak solution of (1.1).

Proof. Assume that u ∈ C
(
[0,T ], Lq

(
RN

))
is a mild solution of (1.1), we have

u − u0 = Pα(t)u0 − u0 +

∫ t

0
(t − s)α−1S α(t − s)G |u|p−1uds,

where G = −(m∆ − I)−1. Note that by Lemma 2.8,

0I1−α
t

(∫ t

0
(t − s)α−1S α(t − s)|u|p−1G u(s)ds

)
=

∫ t

0
Pα(t − s)|u|p−1G u(s)ds,

so

0I1−α
t (u − u0) = 0I1−α

t (Pα(t)u0 − u0) +
∫ t

0
Pα(t − s)G |u|p−1u(s)ds.

Then, for every φ ∈ C1
(
[0,T ],Hβ

(
RN

))
with suppx φ ⊂⊂ R

N and φ(·,T ) = 0, we have∫
RN

0I1−α
t (u − u0)φdx = I1(t) + I2(t), (4.1)

where

I1(t) =
∫
RN

0I1−α
t (Pα(t)u0 − u0)φdx,

I2(t) =
∫
RN

∫ t

0
Pα(t − s)G |u|p−1udsφdx.

By Lemma 2.5,

dI1

dt
=

∫
RN

(−∆)
β
2 G (Pα(t)u0)φdx +

∫
RN

0I1−α
t (Pα(t)u0 − u0)φtdx. (4.2)
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For every h > 0, t ∈ [0,T ) and t + h ≤ T, we have

1
h

(I2(t + h) − I2(t)) =
1
h

∫ t+h

0

∫
RN

Pα(t + h − s)G |u|p−1udsφ(t + h, x)dx

−
1
h

∫ t

0

∫
RN

Pα(t − s)G |u|p−1udsφ(t, x)dx

=I3 + I4 + I5,

where

I3 =
1
h

∫
RN

∫ t+h

t

∫ ∞

0
ϕα(θ)T ((t + h − s)αθ) G |u|p−1u(s)dθdsφ(t + h, x)dx,

I4 =
1
h

∫
RN

∫ t

0

∫ ∞

0
ϕα(θ) (T ((t + h − s)αθ) − T ((t − s)αθ)) G |u|p−1u(s)dθdsφ(t, x)dx,

I5 =
1
h

∫
RN

∫ t

0

∫ ∞

0
ϕα(θ)T ((t + h − s)αθ) G |u|p−1u(s)dθds(φ(t + h, x) − φ(t, x))dx.

By dominated convergence theorem, we deduce that

I3 →

∫
RN

G
(
|u|p−1u

)
φdx as h→ 0,

I5 →

∫
RN

∫ t

0

∫ ∞

0
ϕα(θ)T ((t − s)αθ) G |u|p−1u(s)dθdsφtdx

=

∫
RN

∫ t

0
Pα(t − s)G |u|p−1u(s)dsφtdx as h→ 0.

Since

I4 = −

∫
RN

∫ t

0

∫ ∞

0

∫ 1

0
αθϕα(θ)(t + τh − s)α−1 (−∆)

β
2 G (T ((t + τh − s)αθ)) G |u|p−1u(s)dτdθdsφdx

= −

∫
RN

(−∆)
β
2

∫ t

0

∫ ∞

0

∫ 1

0
αθϕα(θ)(t + τh − s)α−1G T ((t + τh − s)αθ) G |u|p−1u(s)dτdθdsφdx

= −

∫
RN

∫ t

0

∫ ∞

0

∫ 1

0
αθϕα(θ)(t + τh − s)α−1G T ((t + τh − s)αθ) G |u|p−1u(s)dτdθds (−∆)

β
2 φdx,

using dominated convergence theorem again, we know

I4 → −

∫
RN

∫ t

0
(t − s)α−1G S α(t − s)G |u|p−1u(s)ds (−∆)

β
2 φdx as h→ 0.

Hence, the right derivative of I2 on [0, T) is∫
RN

G |u|p−1uφdx −
∫
RN

∫ t

0
(t − s)α−1G S α(t − s)G |u|p−1u(s)ds∆

β
2φdx

+

∫
RN

∫ t

0
Pα(t − s)G |u|p−1u(s)dsφtdx
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and it is continuous in [0,T ). Therefore,

dI2

dt
=

∫
RN

G
(
|u|p−1u

)
φdx −

∫
RN

∫ t

0
(t − s)α−1G S α(t − s)G |u|p−1u(s)ds (−∆)

β
2 φdx

+

∫
RN

∫ t

0
Pα(t − s)G |u|p−1u(s)dsφtdx

=

∫
RN

G
(
|u|p−1u

)
φdx −

∫
RN

∫ t

0
(t − s)α−1G S α(t − s)G |u|p−1u(s)ds (−∆)

β
2 φdx

+

∫
RN

0I1−α
t

(∫ t

0
(t − s)α−1S α(t − s)G |u|p−1u(s)ds

)
φtdx, t ∈ [0,T ). (4.3)

Combining (4.1)–(4.3), we conclude that

0 =
∫ T

0

d
dt

∫
RN

I1−α
t (u − u0)φdxdt =

∫ T

0

dI5

dt
+

dI6

dt
dt

=

∫ T

0

∫
RN

G (Pα(t)u0) (−∆)
β
2 φdxdt +

∫ T

0

∫
RN

0I1−α
t (Pα(t)u0 − u0)φtdxdt

+

∫ T

0

∫
RN

G
(
|u|p−1u

)
φdxdt −

∫ T

0

∫
RN

∫ t

0
(t − s)α−1G S α(t − s)G |u|p−1u(s)ds (−∆)

β
2 φdxdt

+

∫ T

0

∫
RN

0I1−α
t

(∫ t

0
(t − s)α−1S α(t − s)G |u|p−1u(s)ds

)
φtdxdt

= −

∫ T

0

∫
RN

G u (−∆)
β
2 φdxdt −

∫ T

0

∫
RN

(u − u0)C
t DαTφdxdt +

∫ T

0

∫
RN

G
(
|u|p−1u

)
φdxdt,

so, we can get the following equation

0 = −
∫ T

0

∫
RN

G u (−∆)
β
2 φdxdt −

∫ T

0

∫
RN

(u − u0)C
t DαTφdxdt +

∫ T

0

∫
RN

G
(
|u|p−1u

)
φdxdt.

Hence, this completes the proof. □

We say the solution u of problem (1.1) blow-up in a finite time T if

lim
t→T
∥u(t, ·)∥L∞(RN) = +∞.

Now, we give a blow-up result for problem (1.1).

Theorem 4.1. Let u0 ∈ Lq
(
RN

)
, u0 ≥ 0 and u0 . 0, then

(i) If p < 1 + βN , then the mild solution of (1.1) blow-up in a finite time.

(ii) If p ≥ 1+ βN and ∥u0∥Lqc is sufficiently small, where qc =
N(p−1)
β

, then the mild solution of (1.1) exists
globally.

Proof. (i) The proof is by contradiction. Suppose that u is a global mild solution of (1.1), then u is a
solution of (1.1) and u ∈ C

(
[0,T ], Lq

(
RN

))
. Then, Lemma 4.1 tells us∫ T

0

∫
RN

(u − u0)C
t DαTφdxdt = −

∫ T

0

∫
RN

G u (−∆)
β
2 φdxdt +

∫ T

0

∫
RN

G
(
|u|p−1u

)
φdxdt,
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for all φ ∈ C1
(
[0,T ],Hβ

(
RN

))
with suppx φ ⊂⊂ R

N and φ(·,T ) = 0. Now we take

φ(x, t) = (φ1(x))ℓ φ2(t)

with
φ1(x) = Φ

(
|x|/T 1/β

)
, φ2(t) = (1 − t/T )η+,

where
ℓ ≥ p/(p − 1), η ≥ max{(αp + 1)/(p − 1), α + 1}

and Φ is a smooth nonnegative non-increasing function such that

Φ(r) =
{

1, if 0 ≤ r ≤ 1,
0, if r ≥ 2,

0 ≤ Φ ≤ 1, |Φ′(r)| ≤ C1/r, for all r > 0. We have,∫ T

0

∫
RN

u0
C
t DαTφdxdt =

∫
ΩT

uC
t DαTφdxdt +

∫ T

0

∫
RN

G u (−∆)
β
2 φdxdt −

∫ T

0

∫
RN

G
(
|u|p−1u

)
φdxdt,

where

ΩT = [0,T ] ×Ω for Ω =
{
x ∈ RN

∣∣∣|x| ≤ 2T 1/β
}
.

So, from Ju’s inequality (−∆)β/2
(
φℓ1

)
≤ ℓφℓ−1

1 (−∆)β/2 (φ1), we can obtain∫ T

0

∫
RN

u0
C
t DαTφdxdt =

∫
ΩT

uC
t DαTφdxdt +

∫ T

0

∫
RN

G u (−∆)
β
2 φdxdt −

∫ T

0

∫
RN

G
(
|u|p−1u

)
φdxdt

≤

∫
ΩT

uC
t DαTφdxdt +

∫ T

0

∫
RN
|G u|

∣∣∣∣(−∆)
β
2 φ

∣∣∣∣ dxdt +
∫ T

0

∫
RN
|G (|u|p)| |φ| dxdt

≤

∫
ΩT

uC
t DαTφdxdt +

∫ T

0

∫
RN
|G u|

∣∣∣φℓ−1
1 (x)(−∆)β/2φ1(x)φ2(t)

∣∣∣ dxdt

+

∫ T

0

∫
RN
|G (|u|p)| |φ| dxdt.

Therefore, using Hölder inequality, Lemma 2.4 and u0 ≥ 0,∫ T

0

∫
RN

u0
C
t DαTφdxdt ≤

(∫
ΩT

updxdt
) 1

p
(∫
ΩT

∣∣∣Ct DαTφ
∣∣∣p̃ dxdt

) 1
p̃

+

∫
ΩT

|G (|u|p)| dxdt

+

(∫
ΩT

|G (|u|p)|p dxdt
) 1

p
(∫
ΩT

∣∣∣φℓ−1
1 (x)(−∆)β/2φ1(x)φ2(t)

∣∣∣p̃ dxdt
) 1

p̃

≤

(∫
ΩT

updxdt
) 1

p
(∫
ΩT

∣∣∣Ct DαTφ
∣∣∣p̃ dxdt

) 1
p̃

+ M1

∫
ΩT

|u|pdxdt

+ M2

(∫
ΩT

|u|p dxdt
) 1

p
(∫
ΩT

∣∣∣φℓ−1
1 (x)(−∆)β/2φ1(x)φ2(t)

∣∣∣p̃ dxdt
) 1

p̃

, (4.4)
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where pp̃ = p + p̃, p > 1, p̃ > 1.
By changing the variables: τ = T−1t, ξ = T−1/βx and using formulas (2.3) in the right hand-side

of (4.4), we get

T 1−α
∫
Ω

u0φ
ℓ
1 ≤ CT−α+

(
1+ N
β

)
1
p̃ .

Hence, ∫
Ω

u0φ
ℓ
1 ≤ CT−δ, (4.5)

where
δ = 1 − (1 + N/β) p̃, C = C (|Ω1| , |Ω2|) ,

(|Ωi| stands for the measure of Ωi, for i = 1, 2), with

Ω1 =
{
ξ ∈ RN

∣∣∣|ξ| ≤ 2
}
, Ω2 = {τ ≥ 0

∣∣∣τ ≤ 1}.

Since
p ≤ p∗ = 1 +

β

N
,

passing to the limit in (4.5) as T → ∞, we get

lim
T→∞

∫ T

0

∫
|x|≤2T 1/β

u0φ
ℓ
1dxdt = 0.

Using the Lebesgue dominated convergence theorem, the continuity in time and space of u, we infer
that ∫ ∞

0

∫
RN

u0φ
ℓ
1dxdt = 0 =⇒ u0 ≡ 0.

Contradiction.
(ii) We construct the global solution of (1.1) by the contraction mapping principle. As q > p ≥ 1 + β2 ,
then we have the possibility to take a positive constant q > 0 such that

α

p − 1
−

1
p
<
αN
βq
<
α

p − 1
(4.6)

and
α

p − 1
− α <

αN
βq
. (4.7)

Let

b =
αN
β

(
1
qc
−

1
q

)
=
α

p − 1
−
αN
βq
. (4.8)

We verify that

0 < pb < 1, α =
αN(p − 1)
βq

+ (p − 1)b. (4.9)

Assume that u0 satisfies
sup
t>0

tb ∥Pα(t)u0∥Lq(RN) = η < +∞. (4.10)
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If u0 ∈ Lqc
(
RN

)
, Lemma 2.6 implies (4.10) holds. Note that we can take u0(x) ≤ C|x|−

2
p−1 instead of

u0 ∈ Lqc
(
RN

)
for some constant C > 0.

Let
Y =

{
u ∈ L∞

(
(0,∞), Lq

(
RN

))
| ∥u∥Y < ∞

}
,

where
∥u∥Y = sup

t>0
tb∥u(t)∥Lq(RN).

For u ∈ Y , we define

Φ(u)(t) = Pα(t)u0 +

∫ t

0
(t − s)α−1S α(t − s)G |u|p−1u(s)ds.

Denote
BM = {u ∈ Y | ∥u∥Y ≤ M} .

For any u, v ∈ BM, t ≥ 0,

tb∥Φ(u)(t) − Φ(v)(t)∥Lq(RN) ≤ tb
∫ t

0
(t − s)α−1 ∥S α(t − s)G (up(s) − vp(s))∥Lq(RN) ds. (4.11)

Hence, Hölder inequality and Lemma 2.7 imply that there exists a constant C > 0 such that

tb∥Φ(u)(t) − Φ(v)(t)∥Lq(RN)

≤ Ctb
∫ t

0
(t − s)α−1− αN

β

( p
q−

1
q

)
∥G |up − vp|∥

L
q
p (RN) ds +Ctb

∫ t

0
(t − s)α−1−αϑ ∥G |up − vp|∥Lq(RN) ds

≤ Ctb
∫ t

0
(t − s)α−1− αN

β

( p
q−

1
q

) (
∥u∥p−1

Lq(RN) + ∥v∥
p−1
Lq(RN)

)
∥u − v∥Lq(RN)ds

+CtbMp−1
∫ t

0
(t − s)α−1−αϑs−pbds∥u − v∥Y

≤ CtbMp−1
∫ t

0
(t − s)α−1− αN(p−1)

βq s−pbds∥u − v∥Y +CtbMp−1
∫ t

0
(t − s)α−1−αϑs−pbds∥u − v∥Y

= CMp−1tb−pb− αN(p−1)
βq +α

∫ 1

0
(1 − τ)−

αN(p−1)
βq +α−1τ−pbdτ∥u − v∥Y

+CMp−1tb−pb−αϑ+α
∫ 1

0
(1 − τ)−αϑ+α−1τ−pbdτ∥u − v∥Y

≤ CMp−1
∫ 1

0
(1 − τ)−

αN(p−1)
βq +α−1τ−pbdτ∥u − v∥Y +CMp−1

∫ 1

0
(1 − τ)−αϑ+α−1τ−pbdτ∥u − v∥Y

≤ CMp−1Γ((p − 1)b)Γ(1 − pb)
Γ(1 − b)

∥u − v∥Y +CMp−1Γ(−αϑ + α)Γ(1 − pb)
Γ(1 − b)

∥u − v∥Y ,

where

ϑ =
N(p − 1)
βq

.
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If we choose M small enough such that

CMp−1Γ((p − 1)β)Γ(1 − pβ)
Γ(1 − β)

+CMp−1Γ(−αϑ + α)Γ(1 − pb)
Γ(1 − b)

<
1
2
,

then
∥Φ(u) − Φ(v)∥Y ≤

1
2
∥u − v∥Y .

Since

tβ∥Φ(u)(t)∥Lq(RN) ≤η +CMptb
∫ t

0
(t − s)−

αN
β

( p
q−

1
q

)
−1+αs−pbds +CMptb

∫ t

0
(t − s)−αϑ−1+αs−pbds

≤η +CMpΓ((p − 1)β)Γ(1 − pβ)
Γ(1 − β)

+CMp−1Γ(−αϑ + α)Γ(1 − pb)
Γ(1 − b)

, t ∈ [0,+∞).

Therefore, by contraction mapping principle we know Φ has a fixed point u ∈ BM.

Next, we will prove u ∈ C
(
[0,T ], Lq

(
RN

))
.

First, we claim that for T > 0 small enough, u ∈ C
(
[0,T ], Lq

(
RN

))
. In fact, the above proof shows

that u is the unique solution in

BM,T =

{
u ∈ L∞loc

(
(0,T ), Lr

(
RN

))
| sup

0<t<T
tβ∥u(t)∥Lr(RN) ≤ M

}
.

Since u0 ∈ Lq
(
RN

)
and r > qc, we know u0 ∈ Lq̃

(
RN

)
for every q̃ ∈ (qc, q) and q̃ < n. Observe that the

assumption

p > 1 +
βα

αN + β − βα
implies

p > 1 +
β

αN
and qc >

αN p
αN + β

.

Then, using Theorem 3.1, we know that (1.1) has a unique solution

ũ ∈ C
(
[0,T ], Lq

(
RN

)
∩ Lq̃

(
RN

))
∩C

(
(0,T ], L∞

(
RN

))
if T is small enough, and

sup
0<t<T

t
αN
βq ∥ũ(t)∥L∞(RN) < +∞.

Note that q̃ > qc and there exists a constant C > 0 such that

tβ∥ũ(t)∥Lr(RN) ≤ tβ∥ũ(t)∥1−
q̃
r

L∞(RN)∥ũ(t)∥
q̃
r

Lq̃(RN) ≤ Ct
αN
2

(
1
qc−

1
q

)
∥ũ(t)∥

q̃
r

Lq̃(RN), t ∈ (0,T ).

It follows that we can take T small enough such that

sup
0<t<T

tβ∥ũ(t)∥Lr(RN) ≤ M.

Thus, by uniqueness, u ≡ ũ for t ∈ [0,T ]. Consequently, we get that

u ∈ C
(
(0,T ], L∞

(
RN

))
∩C

(
[0,T ], Lq

(
RN

)
∩ Lq̃

(
RN

))
.
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Finally, we prove u ∈ C
(
[T,∞), Lq

(
RN

)
∩ L∞

(
RN

))
. Indeed, for t > T, we have

u − Pα(t)u0 =

∫ t

0
(t − s)α−1S α(t − s)G |u|pds

=

∫ T

0
(t − s)α−1S α(t − s)G |u|p ds +

∫ t

T
(t − s)α−1S α(t − s)G |u|pds

= I5 + I6.

Since
u ∈ C

(
[0,T ], Lq̃

(
RN

))
∩C

(
(0,T ], L∞

(
RN

))
and

sup
0<t<T

t
αN
βq ∥u(t)∥L∞(RN) < ∞,

we obtain
I5 ∈ C

(
[T,∞), L∞

(
RN

))
∩C

(
[T,∞), Lq̃

(
RN

))
by an argument similar to the proof of Lemma 2.8.

For given
T1 > T, |u|p ∈ L∞

(
(T,T1) , L

r
p
(
RN

))
.

Since r > N(p−1)
β
, we can choose m̃ > r such that

N
β

(
p
r
−

1
m̃

)
< 1.

Observing

0 <
p
r
−

1
q̃
<

p
r
−

1
m̃
<
β

N
,

an argument similar to that used in Lemma 2.8 shows that

I6 ∈ C
(
[T,T1] , Lm̃

(
RN

)
∩ Lq̃

(
RN

))
.

By the arbitrariness of T1, we know

I6 ∈ C
(
[T,∞), Lm̃

(
RN

)
∩ Lq̃

(
RN

))
.

Note that the term
Pα(·)u0 ∈ C

(
[T,∞), Lm̃

(
RN

)
∩ Lq̃

(
RN

))
.

Consequently,
u ∈ C

(
[T,∞), Lm̃

(
RN

))
∩C

(
[0,∞), Lq̃

(
RN

))
.

Let
χ =

m̃
r
.

Observe that χ > 1 and

N
β

(
p

rχi−1 −
1

rχi

)
< 1, i = 1, 2, · · · .
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Repeating the above procedures, we deduce that if

u ∈ C
(
[T,∞), Lrχi−1 (

RN
))
,

then
u ∈ C

(
[T,∞), Lrχi (

RN
))
.

After finite steps, we get

p
rχi <

β

N
.

Then
u ∈ C

(
(0,∞), L∞

(
RN

))
.

Therefore,
u ∈ C

(
[0,+∞), Lq

(
RN

))
∩C((0,∞), L∞

(
RN

))
.

This completes the proof. □

Lemma 4.2. (See [3]) Let ω1 > −1, ω2 > −1 such that ω1 + ω2 ≥ −1, h > 0 and t ∈ [0,T ]. Then the
following limit holds for µ > 0,

lim
µ→∞

(
sup

t∈[0,T ]
th

∫ 1

0
sω1(1 − s)ω2e−µt(1−s)ds

)
= 0.

Theorem 4.2. Let 1
2 < α < 1, 0 < ϑ < 1 − 1

2α , b satisfies

1 + αϑ − α < b < α − αϑ, (4.12)

p > max

1, 1

1 − β(α−b)
αN

,
1

1 − β(α+b−1)
αN

 (4.13)

and

q > max

 1
1
b +

β(α−b)
αN

,
1

1
b +

β(α+b−1)
αN

 . (4.14)

Suppose that
u0 ∈ Lp

(
RN

)
∩ Lq

(
RN

)
,

then if ∥u0∥Lp(RN)∩Lq(RN) is sufficiently small, then the mild solution of (1.1) exists globally.

Proof. We construct the global solution of (1.1) by contraction mapping principle. First, we consider
the following function

Ψv(t) :=Pα(t)u0 +

∫ t

0
(t − s)α−1S α(t − s)G |u|p−1uds. (4.15)
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Let B be a Banach space. Define the Banach space Zb,µ((0,T ]; B) of all Bochner integrable functions
u : [0,∞)→ B such that tbu are bounded continuous functions, endowed with the norm

∥v∥Zb,µ((0,T ];B) := sup
t∈(0,T ]

tbe−µt∥v(·, t)∥B < ∞, b ≥ 0, µ ≥ 0.

Since u0 ∈ Lp
(
RN

)
∩ Lq

(
RN

)
, we know that

∥Pα(t)u0∥Lq(RN) ≤ A
− αN
βr

1 ∥u0∥Lp(RN) + A2t−αϑ ∥u0∥Lq(RN) , (4.16)

and

∥Pα(t)u0∥Lq(RN) ≤ A1 ∥u0∥Lp(RN) + A2t−αϑ ∥u0∥Lq(RN) . (4.17)

From (4.16) and (4.17) yield that

tbe−µt ∥Pα(t)u0∥Lp(RN)∩Lq(RN) ≤e−µt
(
A1tb− αN

βr + A1tb + A2tb−αϑ
)
∥u0∥Lp(RN) + e−µtA2tb−αϑ ∥u0∥Lq(RN)

≤
(
A1T b− αN

βr + A1T b + A2T b−αϑ
)
∥u0∥Lp(RN) + A2T b−αϑ ∥u0∥Lq(RN) .

(4.18)

It follows from (4.18) that,

Pα(t)u0 ∈ Z
b,µ

(
(0,T ]; Lp

(
RN

)
∩ Lq

(
RN

))
for any µ > 0 and b satisfies (4.12).

Now, We show that for any

v1, v2 ∈ Z
b,µ0

(
(0,T ]; Lp

(
RN

)
∩ Lq

(
RN

))
and the constant ϱ which is independent of t, there exists a µ0 such that

∥Ψv1 − Ψv2∥Zb,µ0((0,T ];Lp(RN)∩Lq(RN)) ≤ ϱ ∥v1 − v2∥Zb,µ0((0,T ];Lp(RN)∩Lq(RN)) . (4.19)

Indeed, we have

tbe−µt ∥Ψv1 − Ψv2∥Lp(RN)∩Lq(RN) = tbe−µt∥
∫ t

0
(t − s)α−1S α(t − s)G

∣∣∣vp
1 − vp

2

∣∣∣ ds∥Lp(RN)∩Lq(RN)

= tbe−µt∥
∫ t

0
(t − s)α−1S α(t − s)G

∣∣∣vp
1 − vp

2

∣∣∣ ds∥Lp(RN)

+ tbe−µt∥
∫ t

0
(t − s)α−1S α(t − s)G

∣∣∣vp
1 − vp

2

∣∣∣ ds∥Lq(RN)

= (I) + (II).

(4.20)
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Hence, we have

(I) ≤ tbe−µtA3

∫ t

0
(t − s)α−1

∥∥∥G ∣∣∣vp
1 − vp

2

∣∣∣∥∥∥
Lp(RN) ds

+ tbe−µtA4

∫ t

0
(t − s)α−1−αϑ

∥∥∥G ∣∣∣vp
1 − vp

2

∣∣∣∥∥∥
Lp(RN) ds

≤ CMA3tbe−µt
∫ t

0
(t − s)α−1 ∥v1(s) − v2(s)∥Lp(RN) ds

+CMA4tbe−µt
∫ t

0
(t − s)α−1−αϑ ∥v1(s) − v2(s)∥Lp(RN) ds

= (III) + (IV),

(4.21)

and

(II) ≤ tbe−µtA3

∫ t

0
(t − s)α−1(t − s)−

αN
βr

∥∥∥G ∣∣∣vp
1 − vp

2

∣∣∣∥∥∥
Lp(RN) ds

+ tbe−µtA4

∫ t

0
(t − s)α−1−αϑ

∥∥∥G ∣∣∣vp
1 − vp

2

∣∣∣∥∥∥
Lq(RN) ds

≤ CMA3tbe−µt
∫ t

0
(t − s)α−1− αN

βr ∥v1(s) − v2(s)∥Lp(RN) ds

+CMA4tbe−µt
∫ t

0
(t − s)α−1−αϑ ∥v1(s) − v2(s)∥Lq(RN) ds

= (V) + (VI),

(4.22)

thanks to the following inequality

||u|p−1 u − |v|p−1v| ≤ C|u − v|
(
|u|p−1 + |v|p−1

)
.

We treat the term (III) as follows

(III) = CMA3tb
∫ t

0
e−µ(t−s)s−b(t − s)α−1sbe−µs ∥v1(s) − v2(s)∥Lp(RN) ds

≤ CMA3tb

(∫ t

0
e−µ(t−s)s−b(t − s)α−1ds

)
sup

0≤s≤T
sbe−µs ∥v1(s) − v2(s)∥Lp(RN)

= CMA3tbL1,µ(t, α, b) ∥v1 − v2∥Zb,µ((0,T ];Lp(RN)) .

(4.23)

By a similar argument, we can also obtain some following estimates

(IV) ≤ CMA4tbL2,µ(t, α, b) ∥v1 − v2∥Zb,µ((0,T ];Lp(RN)) ,

(V) ≤ CMA3tbL3,µ(t, α, b) ∥v1 − v2∥Zb,µ((0,T ];Lp(RN)) ,

(VI) ≤ CMA3tbL2,µ(t, α, b) ∥v1 − v2∥Zb,µ((0,T ];Lq(RN)) ,

(4.24)

where

L2,µ(t, α, b) =
∫ t

0
e−µ(t−s)s−b(t − s)α−1−αϑds,
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L3,µ(t, α, b) =
∫ t

0
e−µ(t−s)s−b(t − s)α−1− αN

βr ds.

Combining some above observations, we obtain

∥Ψv1 − Ψv2∥Zb,µ((0,T ];Lp(RN)∩Lq(RN))

≤ sup
0≤t≤T

tbe−µt∥
∫ t

0
(t − s)α−1S α(t)G (v1(s) − v2(s)) ds∥Lp(RN)∩Lq(RN)

≤ 2CM (A3 + A4) sup
0≤t≤T

(
tbL1,µ(t, α, b) + tbL2,µ(t, α, b) + tbL3,µ(t, α, b)

)
× ∥v1 − v2∥Zb,µ((0,T ];Lp(RN)∩Lq(RN))
≤ ϱ ∥v1 − v2∥Zb,µ((0,T ];Lp(RN)∩Lq(RN)) .

(4.25)

We first consider the term L2,µ(t, α, b). By changing variable s = ts′, we get

tbL2,µ(t, α, b) = tb+α−1−αϑ
∫ 1

0
e−µt(1−s)s−b(1 − s)α−1−αϑds. (4.26)

Using (4.12), we can easily verify that the following conditions hold

b + α − 1 − αϑ > 0, −b > −1, α − 1 − αϑ > −1, α − 1 − αϑ − b > −1.

By Lemma 4.2, we have

lim
µ→∞

tbL2,µ(t, α, b) = lim
µ→∞

(
sup

t∈[0,T ]
tb+α−1−αϑ

∫ 1

0
e−µt(1−s)s−b(1 − s)α−1−αϑds

)
= 0. (4.27)

Noting that L1,µ(t, α, b) ≤ TαϑL2,µ(t, α, b), we deduce that

lim
µ→∞

tbL2,µ(t, α, b) = 0. (4.28)

It follows from (4.12)–(4.14) that the following conditions hold

b + α − 1 − αN
βr > 0, −b > −1, α − 1 − αN

βr > −1, α − 1 − αN
βr − b > −1.

By Lemma 4.2, we obtain

lim
µ→∞

tbL3,µ(t, α, b) = lim
µ→∞

(
sup

t∈[0,T ]
tb+α−1− αN

βr

∫ 1

0
e−µt(1−s)s−b(1 − s)α−1− αN

βr ds
)
= 0. (4.29)

From (4.27)–(4.29), we know that there exists a µ0 small enough such that

ϱ := 2CM (A3 + A4) sup
0≤t≤T

(
tbL1,µ0(t, α, β) + tβL2,µ0(t, α, b) + tbL3,µ0(t, α, b)

)
< 1. (4.30)

We find that Ψ is a contraction in the space

Zb,µ0((0,T ]; Lp
(
RN

)
∩ Lq

(
RN

))
by combining (4.25) and (4.30), it means that there exists a unique global solution u satisfies
Lemma 4.2. Hence, the proof is finished. □
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5. Conclusions

In this work, we considered the blow-up and global existence of a class of space-time fractional
pseudo-parabolic equations. A family of solution operators is defined based on a kind of density
function and semigroup, and the Lp − Lq estimate for solutions of the corresponding linear problem
is investigated and this is our main contribution. On this basis, the local existence of solutions to a
class of space-time fractional pseudo-parabolic equations is studied by using the fixed-point theorem.
The definition of weak solutions is given and it is proved that mild solutions are also weak solutions.
The global existence of solutions is proved by using the contraction mapping principle, while the
blow-up of solutions is proved by using the test function method. In this direction, we can study the
global existence and blow-up of solutions for space-time fractional pseudo-parabolic equations when
α ∈ (1, 2).
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