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Abstract: In the paper, the existence and uniqueness of the equilibrium point in the Cohen-
Grossberg neural network (CGNN) are first studied. Additionally, a switched Cohen-Grossberg
neural network (SCGNN) model with time-varying delay is established by introducing a switched
system to the CGNN. Based on reducing the conservativeness of the system, a flexible terminal
interpolation method is proposed. Using an adjustable parameter to divide the invariant time-delay
interval into multiple adjustable terminal interpolation intervals (2ı+1−3), more moments when signals
are transmitted slowly can be captured. To this end, a new Lyapunov-Krasovskii functional (LKF) is
constructed, and the stability of SCGNN can be estimated. Using the LKF method, a quadratic convex
inequality, linear matrix inequalities (LMIs) and ordinary differential equation theory, a new form of
stability criterion is obtained and specific instances are given to prove the applicability of the new
stability criterion.
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1. Introduction

In 1983, M. Cohen and S. Grossberg proposed a new type of neural network model (CGNN). In
real life, CGNN is broadly used in image processing, speed detection of moving targets, association
memory and other fields. Scholars at home and abroad have also studied CGNN from different
perspectives. In real-world use, it is paramount to ensure that the designed neural network has strong
stability. However, owing to the switching speed of the amplifier and the time delay of the signal during
transmission, CGNN may experience a time lag in actual work, which is an important factor causing
network instability. In recent years, many studies on stability problems have also been carried out for
time-delay neural networks [1–11].
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The switched system is a model for studying complex systems from the perspective of systems
and control[12–14]. Mechanical systems and power systems can be displayed in the form of switched
systems, and they can also play a vital function in other fields, including ecological science, energy
environment and other fields [15]. Simultaneously, the switched system is a complex system composed
of a series of succession or dissociation subsystems and switched rules that enable subsystems to switch
between them. Switched rules control the operation of the whole switched system, and the switched
rules can also be called switched signals, switching laws or switched functions. They are usually based
on the segmented constant function of time or status and events. D. Liberzon and A. S. Morse describes
in detail the stability, design process and development of the switched system [16]. Compared with the
previous CGNN research results [17–20], the value of the CGNN [21] connection the weight matrix
will change over time when combined with a switching system. It can adjust the dynamic behavior of
the system through switching rules and strategies, and respond to the dynamic evolution process of the
system without cutting. The connection weight matrix of the system is usually fixed and cannot show
dynamic changes. A method based on quantitative sliding mode was used to solve the synchronization
problem of recursive neural networks with time-varying delays and discrete time [22]. In order to
reduce the computational complexity, the authors introduced quantitative technology to discretely
process the network state and finally used Lyapunov theory and the Barbalat lemma to deduce the
convergence of the system. Among them, sliding mode control is a nonlinear control method with
strong robustness. It realizes the switching and control of the system state by introducing a sliding
surface. It has the characteristics of strong stability, short adjustment time and strong tracking ability,
and it can also show the dynamic changes of the system. However, this paper adds the switching system
to the traditional CGNN, uses LMIs and quadratic convex inequality to establish the criterion of the
gradual stability of SCGNN, and it further studies the stability of SCGNN and the dynamic evolution
process of SCGNN.

For CGNN with time-changing delay, it has been proven that the equilibrium point exists and
is unique, and the analysis of stability has been widely studied. However, few people optimize
the stability of the system. In [23] and [24], the weighting-delay method and the flexible terminal
interpolation method were used to study the recursive neural network, respectively. The generation
of time delay is not necessarily uniform, and there may be asymmetry, so it is more conservative to
study the impact of time delay on system stability as a fixed interval [25–28], which usually cannot
meet the actual needs. However, the above two methods, through one or more parameters, change
the length of the interval, divide a fixed interval into multiple variable sub-intervals, and obtain the
maximum allowable upper bound of time delay by using LMIs and constructing an appropriate LKF,
which reduces the conservatism of the system. Comparing the experimental results of [23] and [24],
the upper bound with the allowable delay obtained by using the flexible terminal interpolation method
is larger. In [29], through the method of Halanay’s inequality and Lyapunov’s functional, the authors
put forward a new sufficient condition to ensure that the time-changing delay CGNN has a unique
equilibrium solution and global stability. In [30], based on the non-singular M-matrix theory, the
method of transformation matrix is used to carry out an appropriate linear transformation of the M-
matrix and turn it into a special form with good properties, so as to achieve the positive judgment
of the system and obtain a new criterion to ensure the high-order delay discrete CGNN has global
exponential stability. However, all these methods lack consideration for reducing the conservatism of
the system.

AIMS Mathematics Volume 8, Issue 8, 17744–17764.



17746

Therefore, this paper uses the flexible terminal interpolation method to study CGNN with time
delays, in order to reduce the conservatism of the system and make its results more general and
more practical. Moreover, the flexible terminal interpolation method can be adjusted according to
the characteristics of the data to adjust the size of the subinterval through a parameter, which greatly
reduces the calculation burden and reduces the calculation time cost while ensuring the accuracy of
interpolation.

The flexible terminal interpolation method uses ı interpolation and an adjustable parameter to divide
the fixed time-delay interval [ℓ0, ℓ2] to 2ı+1 − 3 flexible time-delay intervals, as shown in Figure 1.

Figure 1. Flexible terminal interpolation diagram.

Let the adjustable parameter be ð, and ℓ1 = ℓ(t), ϑ = 1 − ð. The terminal point of each subinterval
can be expressed as (taking the second interpolation as an example)

ℓ 1
2
= ðℓ(t) + ϑℓ0 = ðℓ(t) + (1 − ð)ℓ0,

ℓ 3
2
= ðℓ(t) + ϑℓ2 = ðℓ(t) + (1 − ð)ℓ2,

ℓ 1
4
= ðℓ 1

2
+ ϑℓ0 = ð

2ℓ(t) + (1 − ð2)ℓ0,
ℓ 3

4
= ðℓ(t) + ϑℓ 1

2
= ð(2 − ð)ℓ(t) + (1 − ð)2ℓ0,

ℓ 2i−1
2ı
=

ðℓ i
2ı−1
+ ϑℓ i−1

2ı−1
, 1 ≤ i ≤ 2ı−1,

ðℓ i−1
2ı−1
+ ϑℓ i

2ı−1
, 2ı−1 + 1 ≤ i ≤ 2ı,

ℓ̇ 1
2
= ðℓ̇(t), ℓ̇ 3

2
= ðℓ̇(t), ℓ̇ 1

4
= ð2ℓ̇(t), ℓ̇ 3

4
= ð(2 − ð)ℓ̇(t).

We can see that the endpoint value of each flexible subinterval is a convex combination of ℓ0 and
ℓ(t), or a convex combination of ℓ2 and ℓ(t). The terminal of each time interval is adjustable, that is,
the delay interval is adjusted as a whole, which will enable us to capture more time delay information,
and the stability result will be more accurate and effective.

Notation: Rη×η represents the set of η-row η column matrices in which all elements are real numbers;
YT represents the transpose of the matrix Y; Q > 0 means that the matrix Q is called a positive fixed

AIMS Mathematics Volume 8, Issue 8, 17744–17764.



17747

matrix; col[Y1,Y2] = [YT
1 ,Y

T
2 ]T ; He[Y] = YT + Y; diag{...} is a matrix with all 0 elements except the

diagonal. ∗ is the part of the matrix about the symmetry of the main diagonal.

2. Preparatory knowledge and assumptions

The CGNN with time-varying delays can be described:

˙̂xi(t) = di(x̂i(t))
[
−ai(x̂i(t)) +

η∑
j=1

bi jF̄ j(x̂ j(t)) +
η∑

j=1

ci jF̄ j(x̂ j(t − ℓ j(t))) + ȷi
]
, (2.1)

where x̂i(t) ∈ Rη is the state vector of the ith neuron at t moment. di(x̂i(t)) is the amplification function,
ai(x̂i(t)) represents a behaved function, and F̄i(·) denotes the bounded neuronal activations function.
B = (bi j)η×η, C = (ci j)η×η are the connection weights that reflect how the neuron i connects with the

neuron j. ℓ j(t) are the time delay parameters. ȷi =
[
ȷ1, ȷ2, ...., ȷη

]
denotes the external bias on ith neuron

at time t and ȷ1, ȷ2, ...., ȷη all are constant.
CGNN (2.1) is transformed into

˙̂x(t) = D(x̂(t))[−A(x̂(t)) +BF̄(x̂(t)) + CF̄(x̂(t − ℓ(t))) + ȷ], (2.2)

where

ȷ = ( ȷ1, ȷ2, ...., ȷη)T , x̂(t) = (x̂1(t), x̂2(t), ...., x̂η(t))T

D(x̂(t)) = diag(d1(x̂1(t)), d2(x̂2(t)), ...., dη(x̂η(t))),
A(x̂(t)) = (a1(x̂1(t)), a2(x̂2(t)), ...., aη(x̂η(t)))T ,

F̄(x̂(t − ℓ(t))) = (F̄1(x̂1(t − ℓ1(t))),
F̄2(x̂2(t − ℓ2(t))), ...., F̄η(x̂η(t − ℓη(t))))T .

We will need to use the following assumptions and lemma.
Assumption 2.1. Each function di(x̂i(t)) is bounded and locally continuous, and there exist non-
negative constants li and li such that 0 ≤ li ≤ di(x̂i(t)) ≤ li < +∞ for all x̂i(t) ∈ Rη.
Assumption 2.2. Each function ai(x̂i(t)) is bounded and continuous and there exist principal constants
µi > 0, such that

ai(x̂i(t)) − ai(y̌i(t))
x̂i(t) − y̌i(t)

≥ µi > 0, i = 1, 2, ..., η, ∀x̂i, y̌i ∈ Rη, x̂i , y̌i.

Assumption 2.3. F̄i(·) is a bounded activation function and there are positive constants ki (i = 1, 2, ...η),
such that ∣∣∣F̄i(x̂i(t)) − F̄i(y̌i(t))

∣∣∣ ≤ ki |x̂i − y̌i| , i = 1, 2, ..., η, ∀x̂i, y̌i ∈ Rη, x̂i , y̌i.

Definition 2.1. [31] For all possible coefficient matrices B and C in CGNN (2.1) with time-varying
delay, when the system remains stable in a certain state, the state is the equilibrium point of the system,
and this equilibrium point is asymptotically stable, so it can be said that the model is asymptotically
stable.
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Definition 2.2. [32] System (2.1) remains stable in some states, which are called equilibrium points.
The equilibrium point is a constant vector x̂∗ = (x̂∗1, x̂

∗
2, ...., x̂

∗
η)

T , which can make

−ai(x̂∗i ) +
η∑

j=1

bi jF̄ j(x̂∗j) +
η∑

j=1

ci jF̄ j(x̂∗j) + ȷi = 0.

Lemma 2.1. [33] (Quadratic reciprocally convex inequality) For given matrices Ji ∈ R
η×η, real number

scalar qi, q j ∈ [0, 1], and ℘i ∈ (0, 1) with
∑η

i=1 ℘i = 1, if there exists Ti ∈ R
η×η, Li j ∈ R

η×η ( j > i), i =
1, 2, ...η, let the following matrix hold: [

Ji − Ti Li j

∗ J j − q jL j

]
≥ 0, (2.3)[

Ji − qiTi Li j

∗ J j − L j

]
≥ 0, (2.4)[

Ji Li j

∗ J j

]
≥ 0. (2.5)

Then, for any vector ζi ∈ Rη, the following inequality holds [23]:

η∑
i=1

1
℘i
ζT

i Jiζi ≥

η∑
j>i=1

He[ζT
i Li jζ j] +

η∑
i=1

ζT
i [Ji + (1 − ℘i)Ti]ζi +

η∑
j>i=1

{
ζT

i

(qi℘
2
j

℘i
T j

)
ζi + ζ

T
j

(q j℘
2
j

℘ j
Ti

)
ζ j

}
.

(2.6)

Theorem 2.1. Under Assumptions 2.1–2.3, if the following inequality condition is satisfied, then the
system has only one stable state, and the state (balance point) is unique.

∥B∥1 + ∥C∥1 <
µm

Km
,

where

µm = min
1≤i≤η

(µi), Km = max
1<i<η

(Ki),

for any matrix B = (bi j)η×η,

∥B∥1 = max
1≤ j≤η

η∑
i=1

∣∣∣bi j

∣∣∣ , ∥B∥2 = √λm(BTB),

the λm(BTB) here is the largest of all eigenvalues of the matrix BTB.
Proof. Let x̂∗ = (x̂∗1, x̂

∗
2, ...., x̂

∗
η)

T denote an equilibrium point of neural network model (2.2). Then,

D(x̂∗)
[
−A(x̂∗) +BF̄(x̂∗) + CF̄(x̂∗) + ȷ

]
= 0. (2.7)

Because D(x̂∗) is a positive matrix with zero elements outside the diagonal line, replace (2.7) with

−A(x̂∗) +BF̄(x̂∗) + CF̄(x̂∗) + ȷ = 0. (2.8)
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Let

ℑ̌(x̂) = −A(x̂) +BF̄(x̂) + CF̄(x̂) + ȷ = 0, (2.9)

where ℑ̌(x̂) = (ǩ1(x̂), ǩ2(x̂), ...., ǩη(x̂))T with

ǩi(x̂) = −ai(x̂i) +
η∑

j=1

bi jF̄ j(x̂ j) +
η∑

j=1

ci jF̄ j(x̂ j) + ȷi, i = 1, 2, ..., η.

As is well-known, if ǩi(x̂) is a homeomorphism of Rη, then (2.8) has a unique solution. From [2], it can
be seen that ǩi(x̂) in this paper is a homeomorphic map to Rη, if ℑ̌(x̂) , ℑ̌(y̌),∀x̂ , y̌, and also x̂, y̌ ∈ Rη,
and
∥∥∥∥ℑ̌(x̂)

∥∥∥∥→ ∞ as ∥x̂∥ → ∞.
Let x̂ , y̌, which implies two cases:
(I) x̂ , y̌ and F̄(x̂) − F̄(y̌) , 0,
(⨿) x̂ , y̌ and F̄(x̂) − F̄(y̌) = 0.
Now, case (I):

ℑ̌(x̂) − ℑ̌(y̌) = − A(x̂) +BF̄(x̂) + CF̄(x̂) + ȷ −
[
−A(y̌) +BF̄(y̌) + CF̄(y̌) + ȷ

]
= − (A(x̂) − A(y̌)) +B(F̄(x̂) − F̄(y̌)) + C(F̄(x̂) − F̄(y̌)), (2.10)

and specify the above equation:

ǩi(x̂) − ǩi(y̌) = −
(
ai(x̂i) − ai(y̌i)

)
+

η∑
j=1

(bi j + ci j)
(
F̄ j(x̂ j) − F̄ j(y̌ j)

)
, (2.11)

Multiply the left and right of Eq (2.11) by sgn(x̂i − y̌i), where

sgn(x̂) =


1, x̂ > 0,
0, x̂ = 0,
−1, x̂ < 0,

at this time. Then, (2.11) becomes

sgn(x̂i − y̌i)
(
ǩi(x̂) − ǩi(y̌)

)
= − sgn(x̂i − y̌i)

(
ai(x̂i) − ai(y̌i)

)
+

η∑
j=1

sgn(x̂i − y̌i)(bi j + ci j)
(
F̄ j(x̂ j) − F̄ j(y̌ j)

)
≤ − µi |x̂i − y̌i| +

η∑
j=1

(∣∣∣bi j

∣∣∣ + ∣∣∣ci j

∣∣∣ )Ki |x̂i − y̌i|

≤ − µm |x̂i − y̌i| +

η∑
j=1

(∣∣∣bi j

∣∣∣ + ∣∣∣ci j

∣∣∣ )Km |x̂i − y̌i| ,
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form which we get

η∑
i=1

sgn(x̂i − y̌i)
(
ǩi(x̂) − ǩi(y̌)

)
≤ −

η∑
i=1

µm |x̂i − y̌i| +

η∑
i=1

η∑
j=1

(∣∣∣bi j

∣∣∣ + ∣∣∣ci j

∣∣∣ )Km |x̂i − y̌i|

≤ −

η∑
i=1

µm |x̂i − y̌i| + Km

η∑
i=1

η∑
j=1

(∣∣∣bi j

∣∣∣ + ∣∣∣ci j

∣∣∣ )|x̂i − y̌i|

≤ −

(
µm − Km(∥B∥1 + ∥C∥1)

)
∥x̂ − y̌∥1 , (2.12)

where ∥x̂ − y̌∥1 =
∑η

i=1 |x̂i − y̌i|, for x̂ − y̌ , 0, ∥B∥1 + ∥C∥1 <
µm
Km

, implies that

η∑
i=1

sgn(x̂i − y̌i)
(
ǩi(x̂) − ǩi(y̌)

)
≤ 0

or
η∑

i=1

∣∣∣ǩi(x̂) − ǩi(y̌)∣∣∣ = ∥∥∥∥ℑ̌(x̂) − ℑ̌(y̌)
∥∥∥∥

1
> 0.

It can be seen that for any x̂ , y̌, the result of ℑ̌(x̂) , ℑ̌(y̌).
Now, case (⨿):

ℑ̌(x̂) − ℑ̌(y̌) = −
(
A(x̂) − A(y̌)

)
,

from which one can obtain

sgn(x̂i − y̌i)(ǩi(x̂) − ǩi(y̌)) = −sgn(x̂i − y̌i)(ai(x̂i) − ai(y̌i)) ≤ −µi |x̂i − y̌i| .

x̂ − y̌ , 0 implies that

η∑
i=1

sgn(x̂i−y̌i)(ǩi(x̂) − ǩi(y̌)) < 0

or
η∑

i=1

∣∣∣ǩi(x̂) − ǩi(y̌)∣∣∣ = ∥∥∥∥ℑ̌(x̂) − ℑ̌(y̌)
∥∥∥∥

1
> 0.

From the above two inequalities, we can understand that when any x̂ , y̌ is arbitrary, it will make
ℑ̌(x̂) , ℑ̌(y̌) .

Substitute y̌ = 0 into inequality (2.12) to get

η∑
i=1

sgn(x̂i)
(
ǩi(x̂) − ǩi(0)

)
≤ −

(
µm − Km(∥B∥1 + ∥C∥1)

)
∥x̂∥1 .
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Therefore, (
µm − Km(∥B∥1 + ∥C∥1)

)
∥x̂∥1 ≤

∣∣∣∣∣∣∣
η∑

i=1

sgn(x̂i)
(
ǩi(x̂) − ǩi(0)

)∣∣∣∣∣∣∣ ≤
η∑

i=1

∣∣∣ǩi(x̂) − ǩi(0)
∣∣∣

=
∥∥∥∥ℑ̌(x̂) − ℑ̌(0)

∥∥∥∥
1
≤

∥∥∥∥ℑ̌(x̂)
∥∥∥∥

1
+
∥∥∥∥ℑ̌(0)

∥∥∥∥
1
,∥∥∥∥ℑ̌(x̂)

∥∥∥∥
1
≥

(
µm − Km(∥B∥1 + ∥C∥1)

)
∥x̂∥1 −

∥∥∥∥ℑ̌(0)
∥∥∥∥

1
.

That is, when ∥x̂∥ → ∞,
∥∥∥∥ℑ̌(x̂)

∥∥∥∥→ ∞ .
The above is the whole proof process of Theorem 2.1.

Remark 2.1. In terms of the construction of LKF, different construction methods can solve different
types of time delay systems, and the utilization rates of different types of time-delay information are
also different. How to construct a LKF with a small amount of computation and less conservativeness
is worth further exploration.

3. Model building and preparation

The system state is translationally transformed so that the equilibrium point is at the origin of the
coordinate system. The balance point is set to x̂∗ = (x̂∗1, x̂

∗
2, ...., x̂

∗
η), and κ̄(t) = x̂(t) − x̂∗:

˙̄κ(t) = αi(κ̄i(t)
[
−βi(κ̄i(t)) +

η∑
j=1

bi jℏ̄ j(κ̄ j(t)) +
η∑

j=1

ci jℏ̄ j(κ̄ j(t − ℓ j(t)))
]
,

or with another way of representation,

˙̄κ(t) = α(κ̄(t)
[
−β(κ̄(t)) +Bℏ̄(κ̄(t)) + Cℏ̄(κ̄(t − ℓ(t)))

]
, (3.1)

where

κ̄(t) = (κ̄1(t), κ̄2(t), ..., κ̄η(t))T ,

α(κ̄(t)) = diag(α1(κ̄1(t)), α2(κ̄2(t)), ..., αη(κ̄η(t))),
β(κ̄(t)) = (β1(κ̄1(t)), β2(κ̄2(t)), ..., βη(κ̄η(t)))T ,

ℏ̄(κ̄(t − ℓ(t))) =
(
ℏ̄1(κ̄1(t − ℓ1(t))), ℏ̄2(κ̄2(t − ℓ2(t))), ..., ℏ̄η(κ̄η(t − ℓη(t)))

)T
.

For the transformed system (3.1), we have

αi(κ̄i(t)) =di(κ̄i(t) + x̂∗i ), i = 1, 2, ..., η.

βi(κ̄i(t)) =ai(κ̄i(t) + x̂∗i ) − ai(x̂∗i ), i = 1, 2, ..., η.

ℏ̄i(κ̄i(t)) =F̄i(κ̄i(t) + x̂∗i ) − F̄i(x̂∗i ), i = 1, 2, ..., η.

The time-delay neural network model plays a vital role in practical applications: function
approximation, parallel calculation, associative memory, etc. Moreover, the main feature of the
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switching system is that it has a constraint on the state variable. The state variable can be an input
variable or output variable. Therefore, further research on SCGNN with time delay is the next step.

Consider the following SCGNN models with time-varying delay:

˙̄κ(t) = α(κ̄(t))
[
−β(κ̄(t)) +Bσ(t)ℏ̄(κ̄(t)) + Cσ(t)ℏ̄(κ̄(t − ℓ(t)))

]
, (3.2)

ℏ̄(κ̄(t)) = (ℏ̄1(κ̄1(t)), ℏ̄2(κ̄2(t)), ...., ℏ̄η(κ̄η(t)))T is an activation function that activates neurons. ℓ

is bounded, and σ(t) : [t0,+∞) −→ N =
{
1, 2, ...,N

}
is a segmented constant function and

is related to time t. We call it a switch signal to activate a specific subsystem. There are
N neural network subsystems. The corresponding switching sequence is represented as σ(t) :
{(t0, σ(to)), ..., (tı, σ(tı)), ..., | σ(tı) ∈ N, ı = 0, 1, ...}, to is the initial time, and tı is the switching moment
of the ıth subsystem. At the same time, σ(tı) means that the ıth subsystem is activated. For any ı, the
matrix (Bσ,Cσ) is included in the finite set

{
(B1,C1), (B2,C2), ...(Bη,Cη)

}
.

In this article, it is assumed that the switching signal σ(t) is not known at the beginning, and σ(tı) =
ı, define the function ξ(t) = (ξ1(t), ξ2(t), ..., ξN(t))T , where ı = 1, 2, ...,N.

ξı(t) =

1, when the switched system is described by the kth mode Bσ(tı), Cσ(tı),

0, otherwise.
Now, we can change CGNN (3.2) with switching signal to an expression, that is,

˙̄κ(t) = α(κ̄(t))
{
− β(κ̄(t)) +

N∑
ı=1

ξı(t)
[
Bσ(tı)ℏ̄(κ̄(t)) + Cσ(tı)ℏ̄(κ̄(t − ℓ(t))

]}
, (3.3)

and it follows that
∑N
ı=1 ξı(t) = 1.

Translating the equilibrium point of system (2.1) to the origin: (x̂∗1, x̂
∗
2, ..., x̂

∗
η) to (0, 0, ..., 0), at this

time, κ̄(0) = 0. Know by Assumption 2.2:

β(κ̄(t)) − β(κ̄(0))
κ̄(t) − κ̄(0)

≥ µi > 0, i = 1, 2, ..., η,

and hence,

β(κ̄(t)) ≥ µiκ̄(t).

Now,

˙̄κ(t) ≤ −α(κ̄(t))µiκ̄(t) + α(κ̄(t))
N∑
ı=1

ξı(t)Bσ(tı)ℏ̄(κ̄(t)) + α(κ̄(t))
N∑
ı=1

ξı(t)Cσ(tı)ℏ̄(κ̄(t − ℓ(t)))

≤ −µiα(κ̄(t))κ̄(t) + α(κ̄(t))Bσ(tı)ℏ̄(κ̄(t)) + α(κ̄(t))Cσ(tı)ℏ̄(κ̄(t − ℓ(t))), (3.4)

where κ̄(t) ∈ Rη is the state vector, µiα(κ̄(t)), α(κ̄(t))Bσ(tı), α(κ̄(t))Cσ(tı) are known continuous function
matrices.

The time-varying delay ℓ(t) satisfies

0 ≤ ℓ0 ≤ ℓ(t) ≤ ℓ2, ρ1 ≤ ℓ̇(t) ≤ ρ2, (3.5)
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then, ℓ0, ℓ2, ρ1, and ρ2 > 0 are constants, which we already knew.
For the activation function ℏ̄l(·) (l = 1, 2, ..., η),

0 ≤
ℏ̄l(s1) − ℏ̄l(s2)

s1 − s2
≤ r1, s1 , s2,

0 ≤
ℏ̄l(s)

s
≤ rl, s , 0, (3.6)

where rl are real numbers, and R = diag{r1, r2, ..., rη}.

4. Main results

Combining the flexible terminal interpolation method with the secondary convex inequality is
conducive to capturing more delay information and obtaining sufficient conditions to ensure the
stability of CGNN (3.2) with switching signal by selecting the appropriate LKF function.
Theorem 4.1. For given scalars ℓ0, ℓ2, ρ1, ρ2, 0 < δ ≤ min{1, 1

ρ2
} and ℓ(d, b) = ℓd − ℓb, ϱ = 1 − δ , the

SCGNN (3.2) is asymptotically stable if there exist Q > 0, Pi > 0, J > 0, diagonal matrices W1 > 0,

W2 > 0, ∆i > 0 (i = 1, 2, ..., 2ı+1), matrices Ti, Li j ( j > i = 1, 2, ..., 2ı+1 − 2), N,M =
[
M1

M2

]
, making the

LMIs (4.1)–(4.4) hold: [
J̃i − Ti Li j

∗ J̃i − ℘ jT j

]
≥ 0, (4.1)[

J̃i − ℘iTi Li j

∗ J̃i − T j

]
≥ 0,

[
J̃i Li j

∗ J̃i

]
≥ 0, (4.2)

Ψκ̄ =

N M
∗ 1

3
˙̃ℓ 2ı+1−1

2ı
J

 ≥ 0, (4.3)

Ψ(ℓ0) < 0, Ψ(ℓ2) < 0, − ℓ22d2 + Ψ(ℓ0) < 0, (4.4)

where

Ψ(ℓ(t)) = Ψ0 − 2ΨF̄,
Ψ0 = He[ΩT

1 QΩ2 + Ω
T
3 M̂Ω3 + eT

2ı+2W1U + (Re1 − e2ı+2)T W2U] + ℓ 2ı+1−1
2ı
U

T JU

−

˙̃ℓ 2ı+1−1
2ı

ℓ2

{ 2ı+1−1∑
i=1

εT
i [J̃i − (1 − ℘i)Ti]εi +

2ı+1−1∑
j>i=1

(He[εT
i Li jε j] + ℘2

jε
T
i T jεi + ℘

2
i ε

T
j Tiε j)

}

+

2ı+1−1∑
i=1

{ ˙̃ℓ i−1
2ı
ε̂T

i Piε̂i −
˙̃ℓ i

2ı
ε̂T

i+1Piε̂i+1},

ΨF̄ =

2ı+1−1∑
i=1

eT
2ı+1−1+i∆i[e2ı+1−1+i − Rei] +

2ı+1−1∑
q=1

2ı+1∑
p=2,p>q

(e2ı+2−1+q − e2ı+2−1+p)T∆qp

× [e2ı+2−1+q − e2ı+2−1+p − R(eq − ep)],
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Ω1 = col
[
e1, ℓ 1

2ı
e2ı+1+1, ℓ(

2
2ı
,

1
2ı

)e2ı+1+2,...,ℓ(
2ı+1 − 1

2ı
,

2ı+1 − 2
2ı

)e2ı+1−1

]
,

Ω2 = col
[
U, e1 −

˙̃ℓ 1
2ı

e2,
˙̃ℓ 1

2ı
e2 −

˙̃ℓ 2
2ı

e3, ...,
˙̃ℓ 2ı+1−2

2ı
e2ı+1−1 −

˙̃ℓ 2ı+1−1
2ı

e2ı+1

]
,

Ω3 = col[e2ı , e2ı+1], εi = col[ei − ei+1, ei + ei+1 − 3e2ı+1+i], ε̂i = col[ei, e2ı+2−1+i],
ei = [0η×(i−1)η, Iη, 0η×(3∗2ı+1−1−i)η] (i = 1, 2, ..., 3 ∗ 2ı+1 − 1),
U = −µiα(κ̄(t))e1 + α(κ̄(t))Bσ(tı)e2ı+2 + α(κ̄(t))Cσ(tı)e2ı+2+2ı ,

d2 =
1
2

2ı+1−1∑
j>i=1

d2([℘2
i ε

T
j Tiε j + ℘

2
jε

T
i T jεi])

d2[ℓ(t)]2 , ℘i =
ℓ( i

2ı ,
i−1
2ı )
ℓ2

, i = 1, 2, ..., 2ı+1 − 2,

℘2ı+1−1 =
ℓ(2, 2ı+1−2

2ı )
ℓ2

, ˙̃ℓ i
2ı
= 1−ℓ̇ i

2ı
, M̂ =

[
M1 + MT

1 −M1 + MT
2

∗ −M2 − MT
2

]
+ (ℓ(t) − ℓ 2ı−1

2ı
)N,

J̃l =

{
diag[J, 4J], l , 2ı,
diag{ J

3 ,
4J
3 }, l = 2ı.

Proof. Choose the appropriate LKF:

V(t) = V1(t) + V2(t) + V3(t), (4.5)

where

V1(t) = ˜̄κT (t)Q ˜̄κ(t) + 2
η∑

i=1

w1i

∫ κ̄i(t)

0
ℏ̄i(s)ds + 2

η∑
i=1

w2i

∫ κ̄i(t)

0
(ris − ℏ̄i(s))ds,

V2(t) =
∫ 0

−ℓ 2ı+1−1
2ı

∫ t

t+θ

˙̄κT (s)J ˙̄κ(s)dsdθ,

V3(t) =
2ı+1−1∑

i=1

∫ t−ℓ i−1
2ı

t−ℓ i
2ı

πT (s)Piπ(s)ds,

with

˜̄κ(t) =col
[
κ̄(0), ℓ 1

2ı
v̄(

1
2ı
, 0), ℓ(

2
2ı
,

1
2ı

)v̄(
2
2ı
,

1
2ı

), ..., ℓ(
2ı+1 − 1

2ı
,

2ı+1 − 2
2ı

)v̄(
2ı+1 − 1

2ı
,

2ı+1 − 2
2ı

)
]
,

ς(t) =col
[
κ̄(0), κ̄t(

1
2ı

), κ̄t(
2
2ı

), ..., κ̄t(
2ı+1 − 1

2ı
), v̄(

1
2ı
, 0), v̄(

2
2ı
,

1
2ı

), ..., v̄(
2ı+1 − 1

2ı
,

2ı+1 − 2
2ı

),

ℏ̄(0), ℏ̄t(
1
2ı

), ..., ℏ̄t(
2ı+1 − 1

2ı
)
]
,

π(s) =col[κ̄(s), ℏ̄(s)], κ̄t(d) = κ̄(t − d), π(d) = π(t − ℓd),

ℏ̄t(d) =ℏ̄(κ̄(t − d)), ℓ(d, b) = ℓd − ℓb, v̄ =
1
ℓ(d, b)

∫ t−ℓb

t−ℓd
κ̄(s)ds.

Find the derivatives of V1, V2, V3 along the trajectory of the system (3.2), respectively.
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V̇1(t) = ˙̄̃κT (t)Q ˜̄κ(t) + ˜̄κT (t)Q ˙̄̃κ(t) + 2W1ℏ̄(κ̄(t))˙̄κ(t) + 2(Rκ̄(t) − ℏ̄(κ̄(t)))T W2 ˙̄κ(t)

=2˜̄κT (t)Q ˙̄̃κ(t) + 2ℏ̄T (κ̄(t))W1 ˙̄κ(t) + 2(Rκ̄(t) − ℏ̄(κ̄(t)))T W2 ˙̄κ(t)

=2˜̄κT (t)Q ˙̄̃κ(t) + 2ℏ̄T (κ̄(t))W1[−µiα(κ̄(t))κ̄(t) + α(κ̄(t))Bσ(tı)ℏ̄(κ̄(t)) + α(κ̄(t))Cσ(tı)ℏ̄(κ̄(t − ℓ(t)))]
+ 2(Rκ̄(t) − ℏ̄(κ̄(t)))T W2[−µiα(κ̄(t))κ̄(t) + α(κ̄(t))Bσ(tı)ℏ̄(κ̄(t)) + α(κ̄(t))Cσ(tı)ℏ̄(κ̄(t − ℓ(t)))]
=ςT (t)[ΩT

1 QΩ2 + Ω
T
2 QΩ1]ς(t) + ςT (t)[eT

2k+2W1U + U
T W1e2ı+2]ς(t) + ςT (t)[(Re1 − e2ı+2)T W2U

+ UT W2(Re1 − e2ı+2)T ]ς(t)
=ςT (t)He[ΩT

1 QΩ2 + eT
2ı+2W1U + (Re1 − e2ı+2)T W2U]ς(t), (4.6)

V̇2(t) =
∫ ℓ 2ı+1−1

2ı

0
(˙̄κT (t)J ˙̄κ(t) − [˙̄κT (t + θ)J ˙̄κ(t + θ)])dθ

=ℓ 2ı+1−1
2ı

˙̄κT (t)J ˙̄κ(t) − ˙̃ℓ 2ı+1−1
2ı

∫ t

t−ℓ 2ı+1−1
2ı

˙̄κT (s)J ˙̄κ(s)ds

= − ˙̃ℓ 2ı+1−1
2ı

∫ t

t−ℓ 2ı+1−1
2ı

˙̄κT (s)J ˙̄κ(s)ds + ℓ 2ı+1−1
2ı
ςT (t)UT JUς(t). (4.7)

Now, we use the Wirtinger integral inequality and the quadratic reciprocally convex
inequality (Lemma 2.1) to calculate the u-related integral terms in the formula (4.7).

−

∫ t

t−ℓ 2ı+1−1
2ı

˙̄κT (s)J ˙̄κ(s)ds

= −

2ı+1−1∑
i=1,i,2ı

∫ t−ℓ i−1
2ı

t−ℓ i
2ı

˙̄κT (s)J ˙̄κ(s)ds −
∫ t−ℓ 2ı−1

2ı

t−ℓ 2ı
2ı

˙̄κT (s)J ˙̄κ(s)ds

= −

2ı+1−1∑
i=1,i,2ı

1
ℓ( i

2ı ,
i−1
2ı )

v̄T (
i
2ı
,

i − 1
2ı

)Jv̄(
i
2ı
,

i − 1
2ı

) −
∫ t−ℓ 2ı−1

2ı

t−ℓ 2ı
2ı

˙̄κT (s)J ˙̄κ(s)ds

≤ −

2ı+1−1∑
i=1

ςT (t)
[ 1
ℓ( i

2ı ,
i−1
2ı )
εi J̄iεi

]
ς(t) −

∫ t−ℓ 2ı−1
2ı

t−ℓ(t)

˙̄κT (s)
J
3

˙̄κ(s)ds

≤ −
1
ℓ2

2ı+1−1∑
i=1

ςT (t)[
1
γi
εi J̄iεi]ς(t) −

∫ t−ℓ 2ı−1
2ı

t−ℓ(t)

˙̄κT (s)
J
3

˙̄κ(s)ds

≤ −
1
ℓ2

{ 2ı+1−1∑
i=1

ςT (t)εT
i [J̄i − (1 − γi)Ti]εi +

2ı+1−1∑
j>i=1

(He[εT
i Li jεi]

+ ℘2
jε

T
i T jεi + ℘

2
i ε

T
j Tiε j)

}
ς(t) −

∫ t−ℓ 2ı−1
2ı

t−ℓ(t)

˙̄κT (s)
J
3

˙̄κ(s)ds, (4.8)

then, ℓ 2ı
2ı
= ℓ1 = ℓ(t),
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V̇3(t) =
2ı+1−1∑

i=1

{
(1 − ℓ̇ i−1

2ı
)πT (t − ℓ i−1

2ı
)Piπ(t − ℓ i−1

2ı
) − [(1 − ℓ̇ i

2ı
)πT (t − ℓ i

2ı
)Piπ(t − ℓ i

2ı
)]
}

=

2ı+1−1∑
i=1

{
ℓ̇ i−1

2ı
πT (ℓ i−1

2ı
)Piπ(ℓ i−1

2ı
) − ˙̃ℓ i

2ı
πT (ℓ i

2ı
)Piπ(ℓ i

2ı
)
}

=

2ı+1−1∑
i=1

{
˙̃ℓ i−1

2ı
ςT (t)ε̂T

i Piε̂iς(t) − ˙̃ℓ i
2ı
ςT (t)ε̂T

i+1Piε̂i+1ς(t)
}

=ςT (t)
2ı+1−1∑

i=1

[
˙̃ℓ i−1

2ı
ε̂T

i Piε̂i −
˙̃ℓ i

2ı
ε̂T

i+1Piε̂i+1

]
ς(t). (4.9)

For any dimension matrices M1 and M2, use Newton-Leibniz formula to get

2[κ̄Tt (
2ı − 1

2ı
)MT

1 + κ̄
T (t − ℓ(t))MT

2 ] × [κ̄t(
2ı − 1

2ı
) − κ̄(t − ℓ(t)) −

∫ t−ℓ 2ı−1
2ı

t−ℓ(t)

˙̄κ(s)ds] = 0, (4.10)

and for any matrix N, the zero equation below holds:∫ t−ℓ 2ı−1
2ı

t−ℓ(t)
ςT

1 (t)Nς1(t)ds = (ℓ(t) − ℓ 2ı−1
2ı

)ςT
1 (t)Nς1(t),

which is equivalent to

(ℓ(t) − ℓ 2ı−1
2ı

)ςT
1 (t)Nς1(t) −

∫ t−ℓ 2ı−1
2ı

t−ℓ(t)
ςT

1 (t)Nς1(t)ds = 0. (4.11)

Into there, ςT
1 (t) = [κ̄t( 2ı−1

2ı ), κ̄(t − ℓ(t))], from (4.6) to (4.7), and it yields

V̇(t) ≤ςT (t)
{
He
[
ΩT

1 QΩ2 + eT
2ı+2W1U + (Re1 − e2ı+2)T W2U

]
+

2ı+1−1∑
i=1

[
˙̃ℓ i−1

2ı
ε̂T

i Piε̂i −
˙̃ℓ i

2ı
ε̂T

i+1Piε̂i+1

]
+ ℓ 2ı+1

2ı
U

T JU −
1
ℓ2

2ı+1−1∑
i=1

εT
i [J̄i − (1 − ℘i)Ti]εi

−
1
ℓ2

2ı+1−1∑
j>i=1

(He[εT
i Li jεi] + ℘2

jε
T
i T jεi + ℘

2
i ε

T
j Tiε j)

}
ς(t) −

∫ t−ℓ 2ı−1
2ı

t−ℓ(t)

˙̄κT (s)
J
3

˙̄κ(s)ds

≤ςT (t)Ψ0ς(t) − ςT (t)He[πT
3 M̂π3]ς(t) −

∫ t−ℓ 2ı−1
2ı

t−ℓ(t)

˙̄κT (s)
J
3

˙̄κ(s)ds. (4.12)

Based on formula (3.6), for any positive diagonal matrix ∆i = diag{λ1, λ2, ..., λη}, and there are

0 ≤ −2ℏ̄T (s)∆[ℏ̄(s) − Rs].

Let s be t, t − ℓ 1
2ı

, t − ℓ 2
2ı

,...,t − ℓ 2ı+1−1
2ı

, and replace ∆ with ∆1, ∆2,...,∆ı+1
2 , and we can obtain

0 ≤ −2ςT (t)eT
2ı+2−1+i∆i[e2ı+2−1+i − Rei]ς(t).
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There, i = 1, 2, ..., 2ı+1,

0 ≤ −2ςT (t)
2ı+1∑
i=1

eT
2ı+1−1+i∆i[e2ı+1−1+i − Rei]ς(t), (4.13)

and for arbitrary straight diagonal matrix ∆̄ = diag{λ̄1, λ̄2, ..., λ̄η}, one can gain

0 ≤ −2(ℏ̄(s1) − ℏ̄(s2))T ∆̄[ℏ̄(s1) − ℏ̄(s2) − R(s1 − s2)].

Let s1, s2 be t, t− ℓ 1
2ı

, t− ℓ 2
2ı

,...,t− ℓ 2ı+1−1
2ı

, and replace ∆̄ with ∆qp. This moment, q = 1, 2, ..., 2ı+1 − 1,

p = 2, 3, ..., 2ı+1, p > q.

0 ≤ −2ςT (t)
2ı+1−1∑

q=1

2ı+1∑
p=2,p>q

[e2ı+2−1+q − e2ı+2−1+p]T∆qp × [e2ı+2−1+q − e2ı+2−1+p − K(eq − ep)]ς(t). (4.14)

Therefore, the formula (4.11) can be written as

V̇(t) ≤ςT (t)Ψ(t)ς(t) −
∫ t−ℓ 2ı−1

2ı

t−ℓ(t)
ςT

2 (t, s)Ψκ̄ς2(t, s)ds

≤ςT (t)Ψ(t)ς(t), (4.15)

among ς(t, s) = [ς1(t, s), ˙̄κ(s)].
Now, defined Ψ(t) = d2ℓ2(t) + d1ℓ(t) + d0, d1 and d0 are matrices with suitable dimensions (i.e., free

matrices). When Ψ(t) meets the condition (4.3) in Theorem 4.1, for ∀t ∈ [0, ℓ], Ψ(t) < 0, that is, the
system (3.2) is asymptotically stable. The proof is as follows:
Proof. When d2 ≥ 0, Ψ(t) is a quadratic function with the opening up, that is, the convex function.

By the property of the convex function, the tangent of its crossing point (ℓ,Ψ(ℓ)) is expressed as

Ψ(t) − Ψ(ℓ) = Ψ̇(ℓ)(t − ℓ),
Ψ(t) = Ψ̇(ℓ)(t − ℓ) + Ψ(ℓ), (4.16)

from (4.3): Ψ(0) < 0,Ψ(ℓ) < 0, Ψ(t) < 0.
When d2 < 0, Ψ(t) is the open and downward quadratic function, that is, the concave function.

Choose any t ∈ [o, ℓ],

Ψ̇(ℓ) ≤
Ψ(t) − Ψ(ℓ)

t − ℓ
, (4.17)

Ψ̇(ℓ)(t − ℓ) ≥ Ψ(t) − Ψ(ℓ),
Ψ(t) ≤ Ψ̇(ℓ)(t − ℓ) + Ψ(ℓ),
Ψ ≤ (2d2ℓ + d1)(t − ℓ) + d2ℓ2 + d1ℓ + d0 ≤ (2d2ℓ + d1)t − d2ℓ2 + d0,
Γ(t) = (2d2ℓ + d1)t − a2ℓ

2 + d0,

Γ(0) = −d2ℓ2 + d0 = −d2ℓ2 + Ψ(0),

by (4.3), we can get Γ(0) < 0.
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At the same time, Γ(ℓ) = Ψ(ℓ) < 0; therefore, for any t ∈ [0, ℓ], Ψ(t) < 0.
We know that V̇(t) ≤ ςT (t)Ψ(t)ς(t) and ς(t) < 0, and then V̇(t) ≤ 0, that is, V̇(t) is negative. From

Lyapunov’s second theorem, system (3.2) has asymptotic stability.
Remark 4.1. It is proved that the balance point of SCGNN exists and is unique, and only the
connection weight matrix with switching rules needs to be processed. That is, B̃ = Bσ(t) = (bı j)η×η,
C̃ = Cσ(t) = (cı j)η×η where σ(t) = ı, ı = 1, 2, ..., η, and its value may change over time. However,
this paper sets a fixed switching rule, that is, the value of the connection weight matrix can remain
unchanged for a period of time, which is equivalent to the connection weight matrix without a switching
system, so as to prove that the process is consistent with this paper’s Theorem 2.1.

5. Numerical simulation

Example 1. Take N = 3 and consider the SCGNN model with two subsystems:

˙̂xi(t) =di(x̂i(t))
{
− ai(x̂i(t)) +

N∑
ı=1

ξı(t)
[
BıF̄ j(x̂ j(t)) + CıF̄ j(x̂ j(t − ℓ j(t)))

]}
. (5.1)

Among them, the neural network system parameters are

di(x̂i(t)) = diag(2 + sin2(x̂1), 2 + cos2(x̂2), 2 + tanh2(x̂3)),
ai(x̂i(t)) = x̂i(t),
F̄ j(x̂ j(t)) = tanh(x̂i(t)), i, j = 1, 2, i ≤ j,

and the connection weight matrix is the following:
Subsystem 1:

B1 =


−0.1 −0.2 −0.2
0.1 0.3 −0.4
0.2 0.4 −0.3

 , C1 =


−0.1 −0.3 −1
1.3 −0.2 −0.4
1.2 1.1 −0.2

 .
Subsystem 2:

B2 =


−0.2 −0.6 −0.4
0.2 0.1 −0.1
0.3 0.5 0.3

 , C2 =


−0.25 2 −0.7

0.9 0.4 −0.5
0.3 0.2 0.2

 .
Subsystem 3:

B3 =


0.1 −0.6 −0.4
0 −0.2 1

0.3 0.2 −0.3

 , C3 =


−0.12 −0.1 0.4
−0.2 0.15 0.3
0.33 −0.2 −0.4

 .
In order to satisfy Assumptions 2.1–2.3, take the following parameters: li = 1, li = 2, µi = 1.2,

ki = 1, r1 = 0.4, r2 = 0.8.
Figures 2–7 depicts the simulation results after customizing the initial value under three subsystems.

Based on Theorem 4.1, the system has asymptotic stability.
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Figure 2. Transient behavior of x̂1 in (5.1).

Figure 3. Transient behavior of x̂2 in (5.1).

Figure 4. Transient behavior of x̂3 in (5.1).
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Figure 5. The phase plot of x̂1(t) and x̂2(t) in (5.1).

Figure 6. The phase plot of x̂1(t) and x̂3(t) in (5.1).

Figure 7. The phase plot of x̂2(t) and x̂3(t) in (5.1).
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When −ρ ≤ ℓ̇(t) ≤ ρ, i.e., −ρ1 = ρ2 = ρ, according to the judgment conditions of Theorem 4.1,
we use the LMIs toolbox to calculate and get the maximum upper bounds (MAUBs) allowed to be
achieved by time delay, see Table 1.

Table 1. Maximum admissible upper bounds for various ρ values, ℓ0 = 0.

ρ 0.8 0.9 unknown
Theorem 4.1 (ı=1) 1.9384 1.4275 1.3128
Theorem 4.1 (ı=2) 2.1139 1.5965 1.4902

As can be seen from Table 1, when ℓ̇(t) = ρ = 0.8, ð = 0.642, ℓ0 = 0, q1 = q2 = 0, the maximum
delay obtained by two interpolation is greater than that obtained by one interpolation, which fully
reflects that the flexible terminal interpolation method can capture more time-delay information, thus
reducing the advantage of conservatism.

6. Conclusions

This paper analyzes CGNN with time-varying delay and adds a switching system to CGNN to
study the asymptotic stability of SCGNN. Starting from the existence and uniqueness of the CGNN
equilibrium point, it becomes easier to eliminate the offset. In order to capture more time-delay
information, a flexible terminal interpolation method is adopted, and an LKF with more time-delay
information is constructed and estimated using a quadratic convex inequality. Additionally, based
on the linear matrix inequality, a new criterion for SCGNN asymptotic stability is obtained. Finally,
numerical examples and simulation results show that the system can be asymptotically stable under the
derivation criterion.

Compared with this paper, recent relevant results [34] use the quadratic inequality of real vectors and
the LKF method to study the stability of a class of CGNN systems with neutral delay terms and discrete
time delay. This CGNN system is more special and complex, fully considering the uncertainties and
interference factors in practical applications, which has strong practical significance. In addition to
studying the stability of this complex system, further research into the limits and singularities of the
system is worth exploring.
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